JP3903829B2 - Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent - Google Patents

Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent Download PDF

Info

Publication number
JP3903829B2
JP3903829B2 JP2002100374A JP2002100374A JP3903829B2 JP 3903829 B2 JP3903829 B2 JP 3903829B2 JP 2002100374 A JP2002100374 A JP 2002100374A JP 2002100374 A JP2002100374 A JP 2002100374A JP 3903829 B2 JP3903829 B2 JP 3903829B2
Authority
JP
Japan
Prior art keywords
alloy
recycling
powder
alb
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002100374A
Other languages
Japanese (ja)
Other versions
JP2003293047A (en
Inventor
琢哉 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002100374A priority Critical patent/JP3903829B2/en
Publication of JP2003293047A publication Critical patent/JP2003293047A/en
Application granted granted Critical
Publication of JP3903829B2 publication Critical patent/JP3903829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、Mg合金をリサイクルする方法、リサイクル剤およびリサイクル剤の製造方法に関する。
【0002】
【従来の技術】
資源の有効活用とコスト低減の観点から、Mg合金スクラップを溶解・鋳造用の原料として再利用すなわちリサイクルすることが行なわれている。このようにしてMg合金をリサイクルする際には、下記の2点Q1、Q2が重要である。
【0003】
(Q1)Mg合金スクラップ中のFe分を除去する必要がある。Feが残存するとMg合金の耐食性が低下する。
【0004】
(Q2)鋳造組織を微細化する処理が必要である。Mg合金スクラップを単に溶解して鋳造すると、鋳造組織が粗粒化して強度の低下を招く。
【0005】
そのため、従来は下記の手段A1、A2が採られていた。(例えば、「マグネシウム技術便覧」日本マグネシウム協会編(発行日:2000年5月17日)を参照。)
(A1)Fe分を除去するために、Mg合金溶湯中にAl−10%Mn合金を投入して、金属間化合物(FeMn)Alを生成させ、その沈殿分離によりFeを溶湯中から除去する。
【0006】
(A2)鋳造組織を微細化するために、Mg合金溶湯中に微細化剤としてヘキサクロロエタン(CCl)を添加する。
【0007】
しかし上記従来の方法には、下記の問題があった。
【0008】
まず、要件Q1、Q2を共に満たすためには手段A1、A2を両方実施する必要がある。すなわち、Al−10%Mn合金(A1)には微細化効果(Q2)はなく、ヘキサクロロエタン(A2)にはFe分除去効果(Q1)はない。
【0009】
また、ヘキサクロロエタンは、有害な塩素化炭化水素(CHC)を発生するため、環境保護の観点から望ましくない。
【0010】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題を解消し、環境に有害な添加剤を用いることなく、Fe分の除去と鋳造組織の微細化とを同時に達成できるMg合金のリサイクル方法、リサイクル剤、リサイクル剤の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明のMg合金のリサイクル方法は、下記の工程:
Mg粉末とMnB粉末とAl粉末との混合粉末を加圧成形する工程、
得られた成形体を熱処理することにより該成形体内にAlBを内部生成させる工程、および
得られたAlB含有成形体をMg合金溶湯に添加する工程
を含むことを特徴とする。
【0012】
また、本発明のMg合金のリサイクル剤は、Mg粒子、Mn粒子、Al粒子および少なくともAlB粒子を含むAl−B化合物粒子が混在する成形体から成ることを特徴とする。
【0013】
更に、本発明のMg合金のリサイクル剤の製造方法は、下記の工程:
Mg粉末とMnB粉末とAl粉末との混合粉末を加圧成形する工程、および
得られた成形体を熱処理することにより該成形体内にAlBを内部生成させる工程
を含むことを特徴とする。
【0014】
【発明の実施の形態】
本発明のMg合金のリサイクル方法においては、Mg粉末とMnB粉末とAl粉末との混合粉末を加圧成形し、得られた成形体を熱処理することにより該成形体内にAlBを内部生成させる。AlBの内部生成は典型的には下記の反応により行なわれる。
【0015】
2MnB+Al→2Mn+AlB……(A)
熱処理された成形体は、Mg粒子、Mn粒子およびAl粒子から成る金属マトリクス中にAlB金属間化合物粒子が分散した粒子分散型金属基複合材料の状態になっていると言える。
【0016】
次に、上記で得られたAlB含有成形体をMg合金溶湯に添加すると、Mg粒子、Mn粒子およびAl粒子から成る金属マトリクスは溶湯中に溶解して、溶湯と下記のように反応する。
【0017】
Mn+6Al+Fe→(FeMn)Al……(B)
これにより、Mg合金中のFeは金属間化合物(FeMn)Alとして固定され、沈殿分離により溶湯から除去される。
【0018】
同時に、溶湯中への金属マトリクスの溶解に伴い、AlB粒子が溶湯中に分散する。内部生成AlB粒子はサブミクロン〜1μm程度の微細な粒子であり、多数の微細な凝固核として作用し、微細な鋳造組織を生成させる。
【0019】
このように本発明によれば、Mg合金中のFe分の除去と鋳造組織の微細化とを同時に行なうことができる。
【0020】
しかも、本発明においては、従来のようにヘキサクロロエタンのような環境に有害な添加剤を用いることがないので、環境保護の観点からも問題を生じない。
【0021】
なお、成形体の構成成分であるMgは、上記反応(A)(B)のいずれにも関与していない。しかし、熱処理後の成形体をMg溶湯に添加した際に、成形体の濡れ性を確保し、溶湯中への金属マトリクスの溶解とAlB粒子の分散とを実現するためにMgは不可欠な構成成分である。
【0022】
成形体を構成するMnB粉末とAl粉末の配合比は、前記反応(A)に対応するAlとBとの化学量論比(原子比でAl:B=1:2)と、前記反応(B)に対応するMnとAlとの化学量論比(原子比でMn:Al=1:6)とを共に満たすように設定することを標準とする。Mg粉末の配合比は、成形体とMg合金溶湯との濡れ性を確保するのに十分な量に設定できる。これらの条件をまとめると、反応式(A)(B)を下記(A')(B')のように表現することができる。
【0023】
αMg+2MnB+13Al→αMg+2Mn+12Al+AlB…(A')
2Mn+12Al+2Fe→2(FeMn)Al……(B')
ここで、各係数は成形体原料粉末の配合比に対応しており、Mgの係数αは一般に数10以上の大きい数値(配合比)になる。
【0024】
【実施例】
下記の条件および手順によりMg合金のリサイクル処理を行なった。
【0025】
まず、Mg粉末、MnB粉末およびAl粉末を表1に示した配合比になるように秤量し、V型混粉機にて30分混合した。
【0026】
【表1】

Figure 0003903829
【0027】
得られた混合粉末を、成形圧7ton/cmで加圧成形し、円柱状成形体(φ30mm、20g/個)を作製した。
【0028】
この成形体をAr雰囲気中にて表2に示した各温度でそれぞれ1時間熱処理した。
【0029】
【表2】
Figure 0003903829
【0030】
表3に示す組成のMg合金スクラップを溶解してMg合金溶湯を形成した。
【0031】
【表3】
Figure 0003903829
【0032】
上記Mg合金溶湯2000gを750℃に保持し、上記各熱処理後の成形体を表2に示した添加量で添加した。
【0033】
成形体を添加した溶湯を下記の条件にて鋳造した。
【0034】
〔鋳造条件〕
鋳造方法 :重力鋳造
鋳型 :JIS4号試験片用舟金型
鋳型予熱温度 :100℃
添加時溶湯温度:750℃
鋳造時溶湯温度:750℃
得られた各鋳造品について、Fe含有量の分析および結晶粒径の測定を行なった結果を表2に示す。
【0035】
Fe含有量は、原料スクラップの0.014mass%に対して、成形体の熱処理を800℃で行なった実験No.1〜3では0.014mass%であり、原料スクラップと同等であったが、成形体の熱処理を1000℃または1200℃で行なった実験No.4〜9では0.004mass%であり顕著に低減した。いずれの場合も、添加量の影響は認められなかった。なお、成形体無添加の場合は原料スクラップと同等であることを確認した。図1に、添加によるFe除去効果が得られた実験No.4〜9と無添加の実験No.10について、鋳造品のFe含有量を対比して示す。
【0036】
結晶粒径は、成形体無添加の場合の300μmに対して、成形体の熱処理を800℃で行なった実験No.1〜3では300μmであり、無添加の実験No.10と同等であったが、成形体の熱処理を1000℃または1200℃で行なった実験No.4〜9では50〜200μmであり明瞭な細粒化効果が認められた。更に、熱処理温度1000℃の実験No.4〜6の方が、熱処理温度1200℃の実験No.7〜9よりも微細化効果が大きかった。
【0037】
上記の結果は下記のように解釈できる。
【0038】
800℃では、前記反応(A)(B)はどちらも起きないため、反応(A)の生成物AlBによる細粒化効果も、反応(B)によるFe除去効果も得られない。
【0039】
1000℃および1200℃では、反応(A)(B)のどちらも起きるため、反応(A)の生成物AlBによる細粒化効果および反応(B)によるFe除去効果の両方が得られる。また、1000℃に対して細粒化効果が小さい1200℃では、反応(A)によるAlBの生成に加えて下記反応(C)によってAlB12の生成も起きており、その分だけAlBの生成量が少ない。1200℃の熱処理で生成するAlB12は凝固核として機能しないため細粒化には寄与せず、細粒化作用を持つAlBの生成量が減少した分だけ細粒化効果が小さくなる。
【0040】
αMg+12MnB+13Al→αMg+12Mn+12Al+AlB12………(C)
なお、Al−B2元系では660℃以上でAlBが生成し、975℃以上でAlB12が生成するが、多量のMgの存在が前提となる多元系としてのMg合金中では、上記各生成温度が高温側にシフトしたと考えられる。
【0041】
【発明の効果】
以上説明したように、本発明によれば、環境に有害な添加剤を用いることなく、Fe分の除去と鋳造組織の微細化とを同時に達成できるMg合金のリサイクル方法、リサイクル剤、リサイクル剤の製造方法が提供される。
【図面の簡単な説明】
【図1】図1は、本発明によるリサイクル処理を行なった場合と無処理の場合とについてFe含有量を比較して示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of recycling an Mg alloy, a recycling agent, and a manufacturing method of the recycling agent.
[0002]
[Prior art]
From the viewpoint of effective use of resources and cost reduction, Mg alloy scrap is reused, that is, recycled as a raw material for melting and casting. When recycling the Mg alloy in this way, the following two points Q1 and Q2 are important.
[0003]
(Q1) It is necessary to remove the Fe content in the Mg alloy scrap. If Fe remains, the corrosion resistance of the Mg alloy decreases.
[0004]
(Q2) A process for refining the cast structure is necessary. If the Mg alloy scrap is simply melted and cast, the cast structure becomes coarse and the strength decreases.
[0005]
Therefore, conventionally, the following means A1 and A2 have been adopted. (For example, see “Magnesium Technical Handbook” edited by Japan Magnesium Association (issue date: May 17, 2000).)
(A1) In order to remove the Fe content, an Al-10% Mn alloy is introduced into the molten Mg alloy to form an intermetallic compound (FeMn) Al 6, and Fe is removed from the molten metal by precipitation separation. .
[0006]
(A2) In order to refine the cast structure, hexachloroethane (C 2 Cl 6 ) is added as a refiner in the molten Mg alloy.
[0007]
However, the conventional method has the following problems.
[0008]
First, in order to satisfy both requirements Q1 and Q2, it is necessary to implement both means A1 and A2. That is, the Al-10% Mn alloy (A1) does not have a refinement effect (Q2), and the hexachloroethane (A2) does not have an Fe content removal effect (Q1).
[0009]
Further, hexachloroethane is undesirable from the viewpoint of environmental protection because it generates harmful chlorinated hydrocarbons (CHC).
[0010]
[Problems to be solved by the invention]
The present invention solves the above-described problems of the prior art, and can simultaneously remove the Fe content and refine the cast structure without using an additive harmful to the environment, a recycling method of Mg alloy, a recycling agent, and a recycling agent. It aims at providing the manufacturing method of.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the Mg alloy recycling method of the present invention comprises the following steps:
A step of pressure-molding a mixed powder of Mg powder, MnB powder and Al powder,
Step of internally generate AlB 2 in the molding body by heat treating the obtained molded body, and the resulting AlB 2 containing shaped body, characterized in that it comprises the step of adding the Mg alloy melt.
[0012]
The Mg alloy recycle agent of the present invention is characterized by comprising a molded body in which Mg particles, Mn particles, Al particles and Al—B compound particles containing at least AlB 2 particles are mixed.
[0013]
Furthermore, the manufacturing method of the recycling agent of Mg alloy of this invention is the following process:
It includes a step of pressure-molding a mixed powder of Mg powder, MnB powder and Al powder, and a step of internally producing AlB 2 by heat-treating the obtained molded body.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the Mg alloy recycling method of the present invention, a mixed powder of Mg powder, MnB powder and Al powder is pressure-molded, and the resulting molded body is heat-treated to internally produce AlB 2 . The internal production of AlB 2 is typically performed by the following reaction.
[0015]
2MnB + Al → 2Mn + AlB 2 (A)
It can be said that the heat-treated molded body is in a state of a particle-dispersed metal matrix composite in which AlB 2 intermetallic compound particles are dispersed in a metal matrix composed of Mg particles, Mn particles, and Al particles.
[0016]
Next, when the AlB 2 -containing molded body obtained above is added to the molten Mg alloy, the metal matrix composed of Mg particles, Mn particles and Al particles is dissolved in the molten metal and reacts with the molten metal as follows.
[0017]
Mn + 6Al + Fe → (FeMn) Al 6 (B)
Thereby, Fe in the Mg alloy is fixed as an intermetallic compound (FeMn) Al 6 and is removed from the molten metal by precipitation separation.
[0018]
At the same time, the AlB 2 particles are dispersed in the molten metal as the metal matrix is dissolved in the molten metal. The internally generated AlB 2 particles are fine particles of submicron to 1 μm and act as a large number of fine solidification nuclei to produce a fine cast structure.
[0019]
As described above, according to the present invention, removal of the Fe content in the Mg alloy and refinement of the cast structure can be performed simultaneously.
[0020]
In addition, in the present invention, since no harmful additive such as hexachloroethane is used as in the prior art, there is no problem from the viewpoint of environmental protection.
[0021]
Note that Mg, which is a component of the molded body, is not involved in any of the reactions (A) and (B). However, when the molded body after heat treatment is added to the molten Mg, Mg is an indispensable component for ensuring the wettability of the molded body and realizing the dissolution of the metal matrix and the dispersion of AlB 2 particles in the molten metal. It is an ingredient.
[0022]
The compounding ratio of the MnB powder and the Al powder constituting the compact is the stoichiometric ratio of Al and B corresponding to the reaction (A) (atomic ratio: Al: B = 1: 2) and the reaction (B ) And the stoichiometric ratio of Mn and Al (Mn: Al = 1: 6 in atomic ratio) corresponding to the standard). The mixing ratio of the Mg powder can be set to an amount sufficient to ensure wettability between the compact and the molten Mg alloy. Summarizing these conditions, the reaction formulas (A) and (B) can be expressed as (A ′) and (B ′) below.
[0023]
αMg + 2MnB + 13Al → αMg + 2Mn + 12Al + AlB 2 (A ′)
2Mn + 12Al + 2Fe → 2 (FeMn) Al 6 (B ′)
Here, each coefficient corresponds to the blending ratio of the green compact powder, and the coefficient α of Mg is generally a large numerical value (blending ratio) of several tens or more.
[0024]
【Example】
The Mg alloy was recycled under the following conditions and procedures.
[0025]
First, Mg powder, MnB powder, and Al powder were weighed so as to have the blending ratio shown in Table 1, and mixed for 30 minutes in a V-type powder mixer.
[0026]
[Table 1]
Figure 0003903829
[0027]
The obtained mixed powder was pressure-molded at a molding pressure of 7 ton / cm 2 to prepare a cylindrical molded body (φ30 mm, 20 g / piece).
[0028]
This molded body was heat-treated at each temperature shown in Table 2 for 1 hour in an Ar atmosphere.
[0029]
[Table 2]
Figure 0003903829
[0030]
Mg alloy scrap having the composition shown in Table 3 was melted to form a molten Mg alloy.
[0031]
[Table 3]
Figure 0003903829
[0032]
2000 g of the molten Mg alloy was maintained at 750 ° C., and the molded body after each heat treatment was added in the addition amount shown in Table 2.
[0033]
The molten metal to which the compact was added was cast under the following conditions.
[0034]
[Casting conditions]
Casting method: Gravity casting mold: JIS No. 4 boat mold mold preheating temperature: 100 ° C
Molten metal temperature during addition: 750 ° C
Melting temperature during casting: 750 ° C
Table 2 shows the results of analysis of Fe content and measurement of crystal grain size for each of the obtained castings.
[0035]
The Fe content was 0.014 mass% in Experiment Nos. 1 to 3 where heat treatment of the compact was performed at 800 ° C. with respect to 0.014 mass% of the raw material scrap, which was equivalent to the raw material scrap. In Experiment Nos. 4 to 9 where the heat treatment of the body was performed at 1000 ° C. or 1200 ° C., it was 0.004 mass%, which was significantly reduced. In either case, the effect of the amount added was not observed. In addition, it confirmed that it was equivalent to a raw material scrap in the case of no molded object addition. FIG. 1 shows the Fe content of the cast product in comparison with Experiment Nos. 4 to 9 in which the Fe removal effect by addition was obtained and Experiment No. 10 without addition.
[0036]
The crystal grain size was 300 μm in Experiment No. 1 to 3 in which heat treatment of the compact was performed at 800 ° C., compared to 300 μm in the case of no additive added, and was equivalent to Experiment No. 10 in which the additive was not added. However, in Experiment Nos. 4 to 9 in which the heat treatment of the molded body was performed at 1000 ° C. or 1200 ° C., it was 50 to 200 μm, and a clear refining effect was recognized. Furthermore, Experiments Nos. 4 to 6 with a heat treatment temperature of 1000 ° C. had a greater effect of miniaturization than Experiments Nos. 7 to 9 with a heat treatment temperature of 1200 ° C.
[0037]
The above results can be interpreted as follows.
[0038]
At 800 ° C., neither of the reactions (A) and (B) occurs. Therefore, neither the effect of refining by the product AlB 2 of the reaction (A) nor the effect of removing Fe by the reaction (B) can be obtained.
[0039]
Since both reaction (A) and (B) occur at 1000 ° C. and 1200 ° C., both the effect of atomization by the product AlB 2 of reaction (A) and the effect of removing Fe by reaction (B) are obtained. Also, in 1000 ° C. grain refining effect is small 1200 ° C. relative to the reaction in addition to the generation of AlB 2 by (A) and also occurs generation of AlB 12 by the following reaction (C), of that much AlB 2 There is little production amount. Since AlB 12 produced by heat treatment at 1200 ° C. does not function as a solidification nucleus, it does not contribute to fine graining, and the fine graining effect is reduced by the amount of production of AlB 2 having a fine graining action.
[0040]
αMg + 12MnB + 13Al → αMg + 12Mn + 12Al + AlB 12 (C)
In the Al—B binary system, AlB 2 is generated at 660 ° C. or higher and AlB 12 is generated at 975 ° C. or higher. However, in the Mg alloy as a multi-component system on the premise of a large amount of Mg, each of the above generations It is thought that the temperature has shifted to the high temperature side.
[0041]
【The invention's effect】
As described above, according to the present invention, the Mg alloy recycling method, recycling agent, and recycling agent that can simultaneously achieve the removal of the Fe content and the refinement of the cast structure without using an additive harmful to the environment. A manufacturing method is provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a comparison of Fe content when a recycling process according to the present invention is performed and when a recycling process is not performed.

Claims (3)

Mg粉末とMnB粉末とAl粉末との混合粉末を加圧成形する工程、
得られた成形体を熱処理することにより該成形体内にAlBを内部生成させる工程、および
得られたAlB含有成形体をMg合金溶湯に添加する工程
を含むことを特徴とするMg合金のリサイクル方法。
A step of pressure-molding a mixed powder of Mg powder, MnB powder and Al powder,
Recycling of Mg alloy characterized by including a step of internally producing AlB 2 in the molded body by heat-treating the obtained molded body, and a step of adding the obtained AlB 2 -containing molded body to a molten Mg alloy Method.
Mg粒子、Mn粒子、Al粒子および少なくともAlB粒子を含むAl−B化合物粒子が混在する成形体から成ることを特徴とするMg合金のリサイクル剤。A recycling agent for Mg alloy, comprising a molded body in which Mg particles, Mn particles, Al particles, and Al-B compound particles containing at least AlB 2 particles are mixed. Mg粉末とMnB粉末とAl粉末との混合粉末を加圧成形する工程、および
得られた成形体を熱処理することにより該成形体内にAlBを内部生成させる工程
を含むことを特徴とするMg合金のリサイクル剤の製造方法。
A Mg alloy comprising: a step of pressure-forming a mixed powder of Mg powder, MnB powder and Al powder; and a step of internally producing AlB 2 by heat-treating the obtained molded body. Manufacturing method of recycling agent.
JP2002100374A 2002-04-02 2002-04-02 Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent Expired - Fee Related JP3903829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100374A JP3903829B2 (en) 2002-04-02 2002-04-02 Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100374A JP3903829B2 (en) 2002-04-02 2002-04-02 Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent

Publications (2)

Publication Number Publication Date
JP2003293047A JP2003293047A (en) 2003-10-15
JP3903829B2 true JP3903829B2 (en) 2007-04-11

Family

ID=29241346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100374A Expired - Fee Related JP3903829B2 (en) 2002-04-02 2002-04-02 Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent

Country Status (1)

Country Link
JP (1) JP3903829B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208183B (en) * 2015-02-16 2019-10-15 湖南斯瑞摩科技有限公司 Production line based on magnesium alloy waste material production national standard magnesium alloy ingot

Also Published As

Publication number Publication date
JP2003293047A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
EP2339037B1 (en) Manufacturing method of aluminum alloy
JP5294627B2 (en) Improved recycling method for Al-B4C composites
KR101199912B1 (en) method of manufacturing aluminium alloy
KR101310622B1 (en) Magnesium alloy chips and process for manufacturing molded article using same
CA2153694A1 (en) Semi-solid processed magnesium-beryllium alloys
JPH0561333B2 (en)
RU2562589C2 (en) Aluminium alloy with improved resistance against oxidation, corrosion resistance or improved fatigue resistance, and product out of this alloy received by die casting or by extrusion
CN113423853B (en) Aluminum alloy for structural high pressure vacuum die casting applications
JP2000104136A (en) Magnesium alloy having fine crystal grain and its production
CN1152969C (en) Process for preparing particle reinforced Mg-base composite
JP3903829B2 (en) Mg alloy recycling method, recycling agent, and manufacturing method of recycling agent
JPH0625774A (en) Production of tib2-dispersed tial-base composite material
JP2001342528A (en) Grain refiner for magnesium alloy, production process for the same and grain refining process using the same
JP7274131B2 (en) Magnesium alloy plastic working member and manufacturing method
CN109475932B (en) Grain refiner for magnesium alloy, preparation method thereof and grain refining method for magnesium alloy
KR101388922B1 (en) Aluminum alloys including Fe-Mn solid solution and method of manufacturing the same
CN111961899A (en) Method for removing impurity iron in magnesium alloy by using Al-Zr intermediate alloy
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
CN114657407B (en) Protective solvent for DKM7 alloy smelting and preparation method thereof
JPH0681068A (en) Method for casting heat resistant mg alloy
WO2006120322A1 (en) Grain refinement agent comprising titanium nitride and method for making same
CN115896551B (en) Aluminum scandium zirconium intermediate alloy and preparation method thereof
JP3666822B2 (en) Master alloy for adding Zr into Mg alloy
JP2004230394A (en) Rheocast casting method
JPH10280063A (en) Method for adding zirconium to magnesium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

LAPS Cancellation because of no payment of annual fees