JPS63177780A - Cultivation apparatus using reversibly rotatable axial-flow impeller - Google Patents

Cultivation apparatus using reversibly rotatable axial-flow impeller

Info

Publication number
JPS63177780A
JPS63177780A JP617187A JP617187A JPS63177780A JP S63177780 A JPS63177780 A JP S63177780A JP 617187 A JP617187 A JP 617187A JP 617187 A JP617187 A JP 617187A JP S63177780 A JPS63177780 A JP S63177780A
Authority
JP
Japan
Prior art keywords
cylinder
flow impeller
culture
axial flow
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP617187A
Other languages
Japanese (ja)
Inventor
Masanori Aoki
正則 青木
Kazuyoshi Yamamoto
和義 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP617187A priority Critical patent/JPS63177780A/en
Publication of JPS63177780A publication Critical patent/JPS63177780A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/22Perforated plates, discs or walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M37/00Means for sterilizing, maintaining sterile conditions or avoiding chemical or biological contamination
    • C12M37/02Filters

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To obtain a cultivation apparatus capable of stirring fragile cells without applying strong shearing force, by installing a cylindrical unit having many small holes near the center of a cultivation vessel, providing an axial-flow impeller therein and forming diffusion holes in the bottom thereof. CONSTITUTION:A cylindrical unit 12 consisting of porous bodies (12a) and (12b) having holes of a smaller diameter than that of cells or microcarriers (C) is fixed near the center of a cultivation vessel 11 and a reversibly rotatable axial- flow impeller 14 is provided therein. The part of the cylindrical unit 12 surrounding the impeller is constituted of a nonporous shroud part (12c). Many diffusion holes 15 are formed in the lower part of the cylindrical unit 12 and an oxygen- containing gas, e.g. air, etc., is fed through a germ-free filter 16 thereto. When the shaft 13 of the axial-=flow impeller 14 is rotated in the direction of solid arrow line, the state is as shown in the right half of the figure. When the shaft is rotated in the opposite direction, the state is as shown in the left half of the figure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、動植物の細胞や囚などの微生物を培養するた
めの装置に関し、特に軟弱な細胞や菌などの微生物を破
壊することなく培養液を撹拌して、代謝生産物の物質移
動を促進すると共に、細胞等に酸素供給することができ
る培養装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for culturing microorganisms such as animal and plant cells and prisoners, and particularly relates to a device for culturing microorganisms such as animal and plant cells and bacteria. The present invention relates to a culture device that can stir cells to promote mass transfer of metabolic products and supply oxygen to cells and the like.

〔従来の技術及び問題点〕[Conventional technology and problems]

一般に、動植物の細胞や菌などの微生物を培養するため
には、培養液を介して細胞等に酸素を供給すると共に、
培養液と細胞等を混合声拌して、代謝生産物の物質移動
を促進する必要がある。
Generally, in order to culture animal and plant cells and microorganisms such as bacteria, oxygen is supplied to the cells etc. through a culture solution, and
It is necessary to mix and agitate the culture solution and cells to promote mass transfer of metabolic products.

従来は、例えば第5図に示すよう力培養装置を設け、散
気管lから気泡すを培養液を中に放出すると共に、撹拌
機コによって該培養液tを撹拌・混合していた。なお、
図中、3は培養槽(容器)≠は撹拌機2の撹拌効果を高
めるために内壁面に突設された邪魔板、gは散気管lへ
送シ込む空気などの酸素含有気体である。
Conventionally, a force culture device was provided, for example as shown in FIG. 5, and air bubbles were discharged into the culture solution from an aeration pipe 1, and the culture solution t was stirred and mixed by a stirrer. In addition,
In the figure, 3 is a culture tank (container)≠ is a baffle plate protruding from the inner wall surface to enhance the stirring effect of the stirrer 2, and g is an oxygen-containing gas such as air sent into the aeration pipe 1.

しかしながら、上記従来の装置では、撹拌機コの羽根に
よって生じる強い剪断応力のために、培養液を中に含ま
れる細胞が破壊されて好ましくないし、また、撹拌機λ
の代シにエゼクタやジェットポンプなどを用いた撹拌装
置においても、液体の強い剪断応力によって細胞が破壊
されるという問題点があった。
However, in the above-mentioned conventional apparatus, the strong shear stress generated by the blades of the stirrer destroys the cells contained in the culture solution, which is undesirable.
Alternatively, stirring devices using ejectors, jet pumps, etc. have the problem of cells being destroyed by the strong shear stress of the liquid.

また、第6図に示すように、培養槽3の下方より空気々
どの酸素含有気体gを送り込んで槽内で気泡すを発生さ
せ、該気泡すによって培養液lを流動撹拌させるように
した培養装置では、培養が進んで培養液tの粘度が大き
くなると、十分な撹拌効果を得ることができず、また、
液面上に泡が大量に発生して好ましくないという問題点
があった。
In addition, as shown in FIG. 6, an oxygen-containing gas (g) such as air is introduced from below the culture tank 3 to generate air bubbles in the tank, and the air bubbles cause the culture solution l to flow and stir. In the device, as the culture progresses and the viscosity of the culture solution t increases, it is not possible to obtain a sufficient stirring effect, and
There was a problem in that a large amount of bubbles were generated on the liquid surface, which was undesirable.

本発明は、極めて軟弱で破壊され易い動植物の細胞に、
強い剪断応力を与えずに撹拌しながら、酸素供給するこ
とができる培養装置をうろことを技術的課題としている
The present invention aims to treat animal and plant cells that are extremely weak and easily destroyed.
The technical challenge is to create a culture device that can supply oxygen while stirring without applying strong shear stress.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記した従来技術の問題点及び技術的課題を
解決するために、培養槽の内部中央付近に、培養液だけ
が透過し細胞等が透過しないような大きさの孔を多数も
つ多孔体で少なくとも一部を形成した円筒を設け、該円
筒内部の下方に曝気のための散気装置を設けると共に、
その上方に、培養液の循環方向を変換することのできる
可逆転の軸流羽根車を設けたことを特徴としている。
In order to solve the problems and technical problems of the prior art described above, the present invention has a porous hole near the center of the inside of a culture tank, which has a large number of holes so that only the culture solution passes through and cells etc. do not pass through. A cylinder formed at least in part by the body is provided, an aeration device is provided below the inside of the cylinder, and a diffuser is provided for aeration,
A feature is that a reversible axial flow impeller that can change the direction of circulation of the culture solution is installed above it.

なお、上記多孔体で少なくとも一部を形成した円筒は、
固定して使用することも、また、細流羽根車と共に回転
させて使用することも可能である。
In addition, the cylinder formed at least in part by the above-mentioned porous body is
It can be used stationary or rotated with a trickle impeller.

〔作 用〕[For production]

本発明は上記のように構成されているので、培養槽内に
培養液を所定レベルまで入れると、該培養液は、少くと
も一部を多孔体で形成した円筒の内外で、はぼ同一レベ
ルに達する。次いで、この状態で軸流羽根車を回転させ
ると、培養液は円筒内部ζ軸流羽根車の羽根角度と回転
方向との関係に従って、上から下へ、又は下から上へ移
動し、該円筒に設けられた多孔体部を通過して、円筒外
部へ流れ出し、上記円筒内部の流れとは逆方向に、つま
り下から上へ、又は上から下へ移動して、再び円筒内部
へ流入する。このようにして該円筒の内外で循環流が形
成され、該循環流によって、培養液は撹拌・混合される
Since the present invention is configured as described above, when the culture solution is poured into the culture tank to a predetermined level, the culture solution is at approximately the same level inside and outside the cylinder, at least a part of which is formed of a porous material. reach. Next, when the axial flow impeller is rotated in this state, the culture solution moves from top to bottom or from bottom to top according to the relationship between the blade angle of the cylindrical internal ζ axial flow impeller and the rotation direction. It flows out of the cylinder through the porous body provided in the cylinder, moves in the opposite direction to the flow inside the cylinder, that is, from bottom to top, or from top to bottom, and flows into the cylinder again. In this way, a circulating flow is formed inside and outside the cylinder, and the culture solution is stirred and mixed by the circulating flow.

一方、円筒内部の下方に設けられた散気装置から噴出さ
れる空気などの酸素含有気体gは、気泡となって円筒内
を上昇し、該気泡による曝気作用が円筒内部で行われ、
十分酸素に富んだ培養液が、円筒外部へ供給される。
On the other hand, oxygen-containing gas g such as air ejected from an air diffuser provided below inside the cylinder becomes bubbles and rises inside the cylinder, and the aeration effect by the bubbles is performed inside the cylinder,
A sufficiently oxygenated culture medium is supplied to the outside of the cylinder.

他方、細胞は、円筒外部に封じ込められておシ、円筒内
部とは多孔体によって隔離されている。なお、細胞は、
細胞だけで培養液中に浮遊させるほか、場合によっては
マイクロキャリアに付着させることもある。そのため1
円筒の一部に形成される多孔体の孔は、細胞又はマイク
ロキャリアよシも小さく形成されている。
On the other hand, the cells are sealed outside the cylinder and separated from the inside of the cylinder by a porous material. In addition, the cells are
In addition to floating the cells alone in the culture medium, in some cases they may also be attached to microcarriers. Therefore 1
The pores of the porous body formed in a part of the cylinder are formed to be as small as cells or microcarriers.

上記のように、細胞は円筒外部に封じ込められていて、
円筒内部へは入らないので羽根車や気泡に直接触れるこ
とがない。従って、細胞が損傷を受けたシ、泡が大量に
発生することもない。
As mentioned above, the cells are confined outside the cylinder,
Since it does not enter the inside of the cylinder, there is no direct contact with the impeller or air bubbles. Therefore, a large amount of bubbles will not be generated due to cell damage.

また、軸流羽根車の回転方向を変えると培養液の循環方
向が変換されるので、円筒の多孔体部を通過する流れが
逆向きとなシ、従って、該多孔体部の目詰シが解消され
る。
In addition, changing the rotational direction of the axial impeller changes the circulation direction of the culture solution, so the flow passing through the cylindrical porous body is in the opposite direction, thus preventing clogging of the porous body. It will be resolved.

なお、円筒を軸流羽根車と共に回転させるようにすると
該円筒の多孔体部の目詰りは一層防止され、また、該回
転する円筒に培養液が接触しているので、培養液にも若
干の旋回力を与えて旋回効果を与えることになる。
Note that by rotating the cylinder together with the axial flow impeller, clogging of the porous portion of the cylinder can be further prevented, and since the culture solution is in contact with the rotating cylinder, some of the culture solution may also be A turning force is applied to give a turning effect.

〔実施例〕〔Example〕

次に、本発明の実施例を図面と共に説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の第1実施例を示す細胞培養装置の縦
断面図である。
FIG. 1 is a longitudinal sectional view of a cell culture apparatus showing a first embodiment of the present invention.

図において、培養槽(容器)//の中央付近に、細胞又
はマイクロキャリアCよシも小径(例えば7≠μm以下
)の孔を有する金網、多孔質樹脂などの多孔体/2a、
12bからなる円筒lλが固定して取付けられておシ、
該円筒12の内部に、逆転可能(可逆転)の軸13に取
付けられた軸流羽根車l≠が設けられている。該軸流羽
根車/4’は、平板翼又は断面対称形翼型をした羽根を
、回転方向(軸に直角方向)に対して傾斜して植設して
構成されている。
In the figure, a porous body such as a wire mesh or a porous resin /2a, which has pores with a smaller diameter (for example, 7≠μm or less) than cells or microcarriers C, near the center of the culture tank (vessel) //;
A cylinder lλ consisting of 12b is fixedly attached,
Inside the cylinder 12, there is provided an axial flow impeller l≠ attached to a reversible shaft 13. The axial flow impeller/4' is constructed by installing blades having a flat plate blade or a symmetrical airfoil shape in cross section at an angle to the rotation direction (direction perpendicular to the axis).

そして上記羽根車l弘を包囲する円筒/2の部分は、孔
のないシュラウド部/2cで構成されている。また、上
記円筒lλの内部下方には、多数の散気孔/jからなる
散気装置が設けられておシ、該散気孔/J−には、除菌
フィルタ/&を通って空気などの酸素含有気体gが供給
されるようになっている。なお、図中、17は円筒12
の内側の液面レベルを検知するレベルセンサ、/すは同
じく円筒12の外側の液面レベルを検知するレベルセン
サである。
The portion of the cylinder /2 surrounding the impeller 1 is constituted by a shroud portion /2c without holes. In addition, an aeration device consisting of a large number of aeration holes /J is provided in the lower part of the interior of the cylinder lλ. The containing gas g is supplied. In addition, in the figure, 17 is the cylinder 12
A level sensor detects the liquid level on the inside of the cylinder 12, and /su is a level sensor that similarly detects the liquid level on the outside of the cylinder 12.

次に作用について説明する。Next, the effect will be explained.

培養槽ll内に培養液tを所定レベルまで入れたあと、
細流羽根車/弘を例えば実線矢印方向に回転させると、
円筒/2内部の培養液tは、第1図の右半分に示すよう
に、上から下へ移動し、下方の円筒多孔体部/2bを通
過して、円筒/2の外側の下から上へ移動する。従って
、円筒12の内側と外側の液面レベルは、右半分に図示
されたように、内側で低く外側で高くなるので、円筒/
2の外側の培養液2は、上方の多孔体部/、2aを通っ
て円筒12の内側へ流入する。このようにして、培養液
tは、図示2重矢印のよう力循環流を形成して、撹拌会
混合される。
After pouring the culture solution t into the culture tank ll to a predetermined level,
For example, when the trickle impeller/Hiro is rotated in the direction of the solid arrow,
As shown in the right half of FIG. 1, the culture solution t inside the cylinder/2 moves from top to bottom, passes through the lower cylindrical porous body part/2b, and flows from the bottom to the top outside of the cylinder/2. Move to. Therefore, the liquid level on the inside and outside of the cylinder 12 is lower on the inside and higher on the outside, as shown in the right half, so that
The culture solution 2 on the outside of 2 flows into the inside of the cylinder 12 through the upper porous body part 2a. In this way, the culture solution t forms a force circulation flow as shown by the double arrow in the figure, and is mixed with stirring.

一方、空気などの酸素含有気体gは、エアフィルタ/乙
によって除菌された後、円筒7.2の内部下方に設けら
れた散気孔/J′から円筒内部へ噴出され、気泡すとな
って1円筒/、2内を上昇し、該気泡による曝気作用が
該円筒内部で行われ、十分に酸素に富んだ培養液が、下
方の多孔体部/2bを経て円筒/λの外部(外側)へ供
給される。
On the other hand, after the oxygen-containing gas g such as air is sterilized by the air filter B, it is ejected into the cylinder from the air diffuser hole J' provided in the lower part of the cylinder 7.2, forming bubbles. 1 cylinder/2, the aeration effect by the bubbles is performed inside the cylinder, and the culture solution rich in oxygen passes through the lower porous body part 2b to the outside (outside) of the cylinder/λ. supplied to

また、細胞Cは、円筒/2の外部に封じ込められておシ
、円筒内部とは多孔体部/、2a、/2bとシュラウド
/Jcとによって隔離されている。
Further, the cells C are sealed on the outside of the cylinder/2, and are isolated from the inside of the cylinder by the porous parts/, 2a, /2b and the shroud/Jc.

上記のように、細胞は、円筒外部に封じ込められていて
円筒内部へは入らないので1羽根車や散気孔/jからメ
噴出される気泡すに直接触れることがない。従って、細
胞が損傷を受けたり、泡が大量に発生することもない。
As mentioned above, the cells are sealed outside the cylinder and do not enter the inside of the cylinder, so they do not come into direct contact with the air bubbles ejected from the impeller or the air diffuser hole /j. Therefore, cells are not damaged and bubbles are not generated in large quantities.

また、軸流羽根車l弘を例えば実線矢印に示すような一
方向に連続回転し続けると、細胞やマイクロキャリアC
が上方の多孔体/、2aの外側に付着して目詰し易い。
Furthermore, if the axial flow impeller continues to rotate in one direction as shown by the solid arrow, cells and microcarriers C.
is likely to adhere to the outside of the upper porous body/2a and cause clogging.

このような時には、軸流羽根車l弘の回転方向を、点線
矢印方向に逆転させると、第1図の左半分に示すように
、円筒12の内側の液面レベルが高く外側が低くなシ、
培養液tの循環方向が左半分の二重矢印に示すように変
換されるので、前記した円筒/2の上方の多孔体部/2
aを通過する流れが逆向きとなシ、このようにして、多
孔体部の目詰シが解消される。
In such a case, by reversing the rotational direction of the axial impeller 1H in the direction of the dotted arrow, the liquid level inside the cylinder 12 is high and the liquid level outside is low, as shown in the left half of Fig. 1. ,
Since the circulation direction of the culture solution t is changed as shown by the double arrow on the left half, the porous body part /2 above the cylinder /2 mentioned above
Since the flow passing through a is in the opposite direction, clogging of the porous body portion is eliminated in this way.

上記のような軸流羽根車/弘の回転方向の変換は、タイ
マ等で一定時間ごとに行なってもよいが、目詰りによっ
て生じる円筒内外の液面差の増大を、両レベルセンサ/
7.l♂等で検知して行なってもよい。
The rotation direction of the axial flow impeller/Hiro as described above may be changed at regular intervals using a timer, etc., but the increase in the liquid level difference between the inside and outside of the cylinder caused by clogging can be detected by using both level sensors/Hiro.
7. This may be done by detecting with l♂ or the like.

第2図は1本発明の第2実施例を示す縦断面図であって
、図中、第1図に記載した符号と同一の符号は同一ない
し同類部分を示すものとする。
FIG. 2 is a longitudinal sectional view showing a second embodiment of the present invention, and in the figure, the same reference numerals as those shown in FIG. 1 indicate the same or similar parts.

この実施例では、多孔体部22a、22bとシュラウド
部2.20を有する円筒22が、支持円板λ2dを介し
て軸13に取付けられ、細流羽根車l弘と一体となって
回転されるようになっておシ、また必要に応じス図面の
左半分に示すように、該円筒22の下方に1回転円板−
タが一体になって回転できるように取付けられている点
が前記第1実施例(第1図)と相違しており、その他の
点では変りはない。
In this embodiment, a cylinder 22 having porous body parts 22a, 22b and a shroud part 2.20 is attached to the shaft 13 via a support disk λ2d and rotated in unison with the trickle impeller lhiro. If necessary, as shown in the left half of the diagram, a one-rotation disc may be placed below the cylinder 22.
This embodiment differs from the first embodiment (FIG. 1) in that the components are mounted so that they can rotate as one, but there is no difference in other respects.

この実施例によれば、円筒22を軸流羽根車/グと共に
、例えば実線矢印方向に回転させると1円筒22内部の
培養液tは、下から上へ図示のように流れ1円筒外部の
i面しベルより高くなって、上方多孔体部、22aより
円筒2.2の外部へ流出し、下方の多孔体部22bから
吸い込んで、図示二重矢印方向に培養′g!Ltが循環
し、′i!た5軸流羽根車/グを逆回転させれば、循環
流は逆向きとなって目詰シを逆洗によってなくし、また
この間、底部の散気孔15から噴出された酸素含有気体
gが気泡すとなって円筒、22内を上昇して曝気作用が
行われることなどは、第1実施例(第1図)と変りはな
い。
According to this embodiment, when the cylinder 22 is rotated together with the axial flow impeller/g, for example in the direction of the solid line arrow, the culture solution t inside the cylinder 22 flows from the bottom to the top as shown in the figure. It becomes higher than the facing bell, flows out of the cylinder 2.2 from the upper porous body part 22a, is sucked in from the lower porous body part 22b, and is cultured in the direction of the double arrow shown in the figure. Lt circulates and 'i! If the five-axis flow impeller/g is rotated in the opposite direction, the circulation flow will be reversed and the clogging will be eliminated by backwashing. There is no difference from the first embodiment (FIG. 1) in that the aeration is performed by rising inside the cylinder 22.

しかしこの実施例では、円筒2.2が軸流羽根車/+と
共に回転されるようになっているので、円筒多孔体部2
.2a、22bでの目詰りが一層防止されl/ ると共に、培養液tに若干の旋回力を与えるので、撹拌
効果を高めることができる。
However, in this embodiment, since the cylinder 2.2 is rotated together with the axial flow impeller /+, the cylindrical porous body part 2.
.. Since clogging in 2a and 22b is further prevented, and a slight swirling force is applied to the culture solution t, the stirring effect can be enhanced.

また、第2図左半分に示すように、回転円板コタを円筒
22と共に回転させるようになっているものでは、該円
板、2りによる遠心力効果で、円筒−2−2の外部の底
面付近に堆積し勝ちな細胞を軟かく撹拌することができ
る。
In addition, as shown in the left half of Fig. 2, in the case where the rotary disk kota is rotated together with the cylinder 22, the centrifugal force effect caused by the disk 2 causes the outside of the cylinder 2-2 to Cells that tend to accumulate near the bottom can be gently agitated.

第3図は、本発明の第3実施例を示す縦断面図であって
、図中、第1図、第、2図に記載した符号と同一の符号
は同一ないし同類部分を示すものとする。
FIG. 3 is a longitudinal sectional view showing a third embodiment of the present invention, and in the figure, the same reference numerals as those shown in FIGS. 1, 2, and 2 indicate the same or similar parts. .

この実施例は、前記した第λ実施例(第2図)での問題
点、即ち、細胞やマイクロキャリアが培養液よシも比重
が小さければ、細胞等が底面付近に堆積しにくいので、
第2図の二重矢印に示すような循環方向を正転方向とし
、長時間運転をしても余り問題はないが、細胞やマイク
ロキャリアの比重が培養液よシも大きい場合には、第一
図におけるような循環方向、つ−!シ円筒外部で下向き
の流れとなるような循環流では、細胞等が底面に堆積し
易い。(これに対し、第λ実施例では回転円板2りで撹
拌させるようにしている。)従って円筒外で上昇流が発
生するような方向をポンプの正回転として長時間運転す
ることが好ましいが、このようにすると、第2実施例(
第2図)の構成では、円筒内部に下問流が生じて気泡す
の上昇を妨げるという問題点−に対処するものであって
、そのために、第3図に示すように、軸/3と共に回転
する円筒22の内側に、培養槽//に下部で固定された
内筒3/を突出して設け、該内筒3/の下方に形成され
た散気孔3jから噴出する酸素含有気体gの気泡すを、
該内筒3/の内部へ拡散させるようになっている。
This embodiment solves the problem of the above-mentioned λth embodiment (FIG. 2), that is, if cells and microcarriers have a lower specific gravity than the culture medium, it is difficult for cells etc. to accumulate near the bottom surface.
The circulation direction as shown by the double arrow in Figure 2 is the normal rotation direction, and there is no problem even if you operate for a long time, but if the specific gravity of cells or microcarriers is higher than that of the culture solution, Circulation direction as in Figure 1, one! In a circulating flow that flows downward outside the cylinder, cells and the like tend to accumulate on the bottom surface. (On the other hand, in the λth embodiment, stirring is performed using the rotating disk 2.) Therefore, it is preferable to operate the pump for a long time with the pump rotating in the forward direction so that an upward flow is generated outside the cylinder. , in this way, the second embodiment (
The configuration shown in Fig. 2) deals with the problem that a downward flow occurs inside the cylinder and prevents the bubbles from rising. Inside the rotating cylinder 22, an inner cylinder 3/ whose lower part is fixed to the culture tank // is provided protrudingly, and bubbles of oxygen-containing gas g are ejected from an air diffusion hole 3j formed below the inner cylinder 3/. Suo,
It is adapted to be diffused into the interior of the inner cylinder 3/.

上記内筒3/の上方と下方には、培養液tが流入、流出
する孔3/aと31bがそれぞれ穿設されておシ、下方
の孔31bには、曝気流量調整弁32が設けられている
。なお、図中、22eは回転する円筒22の底部内周に
取付けられた回転側ライナリング、3/cは固定された
内筒3/の底部外周に取付けられた固定側ライナリング
である。
Holes 3/a and 31b, through which the culture solution t flows in and out, are formed in the upper and lower parts of the inner cylinder 3/, respectively, and an aeration flow rate regulating valve 32 is provided in the lower hole 31b. ing. In the figure, 22e is a rotating liner ring attached to the inner circumference of the bottom of the rotating cylinder 22, and 3/c is a fixed liner ring attached to the outer circumference of the bottom of the fixed inner cylinder 3/.

この実施例によれば、実線矢印で示すような正転時にお
いて、軸流羽根車/グによって生じる圧力差のために、
培養液tは内筒3/の中を、図示二重矢印で示すように
下から上へ気泡すと共に上昇し、また軸13と共に回転
する円筒22の外部(外側)でも、培養YLtは二重矢
印で示すように上昇流とカシ、細胞Cの沈降を防止する
ことができる。一方、内筒3/内を上昇しながら曝気さ
れた培養液tは、内筒31と円筒22の間を軸流羽根車
/≠によって二重矢印で示すように下方−・流下し、下
部の円筒多孔体部22bを通過した後、円筒外部を下か
ら上へ細胞Cと共に流れ、再び円筒22内に戻る。この
間、内筒31を通過する培養液tの流量を曝気流量調整
弁32で調整することによって、最適な酸素供給状態を
得ることができる。
According to this embodiment, during normal rotation as shown by the solid line arrow, due to the pressure difference caused by the axial flow impeller,
The culture solution t bubbles and rises inside the inner cylinder 3/ from bottom to top as shown by the double arrow in the figure, and also on the outside (outside) of the cylinder 22 that rotates with the shaft 13, the culture YLt rises with double arrows. As shown by the arrow, the upward flow and the sedimentation of the cells C can be prevented. On the other hand, the aerated culture solution t rising inside the inner cylinder 3/ flows down between the inner cylinder 31 and the cylinder 22 by the axial flow impeller/≠ as shown by the double arrow, and flows down into the lower part. After passing through the cylindrical porous body part 22b, it flows along with the cells C along the outside of the cylinder from bottom to top, and returns to the inside of the cylinder 22 again. During this time, by adjusting the flow rate of the culture solution t passing through the inner cylinder 31 with the aeration flow rate adjustment valve 32, an optimal oxygen supply state can be obtained.

第グ図は、本発明の第4実施例を示す縦断面図であって
、図中、第1図から第3図に記載した符号と同一の符号
は同一ないし同類部分を示すものとする。
FIG. 3 is a longitudinal sectional view showing a fourth embodiment of the present invention, and in the drawing, the same reference numerals as those shown in FIGS. 1 to 3 indicate the same or similar parts.

この実施例では1円筒7.2が培養槽//に固定されて
おり、また回転軸/3が培養槽ll内で中空状にされて
内筒(内筒軸)グ3を形成し、該内筒≠3に軸流羽根車
/lが取付けられている。また、上記内筒4L3の上方
と下方には、培養液が流入、流出する孔グ33と’13
bがそれぞれ穿設され、下方の孔≠3bの開孔部外側に
は、曝気流量調整弁t−2が上下動によって開口面積を
調節できるようにして設けられ、また内側には散気孔1
1Kが形成されている。また、散気孔≠jの上方には、
固定軸弘/が内筒グ3内部を貫通するようにして延び、
その上端部が軸13によって支持されている。
In this embodiment, a cylinder 7.2 is fixed to the culture tank //, and a rotating shaft /3 is made hollow inside the culture tank to form an inner cylinder (inner cylinder shaft) 3. An axial flow impeller/l is attached to the inner cylinder≠3. Further, above and below the inner cylinder 4L3, there are holes 33 and '13 through which the culture solution flows in and out.
An aeration flow rate adjusting valve t-2 is provided on the outside of the opening of the lower hole≠3b so that the opening area can be adjusted by vertical movement, and an aeration hole 1 is provided on the inside.
1K has been formed. Moreover, above the diffuser hole≠j,
A fixed shaft extends through the inner tube 3,
Its upper end is supported by a shaft 13.

この実施例によれば、第3実施例と同様に、培養液tは
円筒12の外部で上昇流となるので細胞Cの沈降を防止
することができ、また、内筒4t3内での液の流れの方
向も上向きとなるので、気泡すの上昇を妨げない。また
、内筒t3内を通過する培養液tの流量を曝気流量調整
弁≠2でlluすることによって、最適な酸素供給状態
とすることができる。
According to this embodiment, as in the third embodiment, the culture solution t has an upward flow outside the cylinder 12, so that it is possible to prevent the cells C from settling, and the culture solution t can be prevented from settling in the inner cylinder 4t3. Since the direction of flow is also upward, it does not prevent the bubbles from rising. Further, by controlling the flow rate of the culture solution t passing through the inner cylinder t3 with the aeration flow rate adjustment valve≠2, an optimum oxygen supply state can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、培養槽の内部中
央付近に、培養液だけが透過し細胞等が透過しないよう
力多孔体で少くとも一部を形成した円筒を設け、該円筒
内部の下方に曝気のための散気装置を設けると共に、そ
の上方に可逆転の軸流羽根車を設けたことによシ、細胞
は常時円筒外部に封じ込められていて円筒内部とは多孔
体によって隔離されており、該円筒外部へは、円筒内部
での気泡による曝気作用により十分酸素に富んだ培養液
が供給されるので、極めて軟弱で破壊され易い動植物の
細胞に、強い剪断応力を与えずに撹拌しながら、酸素供
給することができる。
As explained above, according to the present invention, a cylinder formed at least in part with a porous material is provided near the center of the inside of the culture tank so that only the culture solution permeates and cells etc. do not permeate. By installing a diffuser for aeration at the bottom and a reversible axial flow impeller above it, the cells are always confined to the outside of the cylinder and isolated from the inside of the cylinder by a porous material. Since a sufficiently oxygen-rich culture solution is supplied to the outside of the cylinder by the aeration effect of air bubbles inside the cylinder, strong shear stress is not applied to the extremely weak and easily destroyed cells of animals and plants. Oxygen can be supplied while stirring.

また、細流羽根車が可逆転できるようになっているので
、培養液の循環流の向き(方向)を変えることができ、
これによって円筒の多孔体部の目詰シを防止することが
できる。
In addition, since the trickle impeller is reversible, the direction of the circulating flow of the culture solution can be changed.
This can prevent clogging of the cylindrical porous body portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明にかかる培養装置の第1な
いし第弘災施例を示す縦断面図、第5図及び第2図は従
来例を示す縦断面説明図である。 / /−・・培養槽、/ +2.22−・・円筒、/2
a、/、21)22a、22b・・・多孔体部、/3・
・・軸、l弘・・・軸流羽根車、/ j 、 、3 J
−、≠!−・・散気孔、31・・・内筒、32,11.
2・・・曝気流量調整弁、≠3・・・内筒、b・・・気
泡、c−・細胞、マイクロキャリア、g・・・酸素含有
気体、t・・・培養液。
FIGS. 1 to 4 are vertical cross-sectional views showing first to first embodiments of the culture apparatus according to the present invention, and FIGS. 5 and 2 are vertical cross-sectional views showing conventional examples. / /-...Culture tank, / +2.22-...Cylinder, /2
a, /, 21) 22a, 22b... Porous body part, /3.
...Axle, l hiro...Axial flow impeller, / j , , 3 J
−, ≠! -... Diffusion hole, 31... Inner cylinder, 32, 11.
2...Aeration flow rate adjustment valve, ≠3...Inner cylinder, b...Bubble, c--Cell, microcarrier, g...Oxygen-containing gas, t...Culture solution.

Claims (1)

【特許請求の範囲】 1 培養槽の内部中央付近に、培養液だけが透過し細胞
等が透過しないような多孔体で少なくとも一部を形成し
た円筒を設け、該円筒内部の下方に曝気のための散気装
置を設けると共に、その上方に、培養液の循環方向を変
換することのできる可逆転の軸流羽根車を設けたことを
特徴とする可逆転軸流羽根車を用いた培養装置。 2 上記円筒が固定されている特許請求の範囲第1項記
載の可逆転軸流羽根車を用いた培養装置。 3 上記軸流羽根車の回転軸が中空の内筒として形成さ
れ、該内筒の中で培養液を曝気するようになつている特
許請求の範囲第2項記載の可逆転軸流羽根車を用いた培
養装置。 4 上記円筒が軸流羽根車と共に回転可能になつている
特許請求の範囲第1項記載の可逆転軸流羽根車を用いた
培養装置。 5 上記円筒の中心部に固定した内筒を設け、該内筒の
中で培養液を曝気するようになつている特許請求の範囲
第4項記載の可逆転軸流羽根車を用いた培養装置。 6 上記円筒の外側下部に、該円筒と共に回転する培養
液を撹拌するための装置が設けられている特許請求の範
囲第4項記載の可逆転軸流羽根車を用いた培養装置。 7 上記内筒の中を通過する培養液の流量を調整する弁
が設けられている特許請求の範囲第3項記載の可逆転軸
流羽根車を用いた培養装置。 8 上記内筒の中を通過する培養液の流量を調整する弁
が設けられている特許請求の範囲第5項記載の可逆転軸
流羽根車を用いた培養装置。
[Scope of Claims] 1. A cylinder formed at least in part by a porous material through which only the culture solution permeates and cells etc. do not permeate is provided near the center of the inside of the culture tank, and a cylinder for aeration is provided at the lower part of the inside of the cylinder. What is claimed is: 1. A culture device using a reversible axial flow impeller, characterized in that a reversible axial flow impeller is provided above the aeration device, and a reversible axial flow impeller capable of changing the circulation direction of the culture solution. 2. A culture device using a reversible axial flow impeller according to claim 1, in which the cylinder is fixed. 3. The reversible axial flow impeller according to claim 2, wherein the rotating shaft of the axial flow impeller is formed as a hollow inner cylinder, and the culture solution is aerated in the inner cylinder. Culture device used. 4. A culture apparatus using a reversible axial flow impeller according to claim 1, wherein the cylinder is rotatable together with the axial flow impeller. 5. A culture device using a reversible axial flow impeller according to claim 4, wherein an inner cylinder is provided fixed at the center of the cylinder, and the culture solution is aerated in the inner cylinder. . 6. A culture apparatus using a reversible axial flow impeller according to claim 4, wherein a device for stirring the culture solution rotating together with the cylinder is provided at the outer lower part of the cylinder. 7. A culture device using a reversible axial flow impeller according to claim 3, further comprising a valve for adjusting the flow rate of the culture solution passing through the inner cylinder. 8. A culture apparatus using a reversible axial flow impeller according to claim 5, which is provided with a valve for adjusting the flow rate of the culture solution passing through the inner cylinder.
JP617187A 1987-01-16 1987-01-16 Cultivation apparatus using reversibly rotatable axial-flow impeller Pending JPS63177780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP617187A JPS63177780A (en) 1987-01-16 1987-01-16 Cultivation apparatus using reversibly rotatable axial-flow impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP617187A JPS63177780A (en) 1987-01-16 1987-01-16 Cultivation apparatus using reversibly rotatable axial-flow impeller

Publications (1)

Publication Number Publication Date
JPS63177780A true JPS63177780A (en) 1988-07-21

Family

ID=11631099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP617187A Pending JPS63177780A (en) 1987-01-16 1987-01-16 Cultivation apparatus using reversibly rotatable axial-flow impeller

Country Status (1)

Country Link
JP (1) JPS63177780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329094A2 (en) * 1988-02-16 1989-08-23 Snow Brand Milk Products Co., Ltd. Cell culture tank
JPH0242970A (en) * 1988-08-03 1990-02-13 Jgc Corp Bubble tower provided with draft tube
WO1990007570A1 (en) * 1988-12-23 1990-07-12 Pharma Biotechnologie Hannover Gmbh Process for culturing cells in a bioreactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0329094A2 (en) * 1988-02-16 1989-08-23 Snow Brand Milk Products Co., Ltd. Cell culture tank
JPH0242970A (en) * 1988-08-03 1990-02-13 Jgc Corp Bubble tower provided with draft tube
WO1990007570A1 (en) * 1988-12-23 1990-07-12 Pharma Biotechnologie Hannover Gmbh Process for culturing cells in a bioreactor

Similar Documents

Publication Publication Date Title
US5075234A (en) Fermentor/bioreactor systems having high aeration capacity
US3814396A (en) Aeration apparatus
US7819576B2 (en) Pneumatic bioreactor
US3969446A (en) Apparatus and method for aerating liquids
US5156778A (en) Mixing device
RU2538170C1 (en) Vortex bioreactor
FI92220B (en) Fermenter for culturing cell cultures
JP2011041896A (en) Stirring vessel
JP2010178734A (en) Agitator
WO2019162971A1 (en) An improved aeration system for bioreactor, fermenter and process vessel
JP2002011335A (en) Fine bubble supply apparatus
KR100915605B1 (en) Cell culture apparatus and cell culture system having the same
US20020089073A1 (en) Apparatus for mixing and aerating liquid-solid slurries
US6632657B1 (en) Apparatus for cultivating tissue cells and microorganisms in suspension
US4904601A (en) Cell culture tank
JPS5898083A (en) Apparatus for handling low and high viscosity flowable medii
JPS63177780A (en) Cultivation apparatus using reversibly rotatable axial-flow impeller
CA3011259C (en) Rotary gas bubble ejector
JP2011036189A (en) Stirring device
RU2610674C1 (en) Bioreactor for biochemical processes
KR950005423B1 (en) Method and apparatus for incubating animal cells
RU2099413C1 (en) Apparatus for suspension cultivation of tissue cells or microorganisms
JPH05304943A (en) Device for culturing organism
JP2000005583A (en) Gas dissolving device and gas dissolving method
JPS63251077A (en) Culture device using axial-flow impeller