JPS63174793A - Method for cutting alloy steel by laser beam - Google Patents

Method for cutting alloy steel by laser beam

Info

Publication number
JPS63174793A
JPS63174793A JP62006863A JP686387A JPS63174793A JP S63174793 A JPS63174793 A JP S63174793A JP 62006863 A JP62006863 A JP 62006863A JP 686387 A JP686387 A JP 686387A JP S63174793 A JPS63174793 A JP S63174793A
Authority
JP
Japan
Prior art keywords
cutting
cut
laser beam
liquid
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62006863A
Other languages
Japanese (ja)
Other versions
JPH07100234B2 (en
Inventor
Akiyuki Okada
岡田 明之
Shinshichi Nishimura
西村 新七
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP62006863A priority Critical patent/JPH07100234B2/en
Publication of JPS63174793A publication Critical patent/JPS63174793A/en
Publication of JPH07100234B2 publication Critical patent/JPH07100234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Abstract

PURPOSE:To improve the squareness and to prevent the dross from sticking by cutting a material to be cut while cooling directly by flowing liquefied gas and enabling cutting a thick plate at high speed by a continuous laser beam and moreover, preventing a cutting plane from roughing. CONSTITUTION:The direct cooling by a liquid is optimum as a cooling method and especially, the utilization of the gasification latent heat is most effective as this method. In short, the liquefied gas like a liquid N2, for instance, which is gasified at the normal temperature and does not produce a harmful product at the time of coming into contact with the material to be cut with the high temperature is most effective for this purpose. Further, in order to improve a cooling effect, the liquefied gas is directly brought into contact with the material to be cut and besides, the liquid and gasified gas which are brought into contact with the material to be cut are made in a flowing state so as not to stangnate there. Furthermore, when the laser beam irradiates on the material 1 to be cut, a cut groove is formed in a tapered shape and the dross 3 is stuck for it, so it is more effective to carry out the cooling from the rear.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザービームを用いて合金鋼、特にクロム
鋼、ステンレス鋼などのクロム含有鋼を切断する方法に
関する本のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a book relating to a method for cutting alloy steels, particularly chromium-containing steels such as chromium steel and stainless steel, using a laser beam.

〔従来の技術〕[Conventional technology]

レーザビームによって鋼を切断する方法としては、一般
にレーザビーム照射軸を中心軸とするノズルを設け、こ
のノズルからアシストガスとして切断用の酸素を高速で
噴出させて、レーザービームの照射蚤こよる加熱と酸素
による酸化反応熱と)こよって溶融するとともに高速の
酸素流によって溶融金属を除去すること番こよって切断
を行う方法がとられている。
In general, the method of cutting steel with a laser beam is to install a nozzle whose center axis is the laser beam irradiation axis, and to blow oxygen for cutting at high speed as an assist gas from this nozzle. The most commonly used method for cutting is to melt the metal (and the heat of oxidation reaction caused by oxygen) and remove the molten metal using a high-speed oxygen flow.

合金鋼の切断に3いて本同様に酸素の助けが必要であり
、アシストガスとして酸素のかわりにアルゴンやヘリウ
ムなどの不活性ガスを用いると。
Cutting alloy steel requires the assistance of oxygen, as in the case of 3. If an inert gas such as argon or helium is used as an assist gas instead of oxygen.

切断能力が数分のIIこ低下しかつ切断面の平滑度も良
好なものが得られない。したがって合金鋼の切断に本酸
素の利用が必須となる。
The cutting ability is reduced by several fractions of a second, and the smoothness of the cut surface cannot be obtained. Therefore, the use of this oxygen is essential for cutting alloy steel.

〔発明が解決しようとする問題点] しかるに合金鋼、特に合金成分としてクロムを含む鋼を
酸素をアシストガスとして用いて切断するとつぎのよう
な重大な欠点を生ずる。
[Problems to be Solved by the Invention] However, when alloy steel, particularly steel containing chromium as an alloy component, is cut using oxygen as an assist gas, the following serious drawbacks occur.

(1)  切断溝がレーザービーム照射側の反対側が広
くテーパ状に広がり、直鴫に切断できない。
(1) The cutting groove widens in a tapered shape on the side opposite to the laser beam irradiation side, and cannot be cut straight.

(2)  ドロスの耐着が多くかつ強固であるので。(2) Because it is highly resistant to dross adhesion and is strong.

ドロスの後始末に多大の手間がかかる。It takes a lot of effort to clean up the dross.

(3)切断面の平滑度が悪く、特に小径の円等のようf
こ切断線の密度が高くなるものにおいては切断開始後数
10鱈はやや良好な切断面が得られるもののその後は激
しく燃焼するような状態となり凹凸が激しくなって正常
な切断面が得られなくなる。
(3) The smoothness of the cut surface is poor, especially when cutting a small diameter circle, etc.
In cases where the density of the cutting lines is high, a rather good cut surface can be obtained for several tens of cods after cutting is started, but after that, it becomes a state of intense combustion and the unevenness becomes severe, making it impossible to obtain a normal cut surface.

上記の問題は、被切断材の板厚が大となるほど顕著とな
る。第2図は、本発明者が従来の方法によって代表的な
りロム含有鋼であるステンレス濶(5us304材)の
切断を行った実験結果を示す線図であり、縦軸は切断可
能な速度を示し、横軸は被切断材の板厚を示している。
The above problem becomes more noticeable as the thickness of the material to be cut increases. Figure 2 is a diagram showing the experimental results of the present inventor's cutting of stainless steel (5us304 material), which is a typical ROM-containing steel, using a conventional method, and the vertical axis shows the cutting speed. , the horizontal axis indicates the thickness of the material to be cut.

同図中曲線(イ)は直線状に切断した場合を示しており
、この場合は切断線の単位面積当りの密度が小さいため
に連続したレーザービームでも図示の速度で切断できる
The curve (a) in the figure shows the case of straight-line cutting, and in this case, the density per unit area of the cutting line is small, so that even a continuous laser beam can cut at the speed shown.

これに対し曲線(ロ)は直径50謂の円形の切り抜きを
ビーム出力1 kwで行ったときの切断oT能連関と板
厚との関係を示している。このような円形切断の場合に
は、単位面積当りの切断線の密度が直線切断の場合より
4大となるので、連続したレーザービームで切断すると
切断面が極端に荒れて1/3〜1/2周以後は平滑な切
断面が得られなくなる。そこで実験に8いてはデユーテ
ィ比35%。
On the other hand, the curve (b) shows the relationship between the cutting OT capacity and the plate thickness when a circular cutout with a diameter of 50 mm is made with a beam output of 1 kW. In the case of such circular cutting, the density of cutting lines per unit area is 4 times higher than that of straight cutting, so when cutting with a continuous laser beam, the cut surface becomes extremely rough and becomes 1/3 to 1/3 After the second round, a smooth cut surface cannot be obtained. Therefore, in the experiment, the duty ratio was 35%.

100Hz、 ピーク値1kw のパルス状ビームとし
て平均ビーム出力を低減して切断した。なおいずれにお
いてもアシストガスは酸素を使用し圧力311/dとし
てノズルから噴出させて切断した。
The beam was cut as a pulsed beam of 100 Hz and a peak value of 1 kW by reducing the average beam power. In each case, oxygen was used as the assist gas, and the cutting was performed by jetting it out from a nozzle at a pressure of 311/d.

さらに図中番ζ破線で示したように直線切断1円形切断
のいずれにおいても板厚が5四を超えると切断溝がテー
パ状となって直絢度が悪くなりに面側が広くなる。ざら
5こ付着するドロスも切断溝の直角度が広くなるにした
がって増加するととも番こ強固となって、グラインダ仕
上げが必要となる。
Further, as shown by the broken line number ζ in the figure, when the plate thickness exceeds 54 mm in both straight cutting and circular cutting, the cutting groove becomes tapered, the straightness deteriorates, and the surface side becomes wider. As the squareness of the cutting groove becomes wider, the amount of dross that adheres to the rough edges also increases, and the rough edges become stronger, requiring finishing with a grinder.

第3図はこのような状況を示した断面図であり、図中1
.1は破切断材、2はレーザービーム、3は耐着したド
ロスである。図に示すようfこテーパ状となった分だけ
ドロスの耐11]1が増加する。
Figure 3 is a cross-sectional view showing this situation, and 1 in the figure
.. 1 is a broken material, 2 is a laser beam, and 3 is dross that is resistant to adhesion. As shown in the figure, the dross resistance 11]1 increases by the amount of the tapered shape.

上記のような傾向は1円形以外の複雑な形状の切断や一
枚の板から多数個を連続して切断する場合のように切断
線の密度が大となるとさらに著しくなり、はとんど実用
にならないものとなる。
The above tendency becomes even more pronounced when the density of the cutting lines becomes large, such as when cutting complex shapes other than a single circle or when cutting multiple pieces from a single plate in succession, and it is almost impossible to put it into practical use. It becomes something that cannot become.

上記の現象が生じる原因は明確ではないが1合金鋼に含
有される成分のうち特1こクロムの影響が考エラれる。
The cause of the above phenomenon is not clear, but it is thought to be due to the influence of chromium, one of the components contained in alloy steel.

クロムがアシストガスとして用いられる酸素と反応した
ときに生ずる溶融したクロム酸化物は粘度が篩く流動性
に欠けることから切断面にt% Nし、この滞留したク
ロム酸化物からの熱云ノ膚によって切断面の隣接部を溶
融することが考えられる。このことは上記の現象が一役
鋼では発生しないこと、および切断線の単位面積当りの
密度が届くなる小径の円や短形、複雑な形状の切り抜き
を行う場合などSこ上記現象が強く出現すること、また
アシストガスとしての酸素の敞を少なくすると軽ン威さ
れることなどからも推定される。
The molten chromium oxide produced when chromium reacts with oxygen used as an assist gas has a viscosity and lacks fluidity, so it forms t%N on the cut surface, and the heat emitted from this stagnant chromium oxide It is conceivable that the adjacent portion of the cut surface may be melted. This is because the above phenomenon does not occur with steel, and when cutting small diameter circles, rectangles, or complex shapes where the density per unit area of the cutting line is low, the above phenomenon strongly appears. It is also presumed that if the amount of oxygen used as an assist gas is reduced, it will be weakened.

そこで本発明者はアシストガスの酸素ヲ少なくする方法
、照射するレーザービームをパルス状としてそのデユー
ティ比を小にすること薔こよって切断線の単位長さ当り
の入熱盪を低減させる方法を試みたところ、切断部の品
質は改善することができたが、いずれも切断速度が極端
に遅くなり、実用的でないことが刈った。またレーザー
ビームの出力を大きくしてアシストガスの鯰を減らせば
改善されるが、効率が極端番こ悪化し実用的でない。
Therefore, the present inventor attempted a method of reducing the amount of oxygen in the assist gas, reducing the duty ratio of the irradiated laser beam by pulse-forming it, and thereby reducing the heat input per unit length of the cutting line. Although the quality of the cut portion could be improved, the cutting speed was extremely slow in both cases, making them impractical. Although this can be improved by increasing the output of the laser beam and reducing the amount of assist gas, the efficiency deteriorates significantly and is not practical.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上記考察と実験結果とに基づき、切断時に
波切断物を強力に冷却すれば問題点が解決できることに
想到し、冷却方法について種々実験、考察を行った。そ
の結果をつぎfこ示す。
Based on the above considerations and experimental results, the inventor of the present invention came up with the idea that the problem could be solved by powerfully cooling the wave-cut object during cutting, and conducted various experiments and studies on cooling methods. The results are shown below.

(1)冷却方法昏こ要求される条件としては(イ) 冷
却効率が高いこと (ロ) 急速冷却が可能なこと が考えられるが、これらに適するものとしては。
(1) Required conditions for the cooling method are (a) high cooling efficiency and (b) rapid cooling, but what is suitable for these requirements?

液体による直接冷却が最適であり、持に液体の気化潜熱
を利用することが最も有効と考えられる。
Direct cooling with a liquid is optimal, and it is considered most effective to utilize the latent heat of vaporization of the liquid.

したがって利用し得る液体としては、水の他に。Therefore, the liquid that can be used is other than water.

液化炭酸ガス、液体酸素、液体水素、液体チッ素。Liquefied carbon dioxide, liquid oxygen, liquid hydrogen, liquid nitrogen.

液体アルゴン、液体ヘリウム等の液化ガスが考えられる
Liquefied gases such as liquid argon and liquid helium can be considered.

(2)冷却材料に要求される条件としては(イ) レー
ザービームの通路に浸入しても吸収。
(2) The conditions required for the cooling material are (a) Absorption even if it enters the laser beam path.

減衰を生じないこと。No attenuation.

fo+  レーザービーム照射のための光学系や他の機
構部1こ悪影響を与えないこと。
fo+ Do not adversely affect the optical system for laser beam irradiation and other mechanical parts 1.

(ハ) 彼加工物蚤こ悪影響を与えないこと。(c) The processed product shall not have any negative impact.

に)安全上問題のないこと。) There should be no safety issues.

(ホ) 入手が容易で取吸いが簡単なこと。(e) Easy to obtain and easy to extract.

(へ)安価であること。(to) Be inexpensive.

が考えられる。is possible.

先の液体のうち、炭酸ガスはレーザービームの吸収がチ
ッ素の5@樺度あり若干の効率低下を招く。水は高温の
彼切断物番こ接触したときに水蒸気となって気化し、こ
の水蒸気が光学系、特に集光用レンズ番こ@露して高価
な光学系を損傷する。さらに水はすべてが気化せず大部
分は流下して被切断物載置テーブルやその駆動部等の機
構部を腐蝕する。酸素はアシストガスの影−を助長する
傾向にあるが冷却効果がこれをカバーできる範囲でなら
利用できる。水素は火災の危険性のみならずアシストガ
スの酸素と化合して水を生成するから水そのものを用い
たときと同様の悪影響を光学系その他に及ぼす。アルゴ
ン、ヘリウム、チッ素はいずれも上記各材料よりも好適
であるが、これらのうちアルゴン、ヘリウムは高価であ
り、またヘリウムは沸点が3°に前後と極めて低いため
に取扱いに不便である。上記から本発明に用いる液体と
しては、液体チッ素が最も適していることになるが液体
アルゴン、液体ヘリウムまたは多少の効率低Fは発生す
るものの液体酸素や液化炭酸ガスも祠イヒ。
Among the liquids mentioned above, carbon dioxide gas absorbs the laser beam as much as nitrogen, causing a slight decrease in efficiency. When water comes into contact with a hot cutting object, it evaporates into water vapor, and this water vapor exposes the optical system, especially the focusing lens, and damages the expensive optical system. Furthermore, not all of the water evaporates, but most of the water flows down and corrodes mechanical parts such as the workpiece placement table and its driving part. Oxygen tends to promote the shadow of the assist gas, but it can be used as long as the cooling effect can compensate for this. Hydrogen not only poses a fire risk, but also produces water by combining with oxygen in the assist gas, which has the same negative effects on optical systems and other parts as when water itself is used. Argon, helium, and nitrogen are all more suitable than the above-mentioned materials, but among these, argon and helium are expensive, and helium has an extremely low boiling point of around 3°, making it inconvenient to handle. From the above, liquid nitrogen is most suitable as the liquid used in the present invention, but liquid argon, liquid helium, liquid oxygen and liquefied carbon dioxide are also suitable although they generate some low efficiency F.

用できる。要は常温で気化するガスを液玉したもので高
温の被切断物に接触したときに有gな生成物を発生しな
いものであればよい。
Can be used. In short, any material may be used as long as it is a liquid droplet of gas that evaporates at room temperature and does not generate any harmful products when it comes into contact with a hot object to be cut.

つぎに冷却用液体の供給方法としては、冷却効果を向上
させるために波切断材に直接接触させ。
Next, as a method of supplying the cooling liquid, it is brought into direct contact with the wave cutting material in order to improve the cooling effect.

るゝ1r かつ接触した液体1r気′化ガスが滞留しないように流
動状態とすることが必要である。したがって液体吐出ノ
ズルから切断部近傍に流すか、a下させる方法あるいは
霧状に吹きつける方法等がよい。
It is necessary to keep the liquid 1r in a fluid state so that the contacting liquid 1r vaporized gas does not stagnate. Therefore, it is preferable to flow the liquid from a liquid discharge nozzle to the vicinity of the cutting part, to lower the liquid a, or to spray it in the form of a mist.

また先の実唆の通り、切断面は裏側(レーザービーム照
射の反対側)がより過熱されてテーパ状Gこ溶断される
ので、冷却は長面から行う方がより効果的である。
Further, as previously suggested, since the back side of the cut surface (the side opposite to the laser beam irradiation) is heated more and the tapered G is fused, it is more effective to cool the cut surface from the long side.

〔実施例〕〔Example〕

本発明の効果を確認するために、板厚6wxのステンレ
ス’A (5us304材)を従来方法と本発明の方法
と蕃こよって切断したときの結果を表1に示す。
In order to confirm the effects of the present invention, Table 1 shows the results of cutting stainless steel 'A' (5us304 material) with a plate thickness of 6wx using the conventional method and the method of the present invention.

なお実験においては、本発明の方法においてのみ液体チ
ッ素をレーザービームの照射位置を中心に同心円状にビ
ーム照射側から0.117 min程度滴Fした。
In the experiment, only in the method of the present invention, liquid nitrogen was dropped concentrically around the laser beam irradiation position from the beam irradiation side for about 0.117 min.

表  1 表1のつづき 能であった。Table 1 Continuation of Table 1 It was Noh.

第1図は、他の板厚についても同様の実検(直径50w
の円切断)を行った結果を示す線図であり、@2図と同
様に縦軸に切断速度を、横軸に板厚をとって良好な切断
の可能な速度の曲線を示しである。同図に示した通り従
来方法における直線切断とほぼ同程度の速度で、しかも
5f1以上の厚板に2いて本良好な切断面が得られてい
る。
Figure 1 shows similar actual tests for other plate thicknesses (diameter 50W).
It is a diagram showing the results of circular cutting), and similarly to Figure @2, the vertical axis shows the cutting speed and the horizontal axis shows the plate thickness, and shows a curve of the speed at which good cutting is possible. As shown in the figure, a good cut surface can be obtained on a thick plate of 5 f1 or more at almost the same speed as the conventional method for straight cutting.

また実験はこの他にレーザービーム出力ヲ1.4kwの
ものについて本行ったところ大略切断速度を1.4〜1
.5倍にすることができたので大出力のレーザービーム
を用いるときるこはさらに効果的であることが判った。
In addition to this, we conducted experiments with a laser beam output of 1.4 kW, and the cutting speed was approximately 1.4 to 1.
.. It was found that Kuruko is even more effective when using a high-power laser beam, as it was possible to increase the number of laser beams by five times.

なお冷却用液化ガスの供給方法は、上記実施例のよう番
こレーザービームと同心円状に滴下する以外に、切断線
に沿う方向であればよいのでレーザービームヘッドの移
動方向が限定される装置においては、ヘッドの進行方向
の前後または@、後のいずれか一方のみでもよい。
Note that the cooling liquefied gas can be supplied not only by dropping it concentrically with the laser beam as in the above embodiment, but also in a direction along the cutting line, so it is suitable for devices where the direction of movement of the laser beam head is limited. may be either front or rear or @ or rear in the direction of travel of the head.

実験で使用した液体チッ素は沸点が約77’K(−19
6℃)であり、切断部に留まらず直ちに気化する。した
がって冷却効果は極低温の液体による直接冷却と気化時
の潜熱によって極めて強力であり、かつレーザービーム
の吸収も少なく、まな気化したチッ素ガスは光学系およ
び機構部を全く損傷しないので本発明には理想的な材料
といえる。
The liquid nitrogen used in the experiment has a boiling point of approximately 77'K (-19
6°C), and does not remain in the cut area but immediately vaporizes. Therefore, the cooling effect is extremely strong due to the direct cooling by the extremely low temperature liquid and the latent heat during vaporization, and the absorption of laser beams is also small, and the vaporized nitrogen gas does not damage the optical system or mechanical parts at all, so this invention is suitable for the present invention. can be said to be an ideal material.

しかし、利用し得る液体としては先にも述べたよう番こ
常温では気体のガスを液化した本のでかつ打害な生成物
を発生しないガスであればよい。
However, as mentioned above, the liquid that can be used is any gas that is liquefied from a gas that is a gas at room temperature and does not generate any harmful products.

また1本発明の対象となる合金鋼は一般のステンレス鋼
に限らず耐熱用、低温用などに開発されている合金鋼に
適用でき、特にクロ傷含f溺に有効である。
In addition, the alloy steel to which the present invention is applied is not limited to general stainless steel, but can be applied to alloy steels developed for heat resistance, low temperature use, etc., and is particularly effective for preventing scratches.

〔発明の効果〕〔Effect of the invention〕

本発明の方法番こよれば、パルス状ビームヲ用イること
なく連続したビームによって高速で厚板を切断でき、し
かも切断面の荒れがなく、直角度も良好であるうえドロ
スの耐着もほとんどなくなるので極めて高品質の切断が
高能率で実施=T能となる。また冷却用液化ガスの供給
を増加させればより大容盪のレーザービームも使用可能
になるのでざらに1≠い板の切断41可能となる。
According to the method of the present invention, a thick plate can be cut at high speed with a continuous beam without using a pulsed beam, and the cut surface is not rough, the perpendicularity is good, and there is almost no dross adhesion. Therefore, extremely high quality cutting can be performed with high efficiency = T efficiency. Furthermore, if the supply of the cooling liquefied gas is increased, it becomes possible to use a laser beam with a larger capacity, so it becomes possible to cut a board with a roughness of 1≠.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法によるときの板厚と切断可能な
速度との関係を示す線図、第2図は従来の方法によると
きの第1図と同様の関係を示す線図、第3図は第2図の
破線部における切断状況を示す断面図である。
FIG. 1 is a diagram showing the relationship between plate thickness and cutting speed when using the method of the present invention, FIG. 2 is a diagram showing the same relationship as FIG. 1 when using the conventional method, and FIG. FIG. 3 is a sectional view showing the state of cutting along the broken line in FIG. 2.

Claims (1)

【特許請求の範囲】 1、レーザービームを用いて合金鋼を切断する方法にお
いて、被切断材を流動する液化ガスにて直接冷却しなが
ら切断する合金鋼の切 断方法。 2、前記液化ガスとして液体チッ素を用いる特許請求の
範囲第1項に記載の合金鋼の切 断方法。 3、前記液化ガスを被切断材の裏面に接触させる特許請
求の範囲第1項または第2項のいずれかに記載の合金鋼
の切断方法。
[Claims] 1. A method for cutting alloy steel using a laser beam, in which the material to be cut is directly cooled by flowing liquefied gas. 2. The method for cutting alloy steel according to claim 1, in which liquid nitrogen is used as the liquefied gas. 3. The method for cutting alloy steel according to claim 1 or 2, wherein the liquefied gas is brought into contact with the back surface of the material to be cut.
JP62006863A 1987-01-14 1987-01-14 Laser beam cutting method for alloy steel Expired - Lifetime JPH07100234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62006863A JPH07100234B2 (en) 1987-01-14 1987-01-14 Laser beam cutting method for alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006863A JPH07100234B2 (en) 1987-01-14 1987-01-14 Laser beam cutting method for alloy steel

Publications (2)

Publication Number Publication Date
JPS63174793A true JPS63174793A (en) 1988-07-19
JPH07100234B2 JPH07100234B2 (en) 1995-11-01

Family

ID=11650079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006863A Expired - Lifetime JPH07100234B2 (en) 1987-01-14 1987-01-14 Laser beam cutting method for alloy steel

Country Status (1)

Country Link
JP (1) JPH07100234B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161187A (en) * 1989-11-17 1991-07-11 Mitsubishi Heavy Ind Ltd Laser beam machining method
US5151389A (en) * 1990-09-10 1992-09-29 Rockwell International Corporation Method for dicing semiconductor substrates using an excimer laser beam
US6413839B1 (en) 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US7067759B2 (en) 2002-04-24 2006-06-27 The Boc Group Plc Metal working
US7388172B2 (en) 2003-02-19 2008-06-17 J.P. Sercel Associates, Inc. System and method for cutting using a variable astigmatic focal beam spot
EP2692477A1 (en) * 2012-08-03 2014-02-05 Air Liquide Deutschland GmbH Method and device for manufacturing a saw tooth structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285800A (en) * 1976-01-12 1977-07-16 Toshiba Corp Method of removing scattered material
JPS54126647A (en) * 1978-03-27 1979-10-02 Agency Of Ind Science & Technol Working method by thermal shock

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5285800A (en) * 1976-01-12 1977-07-16 Toshiba Corp Method of removing scattered material
JPS54126647A (en) * 1978-03-27 1979-10-02 Agency Of Ind Science & Technol Working method by thermal shock

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161187A (en) * 1989-11-17 1991-07-11 Mitsubishi Heavy Ind Ltd Laser beam machining method
US5151389A (en) * 1990-09-10 1992-09-29 Rockwell International Corporation Method for dicing semiconductor substrates using an excimer laser beam
US6413839B1 (en) 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
US6849524B2 (en) 1998-10-23 2005-02-01 Emcore Corporation Semiconductor wafer protection and cleaning for device separation using laser ablation
US6902990B2 (en) 1998-10-23 2005-06-07 Emcore Corporation Semiconductor device separation using a patterned laser projection
US7067759B2 (en) 2002-04-24 2006-06-27 The Boc Group Plc Metal working
US7388172B2 (en) 2003-02-19 2008-06-17 J.P. Sercel Associates, Inc. System and method for cutting using a variable astigmatic focal beam spot
US7709768B2 (en) 2003-02-19 2010-05-04 Jp Sercel Associates Inc. System and method for cutting using a variable astigmatic focal beam spot
US8502112B2 (en) 2003-02-19 2013-08-06 Ipg Microsystems Llc System and method for cutting using a variable astigmatic focal beam spot
EP2692477A1 (en) * 2012-08-03 2014-02-05 Air Liquide Deutschland GmbH Method and device for manufacturing a saw tooth structure

Also Published As

Publication number Publication date
JPH07100234B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
Cao et al. Research and progress in laser welding of wrought aluminum alloys. I. Laser welding processes
US3604890A (en) Multibeam laser-jet cutting apparatus
Bagger et al. Review of laser hybrid welding
JP3392683B2 (en) Laser processing head
US4377735A (en) Laser working treatment process capable of controlling the form of heated portion of a steel material
JP2736182B2 (en) Laser device and laser welding method
US6891126B2 (en) High-speed laser cutting method with adapted gas
US4010345A (en) Gas delivery means for cutting with laser radiation
JP2008126315A (en) Laser welding process with improved penetration
Victor Hybrid laser arc welding
NO310601B1 (en) Method of laser beam cutting of ribbon or plate-shaped blanks, especially electroplates
JPS63174793A (en) Method for cutting alloy steel by laser beam
JP4678749B2 (en) Laser welding method for high strength steel sheet
US20050067393A1 (en) Method and installation for laser beam cutting using a multiple-focus objective and a convergent/divergent nozzle
US8222565B2 (en) Method for laser fusion cutting without cutting gas
Prasad et al. Laser cutting of metallic coated sheet steels
JPS5987996A (en) Laser and gas cutter
JP2017109238A (en) Laser-cutting method
JP2002273588A (en) Laser cutting processing method
GB2099349A (en) Laser working process
JP4394808B2 (en) Melt processing equipment using laser beam and arc
JP2001113384A (en) Laser beam cutting method and device
JPS5827036B2 (en) Laser welding method
Acherjee Laser arc hybrid welding
Sona Metallic materials processing: cutting and drilling