JPS5827036B2 - Laser welding method - Google Patents

Laser welding method

Info

Publication number
JPS5827036B2
JPS5827036B2 JP55017573A JP1757380A JPS5827036B2 JP S5827036 B2 JPS5827036 B2 JP S5827036B2 JP 55017573 A JP55017573 A JP 55017573A JP 1757380 A JP1757380 A JP 1757380A JP S5827036 B2 JPS5827036 B2 JP S5827036B2
Authority
JP
Japan
Prior art keywords
plasma
welding
gas
laser
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55017573A
Other languages
Japanese (ja)
Other versions
JPS56114592A (en
Inventor
重裕 山口
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55017573A priority Critical patent/JPS5827036B2/en
Publication of JPS56114592A publication Critical patent/JPS56114592A/en
Publication of JPS5827036B2 publication Critical patent/JPS5827036B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/147Features outside the nozzle for feeding the fluid stream towards the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle

Description

【発明の詳細な説明】 本発明は、異厚部材の突合せ溶接などに好適なレーザ溶
接方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser welding method suitable for butt welding of members of different thickness.

既知のようにレーザビームのエネルギ密度は極めて高く
、アーク溶接などに比べて10万倍以上にすることも容
易である。
As is known, the energy density of a laser beam is extremely high, and can easily be 100,000 times or more higher than that of arc welding.

数値例を挙げると酸素アセチレン炎のエネルギ密度W/
−は103程度、アルゴンアーク(200A)のそれは
1.5X10’程度であるのに対し、電子ビームのそれ
は10嘔度連続レーザビームのそれは109、パルスレ
ーザのそれは1013にもなる。
To give a numerical example, the energy density of an oxyacetylene flame W/
- is about 103, and that of argon arc (200A) is about 1.5X10', while that of electron beam is 109, that of continuous laser beam is 109, and that of pulsed laser is 1013.

このような高エネルギ密度のビームを用いると鋼材の表
面焼入れ、溶接、穿孔・切断などの加工を容易に行なう
ことができる。
By using such a high energy density beam, processing such as surface hardening, welding, drilling and cutting of steel materials can be easily performed.

なおこれらの焼入れ、溶接、穴あけなどは鋼材に投入す
るエネルギ密度に対応しており、1.8×101J/a
程度なら表面焼入れ、1.9X103J/Cr?を程度
なら溶融(溶接)、4.9X 10’J/Cn程度なら
蒸発(穴あけ、切断)である。
These quenching, welding, drilling, etc. correspond to the energy density input to the steel material, which is 1.8 x 101 J/a.
Surface hardening, 1.9X103J/Cr? If it is about 4.9X 10'J/Cn, it is evaporation (drilling, cutting).

つまり所定時間内の投入エネルギ量が少ない場合は溶融
は起らず、鋼材表面の急熱急冷効果による表面焼入れが
行なわれるが、投入エネルギ量の増大に伴なって溶融、
蒸発となってゆく。
In other words, if the amount of input energy within a given time is small, no melting will occur, and surface hardening will occur due to the rapid heating and cooling effect on the surface of the steel material, but as the amount of input energy increases, melting will occur.
It becomes evaporation.

第1図はレーザ照射による加工物表面温度T8と表面下
温度T’ssの時間に対する変化を示したものである。
FIG. 1 shows changes over time in the workpiece surface temperature T8 and subsurface temperature T'ss due to laser irradiation.

パワー密度が106Wメ蒲以上の時は約1μsで表面温
度TSは蒸発温度TVに達し、加工物の表面層が蒸発す
る。
When the power density is 106 W or higher, the surface temperature TS reaches the evaporation temperature TV in about 1 μs, and the surface layer of the workpiece evaporates.

このような短時間内では吸収された熱は殆んど上昇しな
い。
Within such a short period of time, the absorbed heat hardly rises.

勿論表面層が蒸発するとその下部層が表面層になるから
該層が蒸発し、こうして穴あけ、切断などがなされる。
Of course, when the surface layer evaporates, the underlying layer becomes the surface layer, so the layer evaporates, and thus drilling, cutting, etc. can be performed.

パワー密度が105W/−以下の場合は表面温度T8が
蒸発温度に達するまでに数m5ecを要するのでこの間
には図示の如く表面下温度T88も上昇し、溶解温度T
Mに達する。
When the power density is 105 W/- or less, it takes several m5 ec for the surface temperature T8 to reach the evaporation temperature, so during this time the subsurface temperature T88 also rises as shown in the figure, and the melting temperature T
Reach M.

なおT8は室温である。この場合はレーザ照射時間を適
当にすることにより、表面下層が溶融し表面層はまだ蒸
発しない状態でレーザ照射を停止また位置移動すること
により溶接加工を行なうことができる。
Note that T8 is room temperature. In this case, by adjusting the laser irradiation time appropriately, welding can be performed by stopping the laser irradiation and moving the position while the lower surface layer is melted and the surface layer has not yet evaporated.

第2図にレーザ溶接の概要を示す。Figure 2 shows an overview of laser welding.

10.12は突合せ溶接すべき母材で、14はその突合
せ面である。
10.12 is the base material to be butt welded, and 14 is its butt surface.

レーザビーム16はCO2レーザ光源20により突合せ
面14の直上から該突合せ面へ投射される。
The laser beam 16 is projected onto the abutting surface 14 from directly above the abutting surface 14 by a CO2 laser light source 20.

レーザや電子ビームなどのエネルギビーム利用の溶接で
は溶接開先は特に作らず溶接部は突合せ面14それ自身
であり、この部分へ向けてビームを集束して(16aが
その焦点)投射する。
In welding using an energy beam such as a laser or an electron beam, a welding groove is not particularly created, and the welded portion is the butt surface 14 itself, and the beam is focused and projected toward this portion (16a is the focal point).

レーザが照射された母材部分には小径の深い孔ができ、
これはキーホールと呼ばれる。
A deep hole with a small diameter is created in the part of the base material that is irradiated with the laser.
This is called a keyhole.

レーザビーム又は母材が移動することによってキーホー
ルが移動し、その周辺は溶融層となり、キーホールの移
動と共に該溶融層も移動し、かつ先に溶融した部分は凝
固してゆく。
As the laser beam or the base material moves, the keyhole moves, and the area around it becomes a molten layer.As the keyhole moves, the molten layer also moves, and the previously melted portion solidifies.

かSる現象を突合せ面14で進行させることにより、溶
接が行なわれる。
Welding is performed by allowing the phenomenon of S to progress on the abutting surfaces 14.

なお図の18は溶融金属、22はキーホール、24は凝
固した溶融金属(ビード)である。
In the figure, 18 is molten metal, 22 is a keyhole, and 24 is solidified molten metal (bead).

Fは溶接方向を示し、ビーム16を移動させて溶接する
場合矢印Fはビーム16の移動方向を示し、母材を移動
させて溶接する場合該母材は矢印Fと反対方向に移動す
る。
F indicates the welding direction; when the beam 16 is moved and welded, the arrow F indicates the moving direction of the beam 16; when the base material is moved and welded, the base material moves in the opposite direction to the arrow F.

レーザ溶接を左右する要因には■レーザパワー■エネル
ギ密度、■母材のレーザエネルギ吸収性、■母材の熱伝
導率と熱拡散率、■母材の比熱、密度、熱容量、融解温
度、融解熱などがあるが、特に上記■が問題である。
Factors that affect laser welding include ■ Laser power ■ Energy density, ■ Laser energy absorption of the base metal, ■ Thermal conductivity and thermal diffusivity of the base metal, ■ Specific heat, density, heat capacity, melting temperature, and melting of the base metal. There are heat, etc., but the above item (2) is particularly problematic.

母材表面がレーザビームに対する反射率の犬なるもので
あると、投射されたレーザは反射されてしまって溶接に
寄与しない。
If the surface of the base material has a low reflectance to the laser beam, the projected laser beam will be reflected and will not contribute to welding.

母材表面における反射率は多くの金属において、50%
以上にもなり、この反射率を減少させて母材のレーザエ
ネルギ吸収率を向上させる必要がある。
The reflectance on the base material surface is 50% for many metals.
Therefore, it is necessary to reduce this reflectance and improve the laser energy absorption rate of the base material.

この吸収率の向上には、次の方法が考えられる。The following methods can be considered to improve this absorption rate.

■表面粗度増大による多重反射の利用、■薄い酸化膜等
による波長吸収性の向上、■レーザプラズマの利用。
■Use of multiple reflection by increasing surface roughness, ■Improve wavelength absorption by thin oxide film, etc., ■Use of laser plasma.

第3図に示すようにレーザ光16ト同軸にアルゴン(A
r)、ヘリウム(He)、窒素(N2)などのガス32
を噴出する(30はノズルを示す)と、被加工物26の
表面より蒸発、飛散した被加工物表面物質によりガスは
瞬時に高温状態となり、プラズマ化される。
As shown in Figure 3, 16 laser beams are coaxially connected with argon (A
gas 32 such as r), helium (He), nitrogen (N2), etc.
When the gas is ejected (numeral 30 indicates a nozzle), the gas instantly reaches a high temperature state due to the surface material of the workpiece evaporated and scattered from the surface of the workpiece 26, and becomes plasma.

これがレーザプラズマである。This is laser plasma.

プラズマ34が発生すると、レーザビームのエネルギは
大部分このプラズマに吸収され、被加工物26へ直接照
射されるレーザビームは少なくなる。
When the plasma 34 is generated, most of the energy of the laser beam is absorbed by this plasma, and less of the laser beam is directly irradiated onto the workpiece 26.

一方プラズマ34はレーザエネルギを吸収して益々高温
となり、これが2次のエネルギ源となって被加工物26
を加熱する。
On the other hand, the plasma 34 absorbs the laser energy and becomes increasingly hot, which becomes a secondary energy source and generates the workpiece 26.
heat up.

この結果被加工物の溶込み形状は第4図に示すように、
プラズマ34による溶込み部Aとレーザ光入射による溶
込み部分(キーホールが形成された部分およびその周囲
)Bとの合成形状となる。
As a result, the penetration shape of the workpiece is as shown in Figure 4.
The shape is a composite of the welded part A by the plasma 34 and the welded part B (the part where the keyhole is formed and its surroundings) by the laser beam incidence.

このように、ガスを併用してレーザ溶接を行なうとプラ
ズマが発生し、レーザビームのエネルギは該プラズマに
吸収されて被加工物へ直接入射するレーザエネルギは減
少するが、プラズマを通してエネルギが伝播されるので
、ガスを使用せずにレーザビームを被加工物へ直接投射
して大部分を反射させてしまう場合より、数10倍のエ
ネルギ効率が得られる。
In this way, when laser welding is performed using gas in combination, plasma is generated, and the energy of the laser beam is absorbed by the plasma, reducing the amount of laser energy that is directly incident on the workpiece, but the energy is propagated through the plasma. Therefore, the energy efficiency can be several tens of times higher than when the laser beam is directly projected onto the workpiece without using gas and most of the laser beam is reflected.

第5図はこの関係を説明する図で、aはガスを供給せず
、溶接速度■はV−2,5mm/S、ビーム径はW、の
場合、b、cはガスを供給してプラズマを発生させた場
合で溶接速度はb′が■−20扉m/ S 、 cがV
−2,5關/S、ビーム径はす、cともに図示のW2で
ある。
Figure 5 is a diagram explaining this relationship, where a shows no gas, the welding speed is V-2, 5 mm/S, and the beam diameter is W, b and c show plasma when gas is supplied. When the welding speed is generated, b' is ■-20 doors m/S, and c is V.
-2,5 degrees/S, beam diameter, and c are both W2 as shown in the figure.

網線部は溶けた部分を示す。The shaded area indicates the melted area.

図から明らかなようにaでは殆んど溶けていないのに対
し、溶接速度が同じCでは大きく溶け、溶接速度が約1
0倍のbでも深い溶込みが得られる。
As is clear from the figure, there is almost no melting in case A, whereas a large amount of melting occurs in case C where the welding speed is the same, and the welding speed is approximately 1
Deep penetration can be obtained even with b of 0 times.

尤も、aの場合でもビーム径を絞って高エネルギ密度に
するともう少し深い溶込みが得られるが、Cのようには
ならない。
Of course, even in case a, a slightly deeper penetration can be obtained by narrowing down the beam diameter and increasing the energy density, but it will not be as good as in case C.

ガスを併用してプラズマを発生させると被加工物の加熱
エネルギ効率を高めることができるが、第4図等に示し
た如く、溶込み形状がプラズマ塊の影響を受け、レーザ
溶接の特徴である幅の狭い、深い溶込み形状が得られな
いという難がある。
Generating plasma in combination with gas can increase the heating energy efficiency of the workpiece, but as shown in Figure 4, the penetration shape is affected by the plasma lump, which is a characteristic of laser welding. There is a problem in that a narrow and deep penetration shape cannot be obtained.

このような観点からはプラズマの存在はむしろ有害であ
り、その影響を回避もしくは調整する必要がある。
From this point of view, the presence of plasma is rather harmful, and it is necessary to avoid or adjust its influence.

そもそもレーザビームに対するガス流の併用は、アーク
溶接などと同様に溶接部をガスシールドするという意味
も持っており、このような目的からは使用ガスは単なる
シールドガスであればよい。
In the first place, the combined use of a laser beam and a gas flow also has the meaning of gas shielding the welded part, similar to arc welding, and for this purpose, the gas used may be a simple shielding gas.

即ち電離電圧の高いガスはプラズマ化しにくいから、か
\るガス(例えばHe)の大量(高流速での)使用は有
効である。
That is, since a gas with a high ionization voltage is difficult to turn into plasma, it is effective to use a large amount of such gas (for example, He) (at a high flow rate).

また第5図す、cから明らかなように溶接速度を犬にす
ることも有効である。
Furthermore, as is clear from Figure 5, c, it is also effective to set the welding speed at a constant speed.

また側方から高速ジェット流を吹きつけてプラズマを分
裂、崩壊させてしまうことも有効である。
It is also effective to blow a high-speed jet stream from the side to split and collapse the plasma.

本発明はやはりこのプラズマの処理に係るものであるが
、該プラズマを母材中、所望方向へ押し付け、溶接に有
効利用しようとするものである。
The present invention also relates to the treatment of this plasma, and aims to press the plasma in a desired direction into the base material and effectively utilize it for welding.

本発明の原理を第6図に、実施例を第8図に示す。The principle of the present invention is shown in FIG. 6, and an embodiment is shown in FIG.

第6図に示すように本発明ではレーザビーム16とプラ
ズマ生成およびシールド用ガス32を供給するノズル3
0に対し、斜め方向からジェットガスを供給するノズル
40を設ける。
As shown in FIG. 6, in the present invention, a nozzle 3 is used to supply a laser beam 16 and a plasma generation and shielding gas 32.
0, a nozzle 40 is provided to supply jet gas from an oblique direction.

ジェットガス42は図示の如くレーザが投射される被加
工物26の表面部分を狙って放出され、そしてレーザビ
ーム16の中心線11に対するノズル40従ってジェッ
トガス流42の中心線12のなす角は第6図すに示すよ
うにαおよびθである。
The jet gas 42 is emitted aiming at the surface portion of the workpiece 26 onto which the laser beam is projected, as shown, and the angle between the nozzle 40 and the center line 12 of the jet gas stream 42 with respect to the center line 11 of the laser beam 16 is As shown in Figure 6, α and θ are.

即ちレーザビームの中心線l11を2軸にとり、溶接線
(前記の突合せ面14)をX軸にとると、ジェットガス
流の中心線12はx−z平面においてxtmこ対して角
θ(Z軸に対しては90°−θ)、またx−y平面にお
いてX軸に対し角αをなし、しかも角αは正、負に可変
である。
That is, if the center line l11 of the laser beam is taken as two axes and the welding line (above abutting surface 14) is taken as the X axis, the center line 12 of the jet gas flow is at an angle θ (Z axis 90°-θ), and forms an angle α with respect to the X axis in the x-y plane, and the angle α is variable between positive and negative.

このようにすると、ジェットガス流42の速度ベクトル
はz51分つまり被加工物26の厚み方向成分を持って
いるからプラズマ34を被加工物内へ押し込める作用を
し、これにより深い溶込みが得られる。
In this way, the velocity vector of the jet gas flow 42 has a component of z51, that is, a component in the thickness direction of the workpiece 26, so it acts to push the plasma 34 into the workpiece, thereby achieving deep penetration. .

またジェットガス流42の速度ベクトルはx、yFR分
を持っているから、xlff分によりプラズマ34はこ
れから溶接される母材部分側へ押し付けられ、これによ
りプラズマのエネルギが母材加熱に有効に利用されて溶
接能率が向上する。
In addition, since the velocity vector of the jet gas flow 42 has components x and yFR, the plasma 34 is pushed toward the base metal part that will be welded by the component xlff, so that the energy of the plasma is effectively used for heating the base material. This improves welding efficiency.

またyi分によりプラズマは溶接線Xの左側または右側
へ強く又は弱く(αの値により)押し付けられることに
なり、これは後述の異厚部材の溶接に極めて有効である
Further, the plasma is strongly or weakly (depending on the value of α) pressed to the left or right side of the welding line X by the yi portion, which is extremely effective for welding members of different thickness, which will be described later.

更にこのように斜め方向からジェットガス流を吹き付け
ると、プラズマ塊の周辺は冷却されて単なる加熱ガスと
なり、プラズマ状態であるのは活発なエネルギ注入が行
なわれる中心部のみとなるので小型化され、第4図のA
部分の面積が縮小してB部分に近くなり細幅の深溶込み
が得られるとともに、溶融部をジェットガス流と相対す
る方向に形成させ、かつその大きさを制御することがで
きるという効果がある。
Furthermore, by blowing a jet gas stream from an oblique direction in this way, the periphery of the plasma mass is cooled down to just heated gas, and only the central part where active energy injection is performed is in a plasma state, resulting in miniaturization. A in Figure 4
The area of the part is reduced and becomes closer to part B, resulting in narrow and deep penetration, and the effect is that the molten part can be formed in the direction facing the jet gas flow and its size can be controlled. be.

ジェットガスを噴出するプラズマ制御ノズル40の機能
を十分に発揮させるにはジェットガスの圧力、圧力分布
、ガス噴出角、およびガスの種類などを適切にする必要
がある。
In order to fully demonstrate the function of the plasma control nozzle 40 that spouts jet gas, it is necessary to make the jet gas pressure, pressure distribution, gas jet angle, gas type, etc. appropriate.

ガスの種類としてはAr、N2などよりは電離電圧の高
いHeが好ましい。
As for the type of gas, He, which has a higher ionization voltage, is preferable to Ar, N2, etc.

なおHeの電離電圧は24.588V、Arのそれは1
5.760V、 N2のそれは14.53Vである。
The ionization voltage of He is 24.588V, and that of Ar is 1
5.760V, that of N2 is 14.53V.

ノイズ30を通して供給するガス32はプラズマを必要
最小限に発生させる為Heがよく、かつ低流速で供給す
るのがよい。
The gas 32 supplied through the noise 30 is preferably He and is preferably supplied at a low flow rate in order to generate the necessary minimum amount of plasma.

高温状態での2原子分子のガスは解離のエネルギと電離
のエネルギを持ち高エネルギ状態にあってプラズマ化し
やすいので、ガス32としてか\るガスを用いるのもよ
い。
A diatomic gas in a high temperature state has energy of dissociation and energy of ionization, is in a high energy state, and is easily turned into plasma, so it is also good to use a hot gas as the gas 32.

ガス噴出角のうちαは±60’程度の範囲内で、またθ
については3σ〜8σの範囲内で適宜選定する。
Of the gas ejection angles, α is within a range of about ±60', and θ
is appropriately selected within the range of 3σ to 8σ.

なおθξO°とするとプラズマは母材表面に沿って単に
吹き飛ばされることになり、ガスを使用しない従ってプ
ラズマを作らない場合と大差なくなる。
Note that when θξO° is used, the plasma is simply blown off along the surface of the base material, and there is not much difference from the case where no gas is used and therefore no plasma is generated.

ジェットガスによるプラズマ制御の効果を第7図で説明
すると、第7図aはプラズマ制御なしの場合、bはプラ
ズマ制御ありの場合である。
The effect of plasma control using jet gas will be explained with reference to FIG. 7. FIG. 7a shows the case without plasma control, and FIG. 7b shows the case with plasma control.

網線を付して示す溶込み部はaの場合はワインカップ状
、bの場合はビヤだる型であり、細幅深溶込みの点で大
きく改善されることが分る。
The welded portions shown with mesh lines are wine cup-shaped in case a, and beer barrel-shaped in case b, and it can be seen that there is a great improvement in terms of narrow width and deep penetration.

なおこの例ではジェットガスの噴出角α=0.θ=45
°である。
In this example, the ejection angle α of the jet gas is 0. θ=45
°.

第8図は異厚溶接に適用した本発明の実施例を示す。FIG. 8 shows an embodiment of the present invention applied to welding of different thicknesses.

鉄鋼業における製造プロセスの中で溶接加工を必要とす
る工程は多いが、例えば鋼板は熱間圧延後、酸洗、焼鈍
、冷延等を行なわれ、これらを実施するには鋼板コイル
同志、またはコイルとリーダーコイルを突合せ溶接する
が、該溶接がそれである。
There are many steps in the manufacturing process in the steel industry that require welding. For example, after hot rolling, steel plates are subjected to pickling, annealing, cold rolling, etc. The coil and leader coil are butt welded, and this is the welding.

そして例えば製品コイルとリーダーコイルを溶接する場
合、各々の厚みは6m1rLと3朋というように異厚と
なり、第8図に示す状態となる。
For example, when welding a product coil and a leader coil, the thickness of each coil is different, such as 6 m1rL and 3 mm, resulting in the state shown in FIG. 8.

通常のレーザ溶接でこれを行なうとするとレーザビーム
は点線16bのように投射することになるが、これでは
非溶接部を溶融してしまう。
If this were to be done by normal laser welding, the laser beam would be projected as indicated by the dotted line 16b, but this would melt the non-welded portion.

これを避けるため実施例16の如くすると突合せ面でな
い所を溶融することになり、いずれも不具合である。
In order to avoid this, if the 16th embodiment is used, the parts other than the abutting surfaces will be melted, which is a problem.

このような場合には本発明では前記斜視角αを適当に選
び、プラズマ34を厚い母材10側へ押付けるようにす
る。
In such a case, in the present invention, the oblique angle α is appropriately selected to press the plasma 34 toward the thick base material 10 side.

このようにすれば溶融金属部は突合せ面を挾んでその両
側に形成されるようになり、確実な溶接を行なうことが
できる。
In this way, the molten metal portions will be formed on both sides of the abutting surfaces, making it possible to perform reliable welding.

第9図a、bは本発明方法で異厚溶接した母材の断面の
例を示す。
Figures 9a and 9b show examples of cross sections of base metals welded with different thicknesses using the method of the present invention.

aはプラズマ制御が少ない場合、bは充分なプラズマ制
御をした場合で、ジェットガスにより溶融部が移動する
態様がよく観察できる。
A shows a case where plasma control is insufficient, and b shows a case where sufficient plasma control is performed, and the manner in which the molten part moves due to the jet gas can be clearly observed.

ジェットガスによりプラズマ押付は方向を所望方向へ変
更する他の例は、曲線状の溶接線に沿った溶接を行なう
場合である。
Another example in which the direction of plasma pressing is changed to a desired direction by jet gas is when welding is performed along a curved welding line.

この場合はジェットガスの噴出角αを、該曲線の溶接点
における溶練方向と一致させ、常にプラズマが、これか
ら溶接する母材部分側へ押付けられるようにするとよい
In this case, it is preferable to make the ejection angle α of the jet gas coincide with the smelting direction at the welding point of the curve so that the plasma is always pressed toward the base metal portion to be welded.

勿論必要に応じて核内αを該接線のなす角より大また小
にしτプラズマを、突合わされる両母材の一方へより多
く押付けるようにしてもよい。
Of course, if necessary, α in the nucleus may be made larger or smaller than the angle formed by the tangent line, so that the τ plasma is pressed more toward one of the base materials to be abutted.

以上詳細に説明したように本発明ではレーザビームと共
にガスを供給してプラズマを発生させ、該プラズマをジ
ェットガスにより溶接点の前方かつ溶接線の両側に亘る
任意方向において母材内へ押付けるようにするので、母
材のエネルギ吸収率を高め、母材溶融部の位置を調整で
き、プラズマを小型化して細幅深溶込みを可能にするな
どの効果が得られる。
As explained in detail above, in the present invention, gas is supplied together with a laser beam to generate plasma, and the plasma is pressed into the base metal in any direction in front of the welding point and on both sides of the weld line by jet gas. Therefore, effects such as increasing the energy absorption rate of the base metal, adjusting the position of the base metal fusion zone, and downsizing the plasma to enable narrow and deep penetration can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザのエネルギ密度と溶融、蒸発等の関係を
示すグラフ、第2図はレーザ溶接の説明図、第3図およ
び第4図はガスを併用するレーザ溶接の説明図、第5図
はレーザによる加熱結果の説明図、第6図a、bは本発
明方法の説明図、第7図a、bは本発明と従来法に依る
溶接結果の対比説明図、第8図は本発明の詳細な説明図
、第9図a、bはその溶接結果の説明図である。 図面で16はレーザビーム、32はガス、x−2面は溶
接線を含む垂直面、x−y面は溶接線を含む水平面、3
4はプラズマ、Fは溶接方向を示す。
Figure 1 is a graph showing the relationship between laser energy density and melting, evaporation, etc. Figure 2 is an illustration of laser welding, Figures 3 and 4 are illustrations of laser welding using gas, and Figure 5 6 is an explanatory diagram of the heating results by laser, FIGS. 6 a and b are explanatory diagrams of the method of the present invention, FIGS. 7 a and b are explanatory diagrams comparing the welding results of the present invention and the conventional method, and FIG. 8 is an explanatory diagram of the welding results of the present invention. 9A and 9B are detailed explanatory diagrams of the welding results. In the drawing, 16 is a laser beam, 32 is a gas, the x-2 plane is a vertical plane including the welding line, the x-y plane is a horizontal plane including the welding line, 3
4 indicates plasma, and F indicates the welding direction.

Claims (1)

【特許請求の範囲】 1 レーザビームと共にガスを供給して母材上にプラズ
マを発生させながら行なうレーザ溶接方法において、溶
接線を含む垂直面および水平面において該溶接線に対し
それぞれ傾斜角θ、αを持たせてジェットガスを溶接点
へ向けて噴射し、該プラズマを母材内へ、これから溶接
する母材部分側かつ溶接線の両側を含む所望方向に押し
付けながら溶接を行なうことを特徴とするレーザ溶接方
法。 2 溶接線を含む水平面における傾斜角αは可変である
ことを特徴とする特許請求の範囲第1項記載のレーザ溶
接方法。
[Claims] 1. In a laser welding method in which gas is supplied together with a laser beam to generate plasma on a base material, inclination angles θ and α with respect to the weld line in a vertical plane including the weld line and in a horizontal plane, respectively. The method is characterized in that jet gas is injected toward the welding point with a jet gas, and welding is performed while pressing the plasma into the base metal in a desired direction including the base metal part to be welded and both sides of the weld line. Laser welding method. 2. The laser welding method according to claim 1, wherein the inclination angle α in the horizontal plane including the weld line is variable.
JP55017573A 1980-02-15 1980-02-15 Laser welding method Expired JPS5827036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55017573A JPS5827036B2 (en) 1980-02-15 1980-02-15 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55017573A JPS5827036B2 (en) 1980-02-15 1980-02-15 Laser welding method

Publications (2)

Publication Number Publication Date
JPS56114592A JPS56114592A (en) 1981-09-09
JPS5827036B2 true JPS5827036B2 (en) 1983-06-07

Family

ID=11947646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55017573A Expired JPS5827036B2 (en) 1980-02-15 1980-02-15 Laser welding method

Country Status (1)

Country Link
JP (1) JPS5827036B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8310630D0 (en) * 1983-04-20 1983-05-25 British Shipbuilders Eng Laser welding
US4689467A (en) * 1982-12-17 1987-08-25 Inoue-Japax Research Incorporated Laser machining apparatus
JPH0825046B2 (en) * 1985-12-19 1996-03-13 トヨタ自動車株式会社 Laser welding method
JP2750293B2 (en) * 1994-09-26 1998-05-13 トヨタ自動車株式会社 Manufacturing method of molded article and molded article
US20150202718A1 (en) * 2014-01-23 2015-07-23 GM Global Technology Operations LLC Suppressing laser-induced plume for laser edge welding of zinc coated steels
CN107186339A (en) * 2017-07-19 2017-09-22 成都新柯力化工科技有限公司 A kind of method for reducing laser welding pores

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879592A (en) * 1971-12-30 1973-10-25
JPS53149150A (en) * 1977-06-01 1978-12-26 Hitachi Ltd Method and apparatus for laser beam welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879592A (en) * 1971-12-30 1973-10-25
JPS53149150A (en) * 1977-06-01 1978-12-26 Hitachi Ltd Method and apparatus for laser beam welding

Also Published As

Publication number Publication date
JPS56114592A (en) 1981-09-09

Similar Documents

Publication Publication Date Title
US4377735A (en) Laser working treatment process capable of controlling the form of heated portion of a steel material
US3860784A (en) Deep penetration welding using lasers
US3626143A (en) Scoring of materials with laser energy
US3597578A (en) Thermal cutting apparatus and method
US5981901A (en) Method and device for gas shielding laser processed work pieces
WO2015107664A1 (en) Laser welding method and welded joint
Locke et al. Metal processing with a high-power CO 2 laser
NO310601B1 (en) Method of laser beam cutting of ribbon or plate-shaped blanks, especially electroplates
CA1119257A (en) Method of material processing utilizing an interrupted beam of continuous wave laser radiation
RU2547987C1 (en) Laser welding method
JP2004358521A (en) Apparatus and method for thermal-working with laser beam
Decker et al. Physical models and technological aspects of laser gas cutting
Walsh Laser welding–literature review
JPS5827036B2 (en) Laser welding method
GB2099349A (en) Laser working process
JPS59104289A (en) Method and device for cutting steel plate by laser beam
JP3635199B2 (en) Laser welding nozzle for butt welding of hot rolled steel slabs
JPS6032556B2 (en) Laser welding nozzle
GB1336806A (en) Deep penetration welding using coherent optical radiation
JP2002273588A (en) Laser cutting processing method
JP2002331375A (en) Lap laser beam welding method for galvanized sheet iron
JP3526935B2 (en) Laser marking method and laser processing apparatus used for the method
JP3436861B2 (en) Laser cutting method and apparatus for steel sheet
JPS63174793A (en) Method for cutting alloy steel by laser beam
Fujinaga et al. Development of an all-position YAG laser butt welding process with addition of filler wire