JPS6317356B2 - - Google Patents

Info

Publication number
JPS6317356B2
JPS6317356B2 JP57041316A JP4131682A JPS6317356B2 JP S6317356 B2 JPS6317356 B2 JP S6317356B2 JP 57041316 A JP57041316 A JP 57041316A JP 4131682 A JP4131682 A JP 4131682A JP S6317356 B2 JPS6317356 B2 JP S6317356B2
Authority
JP
Japan
Prior art keywords
layer
type
optical
type semiconductor
current blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57041316A
Other languages
Japanese (ja)
Other versions
JPS58158988A (en
Inventor
Takashi Matsuoka
Haruo Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57041316A priority Critical patent/JPS58158988A/en
Publication of JPS58158988A publication Critical patent/JPS58158988A/en
Publication of JPS6317356B2 publication Critical patent/JPS6317356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高速変調時にも単一縦モードで発振
し得る分布帰還形半導体レーザに関するものであ
る。 光通信用光源として用いられる半導体レーザ
は、発振波長、発振モードが高速の変調時にも安
定であることが要求される。そこで、このような
要求を満たす半導体レーザとして、いわゆる分布
帰還形半導体レーザ(以下DFBレーザと称す)
が提案されている。このDFBレーザは、光導波
路を形成する半導体層(活性層又は活性層と接し
て形成される光ガイド層)の厚さを光の発振する
方向に沿つて周期的に変化させて周期構造を形成
し、この周期構造により導波路中に周期的屈折率
変化を導入し、この屈折率変化により光のフイー
ドバツク(帰還)機能を持たせてレーザ発振を可
能としたものである。ところが、上記周期構造の
最適周期は0.2〜0.3μmと微細であるため、周期
構造を高精度に加工することが困難であり、その
ため光の帰還効率の高い周期構造が得難く、良好
な発振特性を有するDFBレーザを歩留り良く製
造するのが困難であつた。 本発明はこのような従来の欠点を改善したもの
であり、その目的は、周期構造の加工精度が従来
と同一であつても高い帰還効率が得られるように
したDFBレーザを提供することにある。以下実
施例について詳細に説明する。 第1図及び第2図は本発明実施例DFBレーザ
の素子断面図であり、第1図は光の取り出し方向
に対して垂直な断面図、第2図は光取り出し方向
に沿つて素子中央部で切断した場合の断面図であ
る。なお、各図において、1はp形Inp基板等の
p形半導体基板、2はp形又はn形のGaInAsp4
元混晶層等から成る活性層、3はn形GaInAsp4
元混晶層等から成る光ガイド層、4は電流阻止
層、5は光ガイド層および電流阻止層4によつて
形成された回折格子、6,7はn形InP層等のn
形半導体層、8はp形InP層等のp形半導体層、
9は化学エツチング等の手法により活性層2及び
光ガイド層3に対して傾いて形成した面、10は
劈開や化学エツチング等の手法で形成した光取り
出し面、11はp形オーミツク電極、12はn形
オーミツク電極、13は放射されるレーザ光であ
る。活性層2及び光ガイド層3が光導波層とな
り、p形半導体基板1及びn形半導体層6が光閉
じ込め層となる。 本実施例のDFBレーザが従来のDFBレーザと
相違するところは、従来のDFBレーザが光ガイ
ド層3の表面を凹凸に加工して第2図の電流阻止
層4を含む凹凸相当領域を形成しその上にn形半
導体層6を形成したのに対し、本実施例では、光
ガイド層3の表面を凹凸に加工するとともにその
凸部に電流阻止層4を設け、この電流阻止層4と
光ガイド層3上にn形半導体層を形成した点にあ
る。 一般に、DFBレーザにおいては、回折格子5
の周期Λが Λ=λm/2n ……(1) 但し、λはレーザ発振の波長、mは回折格子の
次数、nは活性層2、光ガイド層3、電流阻止層
4で構成される光導波路の実効屈折率である。 を満足する波長でDFBレーザのレーザ発振が
引き起こされるが、そのレーザ特性は回折格子5
による回折効率が高いほど良くなる。回折効率
は、回折格子の形状と、回折格子を境界として光
閉じ込め層6の凸部の屈折率と光閉じ込め層6の
凹部にある電流阻止層4及び光ガイド層3の等価
屈折率との差によつて決められるので、回折格子
の形状が同一であればその屈折率差が大きいほど
回折効率は高くなり、従つてDFBレーザ特性が
良くなる。 本実施例では、前述したように、光ガイド層3
の凸部頂上(光閉じ込め層凹部底面)に電流阻止
層4を形成してある。一般に半導体結晶では注入
キヤリアが多くなると屈折率が低下するので、こ
のような構造にすると注入された電流が光閉じ込
め層6の凸部に集中する結果その部分の屈折率が
低下し、上述した屈折率差が従来に比し大きくな
り、回折効率が高まることになる。また、半導体
結晶の不純物濃度を高くするとその屈折率が低下
するので、光閉じ込め層6の不純物濃度を従来よ
り高くすれば、より屈折率差が大きくなり、回折
効率が更に高まる。 上記電流阻止層4としては、電流を完全に遮断
するものが好ましいが、ある程度抑制するもので
も良く、比抵抗が光閉じ込め層6の凸部より大き
い高抵抗n形半導体(InP,GaInAsP等)、絶縁
層、或は光閉じ込め層6の導電形と反対導電形の
p形半導体層を用いることができる。 〈具体例〉 第1図及び第2図の各層を以下に示すような値
としたDFBレーザを製作した。 p形半導体基板1 Znドープ(100)p形InP基板、厚さ80μm、キ
ヤリア密度5×1018/cm3、EPD(エツチピツト
密度)5×103/cm2 活性層2 ノンドープGa0.42In0.58As0.88P0.124元混晶活性
層、厚さ0.13μm 光ガイド層3 SnドープGa0.26In0.76As0.56P0.444元混晶導波路
層、厚さ0.2μm、キヤリア密度7×1017/cm3 電流阻止層4 ノンドープInP結晶層、厚さ0.1μm、キヤリア
濃度2×1013/cm3 n形半導体層6 Snドープn形InP結晶層、厚さ2.5μm、キヤリ
ア密度5×1018/cm3 n形半導体層7 Snドープn形InP結晶層、厚さ2μm、キヤリア
密度4×1017/cm3 p形半導体層8 Znドープp形InP結晶層、厚さ1μm、キヤリア
密度3×1017/cm3 これらの結晶層は、通常の所謂スライドボート
法を用いた液相エピタキシヤル成長法により行な
い、各結晶層の成長温度は950℃〜605℃の間にあ
つた。製作手順は次の通りである。 (1) 上記p形InP基板上に活性層2、光ガイド層
3及び電流阻止層4を連続成長した。 (2) フオトレジストを基板表面に厚さ500Å塗布
し、二光束干渉法を用いて〈110〉方向に沿つ
た干渉縞を露光した。現像後、
1MolK2Cr2O7:HBr:CH3COOH=3:1:
1を用いて結晶層3,4をエツチングし、深さ
0.2μmの回折格子5を形成した。 (3) n形半導体層6を成長後、rfスパツタ法を用
いてSiO2膜を結晶表面に形成し、フオト技術
を用いて〈110〉方向に沿つて幅9μmのSiO2
のストライプパタンを形成し、メタノールブロ
ム液を用いて、6μmの深さまでメサエツチン
グを行つた。 (4) n形半導体層7、p形半導体層8の順に埋め
込み層の結晶成長を行なつた後、SiO2膜を除
去した。 (5) 基板側にp形電極11としてAu−Zn合金、
結晶成長層側にn形電極12としてAu−Ge−
Ni合金を蒸着により形成し、その後シンタリ
ングした。 (6) フオトレジストをマスクとして〈110〉方向
に沿つて、間隔400μmで幅30μm、深さ10μm
の溝を1NolK2Cr2O7:HBr:CH3COOH=
1:1:1のエツチング液を用いて形成した。
これにより面9を形成し、θ1=54.5゜を得た。 (7) ストライプの中央部を劈開により分離し(θ2
=90゜)、長さ200μmのDFBレーザを得た。 このようにして製造したDFBレーザのp形電
極11を正極、n形電極12を負極にして直流電
流を流したところ、25℃において閾値55mAで分
布帰還モードのレーザ発振を示した。発振スペク
トルは発振閾値からその3倍以上まで単一縦モー
ドであることが認められた。また、このDFBレ
ーザに65mAの直流電流を流しておき、さらに
400MHzの正弦波電流(Ip-p=20mA)を印加した
ときのスペクトルを観察したが、波長1.516μm付
近でやはり単一縦モードの分布帰還モードによる
レーザ発振を認めた。第3図はそのときに観察さ
れたスペクトルの一例を示す線図である。 なお、上記工程中で電流阻止層4を除いた工程
により形成した従来のDFBレーザの閾値は、上
述した工程で製作した素子の約1.4倍であつた。
また単一縦モードは、閾値電流の1.8倍までしか
保たれなかつた。 上述の実施例では、基板1としてp形のものを
用いたが、n形のものを用いた場合には他の半導
体層の導電形を上述と反対にすれば良い。また、
凹凸の周期構造を基板側に設ける構成としても良
く、閉じ込め層と活性層との間に光ガイド層を介
しない場合には活性層の膜厚を周期的に変化させ
れば良い。更に、使用する半導体材料としては、
GaInAsP/InP系以外にGaAs/GaAlAs系、
GaSb/GaAlAsSb系等が考えられる。 以上の説明から判るように、本発明は、活性層
と対向する面に光の取り出し方向に沿う周期的な
凹凸構造を有する光閉じ込め層の凹部底面に電流
阻止層を設けたものであり、注入電流が光閉じ込
め層の凸部に集中して流れる結果その部分の屈折
率が低下し、凹凸両者の屈折率差が大きくなるの
で、みかけの凹凸の構造が同じでも分布帰還の効
率を大きくすることができ、DFBモードでのレ
ーザ発振特性を向上することができる。
The present invention relates to a distributed feedback semiconductor laser that can oscillate in a single longitudinal mode even during high-speed modulation. Semiconductor lasers used as light sources for optical communications are required to be stable even when the oscillation wavelength and oscillation mode are modulated at high speed. Therefore, as a semiconductor laser that meets these requirements, a so-called distributed feedback semiconductor laser (hereinafter referred to as a DFB laser) is used.
is proposed. This DFB laser forms a periodic structure by periodically changing the thickness of the semiconductor layer (active layer or optical guide layer formed in contact with the active layer) that forms the optical waveguide along the direction of light oscillation. However, this periodic structure introduces a periodic change in refractive index into the waveguide, and this change in refractive index provides a light feedback function to enable laser oscillation. However, since the optimum period of the above-mentioned periodic structure is as fine as 0.2 to 0.3 μm, it is difficult to process the periodic structure with high precision.Therefore, it is difficult to obtain a periodic structure with high light feedback efficiency and good oscillation characteristics. It has been difficult to manufacture DFB lasers with high yields. The present invention improves these conventional drawbacks, and its purpose is to provide a DFB laser that can obtain high feedback efficiency even if the machining accuracy of the periodic structure is the same as the conventional one. . Examples will be described in detail below. 1 and 2 are cross-sectional views of a DFB laser according to an embodiment of the present invention. FIG. 1 is a cross-sectional view perpendicular to the light extraction direction, and FIG. 2 is a cross-sectional view of the central part of the element along the light extraction direction. FIG. In each figure, 1 is a p-type semiconductor substrate such as a p-type Inp substrate, and 2 is a p-type or n-type GaInAsp4.
Active layer consisting of original mixed crystal layer etc. 3 is n-type GaInAsp4
4 is a current blocking layer; 5 is a diffraction grating formed by the optical guide layer and current blocking layer 4; 6 and 7 are n-type InP layers, etc.;
8 is a p-type semiconductor layer such as a p-type InP layer,
9 is a surface formed by a method such as chemical etching to be inclined with respect to the active layer 2 and the light guide layer 3; 10 is a light extraction surface formed by a method such as cleavage or chemical etching; 11 is a p-type ohmic electrode; 12 is a surface formed by a method such as cleavage or chemical etching. An n-type ohmic electrode 13 is a laser beam to be emitted. The active layer 2 and the optical guide layer 3 serve as optical waveguide layers, and the p-type semiconductor substrate 1 and the n-type semiconductor layer 6 serve as optical confinement layers. The difference between the DFB laser of this embodiment and the conventional DFB laser is that the conventional DFB laser processes the surface of the light guide layer 3 into irregularities to form a region corresponding to the irregularities including the current blocking layer 4 shown in FIG. In contrast to the n-type semiconductor layer 6 formed thereon, in this example, the surface of the light guide layer 3 is processed to be uneven and a current blocking layer 4 is provided on the convex portion, and this current blocking layer 4 and the light The point is that an n-type semiconductor layer is formed on the guide layer 3. Generally, in a DFB laser, the diffraction grating 5
The period Λ of It is the effective refractive index of the wave path. Laser oscillation of the DFB laser is caused at a wavelength that satisfies
The higher the diffraction efficiency, the better. Diffraction efficiency is determined by the shape of the diffraction grating and the difference between the refractive index of the convex portion of the optical confinement layer 6 and the equivalent refractive index of the current blocking layer 4 and the light guide layer 3 in the concave portion of the optical confinement layer 6 with the diffraction grating as the boundary. Since it is determined by In this example, as described above, the light guide layer 3
A current blocking layer 4 is formed on the top of the convex portion (bottom surface of the concave portion of the optical confinement layer). In general, in a semiconductor crystal, the refractive index decreases as the number of injected carriers increases, so if such a structure is used, the injected current will concentrate on the convex portion of the optical confinement layer 6, resulting in a decrease in the refractive index of that portion, resulting in the above-mentioned refraction. The index difference becomes larger than before, and the diffraction efficiency increases. Furthermore, as the impurity concentration of the semiconductor crystal increases, its refractive index decreases, so if the impurity concentration of the optical confinement layer 6 is made higher than before, the refractive index difference becomes larger and the diffraction efficiency further increases. The current blocking layer 4 is preferably one that completely blocks the current, but may also be one that suppresses the current to some extent, such as a high-resistance n-type semiconductor (InP, GaInAsP, etc.) whose specific resistance is larger than the convex portion of the optical confinement layer 6; An insulating layer or a p-type semiconductor layer having a conductivity type opposite to that of the optical confinement layer 6 can be used. <Specific Example> A DFB laser was manufactured in which each layer in FIGS. 1 and 2 had the values shown below. P-type semiconductor substrate 1 Zn-doped (100) p-type InP substrate, thickness 80 μm, carrier density 5×10 18 /cm 3 , EPD (etch pit density) 5×10 3 /cm 2 Active layer 2 Non-doped Ga 0.42 In 0.58 As 0.88 P 0.12 Quaternary mixed crystal active layer, thickness 0.13 μm Optical guide layer 3 Sn-doped Ga 0.26 In 0.76 As 0.56 P 0.44 Quaternary mixed crystal waveguide layer, thickness 0.2 μm, carrier density 7×10 17 /cm 3 Current blocking layer 4 Non-doped InP crystal layer, thickness 0.1 μm, carrier concentration 2×10 13 /cm 3 N-type semiconductor layer 6 Sn-doped n-type InP crystal layer, thickness 2.5 μm, carrier density 5×10 18 /cm 3 N-type semiconductor layer 7 Sn-doped n-type InP crystal layer, 2 μm thick, carrier density 4×10 17 /cm 3 P-type semiconductor layer 8 Zn-doped p-type InP crystal layer, 1 μm thick, carrier density 3×10 17 /cm 3 cm 3 These crystal layers were grown by a conventional liquid phase epitaxial growth method using the so-called slide boat method, and the growth temperature of each crystal layer was between 950°C and 605°C. The manufacturing procedure is as follows. (1) An active layer 2, a light guide layer 3, and a current blocking layer 4 were successively grown on the p-type InP substrate. (2) A photoresist was applied to a thickness of 500 Å on the substrate surface, and interference fringes along the <110> direction were exposed using two-beam interferometry. After development,
1MolK2Cr2O7 :HBr: CH3COOH = 3 :1:
1 to etch the crystal layers 3 and 4 to a depth of
A 0.2 μm diffraction grating 5 was formed. (3) After growing the n-type semiconductor layer 6, a SiO 2 film is formed on the crystal surface using the RF sputtering method, and a stripe pattern of the SiO 2 film with a width of 9 μm is formed along the <110> direction using the photo technique. Mesa etching was performed to a depth of 6 μm using a methanol bromine solution. (4) After crystal growth of buried layers was performed in the order of n-type semiconductor layer 7 and p-type semiconductor layer 8, the SiO 2 film was removed. (5) Au-Zn alloy as p-type electrode 11 on the substrate side;
Au-Ge- as an n-type electrode 12 on the crystal growth layer side.
A Ni alloy was formed by vapor deposition and then sintered. (6) Using photoresist as a mask, along the <110> direction, the width is 30 μm and the depth is 10 μm at intervals of 400 μm.
1NolK 2 Cr 2 O 7 :HBr:CH 3 COOH=
It was formed using a 1:1:1 etching solution.
This formed surface 9 and obtained θ 1 =54.5°. (7) Separate the central part of the stripe by cleavage (θ 2
= 90°) and a length of 200 μm. When a direct current was passed through the thus manufactured DFB laser with the p-type electrode 11 as the positive electrode and the n-type electrode 12 as the negative electrode, the laser oscillated in the distributed feedback mode at 25° C. with a threshold value of 55 mA. The oscillation spectrum was found to be a single longitudinal mode from the oscillation threshold to more than three times the oscillation threshold. In addition, a 65mA DC current was passed through this DFB laser, and further
When we observed the spectrum when a 400 MHz sinusoidal current (I pp = 20 mA) was applied, we observed laser oscillation in the distributed feedback mode of a single longitudinal mode at a wavelength of around 1.516 μm. FIG. 3 is a diagram showing an example of the spectrum observed at that time. Note that the threshold value of the conventional DFB laser formed by the above process excluding the current blocking layer 4 was about 1.4 times that of the device manufactured by the above process.
Moreover, the single longitudinal mode was maintained only up to 1.8 times the threshold current. In the above embodiment, a p-type substrate 1 is used, but if an n-type substrate is used, the conductivity types of the other semiconductor layers may be reversed from those described above. Also,
A periodic structure of convexes and convexities may be provided on the substrate side, and when a light guide layer is not interposed between the confinement layer and the active layer, the thickness of the active layer may be changed periodically. Furthermore, the semiconductor materials used are:
In addition to GaInAsP/InP, GaAs/GaAlAs,
Possible examples include GaSb/GaAlAsSb system. As can be seen from the above description, the present invention provides a current blocking layer on the bottom surface of the concave portion of the optical confinement layer, which has a periodic uneven structure along the light extraction direction on the surface facing the active layer. As a result of the current flowing concentrated in the convex part of the optical confinement layer, the refractive index of that part decreases, and the difference in refractive index between the concave and convex parts becomes large, so even if the apparent concave and convex structures are the same, the efficiency of distributed feedback can be increased. It is possible to improve the laser oscillation characteristics in DFB mode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明実施例の素子断面
図、第3図は発振スペクトラムの一例を示す線図
である。 1はp形半導体基板、2は活性層、3は光ガイ
ド層、4は電流阻止層、5は回折格子、6,7は
n形半導体層、8はp形半導体層、11はp形オ
ーミツク電極、12はn形オーミツク電極であ
る。
1 and 2 are cross-sectional views of an element according to an embodiment of the present invention, and FIG. 3 is a diagram showing an example of an oscillation spectrum. 1 is a p-type semiconductor substrate, 2 is an active layer, 3 is a light guide layer, 4 is a current blocking layer, 5 is a diffraction grating, 6 and 7 are n-type semiconductor layers, 8 is a p-type semiconductor layer, 11 is a p-type ohmic layer The electrode 12 is an n-type ohmic electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 光導波層の厚さを光の取り出し方向に沿つて
周期的に変化させて光の分布帰還を可能とした分
布帰還形半導体レーザにおいて、活性層と対向す
る面に光の取り出し方向に沿う周期的な凹凸構造
を有する光閉じ込め層と、該光閉じ込め層の凹部
の底面に形成された電流阻止層と、該電流阻止層
及び前記光閉じ込め層により光の取り出し方向に
沿つて周期的に層の厚さが変化する光導波層とを
具備したことを特徴とする分布帰還形半導体レー
ザ。
1. In a distributed feedback semiconductor laser that enables distributed feedback of light by periodically changing the thickness of the optical waveguide layer along the light extraction direction, there is a periodicity along the light extraction direction on the surface facing the active layer. an optical confinement layer having a concavo-convex structure; a current blocking layer formed on the bottom surface of the concave portion of the optical confining layer; A distributed feedback semiconductor laser characterized by comprising an optical waveguide layer whose thickness changes.
JP57041316A 1982-03-16 1982-03-16 Distributed feedback type semiconductor laser Granted JPS58158988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041316A JPS58158988A (en) 1982-03-16 1982-03-16 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041316A JPS58158988A (en) 1982-03-16 1982-03-16 Distributed feedback type semiconductor laser

Publications (2)

Publication Number Publication Date
JPS58158988A JPS58158988A (en) 1983-09-21
JPS6317356B2 true JPS6317356B2 (en) 1988-04-13

Family

ID=12605103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041316A Granted JPS58158988A (en) 1982-03-16 1982-03-16 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58158988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263137A (en) * 1987-04-17 1988-10-31 Sumitomo Electric Ind Ltd Vehicle transmission control system
JPH01300028A (en) * 1988-05-28 1989-12-04 Hitachi Ltd Driving wheel slip preventing controller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182295A (en) * 1985-02-07 1986-08-14 Sharp Corp Semiconductor layer device
JP2804502B2 (en) * 1989-03-30 1998-09-30 沖電気工業株式会社 Semiconductor laser device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263137A (en) * 1987-04-17 1988-10-31 Sumitomo Electric Ind Ltd Vehicle transmission control system
JPH01300028A (en) * 1988-05-28 1989-12-04 Hitachi Ltd Driving wheel slip preventing controller

Also Published As

Publication number Publication date
JPS58158988A (en) 1983-09-21

Similar Documents

Publication Publication Date Title
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
JPS62189785A (en) Semiconductor device with distributed bragg reflector
US4644552A (en) Semiconductor laser
JPS6317356B2 (en)
JPS6320037B2 (en)
JPS6045088A (en) Semiconductor light emitting device
JPH0642583B2 (en) Semiconductor laser device
JPS59229891A (en) Manufacture of semiconductor laser
JPS59127892A (en) Semiconductor laser and manufacture thereof
JPS59126693A (en) Distributed feedback type semiconductor laser and manufacture thereof
JPH06104527A (en) Fabrication of semiconductor laser
JPS5925399B2 (en) Manufacturing method of semiconductor laser
JPS61220389A (en) Integrated type semiconductor laser
JPS58158989A (en) Distributed feedback type semiconductor laser
JPS6136719B2 (en)
KR100287202B1 (en) Semiconductor laser device and manufacturing method thereof
KR100278630B1 (en) Semiconductor laser diode and manufacturing method thereof
KR100259006B1 (en) Manufacturing method of semiconductor laser device
JPS61279192A (en) Semiconductor laser
JPH0446477B2 (en)
JPS62266889A (en) Semiconductor light emitting device
JPS6292385A (en) Semiconductor laser
JPH05235477A (en) Manufacture of semiconductor element
JPH0433387A (en) Semiconductor laser and manufacture thereof
JPS61112391A (en) Semiconductor laser device