JPS61279192A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS61279192A
JPS61279192A JP12112385A JP12112385A JPS61279192A JP S61279192 A JPS61279192 A JP S61279192A JP 12112385 A JP12112385 A JP 12112385A JP 12112385 A JP12112385 A JP 12112385A JP S61279192 A JPS61279192 A JP S61279192A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
diffraction grating
light
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12112385A
Other languages
Japanese (ja)
Inventor
Teruhito Matsui
松井 輝仁
Kenichi Otsuka
健一 大塚
Hiroshi Sugimoto
博司 杉本
Yuji Abe
雄次 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12112385A priority Critical patent/JPS61279192A/en
Publication of JPS61279192A publication Critical patent/JPS61279192A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the growth of a crystal and to obtain a semiconductor laser, whose oscillating wavelength is high, by forming a diffraction grating for distribution feedback on the side surface of a mesa in an active layer. CONSTITUTION:A diffraction grating 10, which is effective in the direction in parallel with the direction of a current injection stripe electrode, is formed on one surface of an embedded surface 20, which is formed in a mesa shape with respect to the substrate surface. When a current is made to flow through a semiconductor laser, the current is confined in the active layer of an InGaAsP layer 4, whose band gap is the smallest, at the central part. Holes, which are injected from a P-InP layer 3, are combined with electrons, which are injected from an N-InP substrate 6 and an N-InGaAsP lightguide layer 5, in the active layer 4. Thus light is emitted. The light having a specified wavelength, which satisfies the Bragg reflecting conditions, is reflected and amplified in the diffraction grating 10. Oscillation occurs and the light is taken out of the end surface to the outside. Thus the semiconductor laser, whose oscillating wavelength is highly accurate, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば、光フアイバ通信や光計測の光源と
して利用する半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser used as a light source for, for example, optical fiber communication or optical measurement.

〔従来の技術C 第3図は側法ばマッオカ他 エレクトロニクスレターズ
 18巻 27頁 1982年 (T。
[Prior art C Figure 3 is a side view of Macoka et al. Electronics Letters Vol. 18, p. 27, 1982 (T.

MatSuoka  at  al、、EIgctra
nJett、、  18+  27(198’2)ンに
示された従来の分布帰還(DVB)型半導体レーザを示
す斜視is図であり、図において、1はp−電極(アノ
ード)゛、2ばp−rrxGaAspキャンプ層、3・
ばp −r、 n Pクラフト層、4・はIn G a
 A s P活性層、5ばn−rnGaAsp光導波路
層、6はクラフト層の働きをするn−In。
MatSuoka at al,,EIgctra
18+27 (198'2) is a perspective IS view showing a conventional distributed feedback (DVB) type semiconductor laser shown in NJett, 18+27 (198'2), in which 1 is a p-electrode (anode), 2 is a p- rrxGaAsp camp layer, 3.
bap -r, n P craft layer, 4. is In Ga
A s P active layer, 5 n-rnGaAsp optical waveguide layer, 6 n-In serving as a craft layer.

P基板、7はn−電極(カソード)、8はn−UnP埋
込層、10は回折格子である。
A P substrate, 7 an n-electrode (cathode), 8 an n-UnP buried layer, and 10 a diffraction grating.

通常のへき開面を共振器の反射鏡に利用したファプリー
・ベロー(F P)・型半導体レーザでは、直流電流注
入時において、縦モード単一発振を行っていても高速変
調時に多モード化したり、温度変化によっても発振波長
の移動が生じる。そこで、共振器の反射鏡を回折格子で
構成すればFP型よりも精度よく特定の波長の光を選択
することができ、また高速変調時においても多モード化
することなく、温度に対しても安定な単−縦モード発振
が実現される。このように多モード発振や温、・変によ
る波長移動を抑えることにより、高速・長距離通信が可
能になる。そこで、回折格子を半導体/−ザ中に組込ん
だ分布帰還(DFB)型レーザや分布反射(DBR)型
レーザと呼ばれるものが開発されている。
In Fapley-Bello (F P) type semiconductor lasers, which use a normal cleavage plane as a resonator reflector, even if a single longitudinal mode oscillates when DC current is injected, it becomes multi-mode during high-speed modulation. Changes in temperature also cause shifts in the oscillation wavelength. Therefore, if the reflecting mirror of the resonator is configured with a diffraction grating, it is possible to select a specific wavelength of light with more precision than the FP type, and it also does not become multi-mode even during high-speed modulation, and is also stable against temperature. Stable single-longitudinal mode oscillation is realized. In this way, high-speed, long-distance communication becomes possible by suppressing multimode oscillation and wavelength shift due to temperature changes. Therefore, what are called distributed feedback (DFB) type lasers and distributed reflection (DBR) type lasers in which a diffraction grating is incorporated into a semiconductor laser have been developed.

第3図は、このような従来の分布帰還型半導体レーザの
一例であり、その製造方法は次のとおりである。
FIG. 3 shows an example of such a conventional distributed feedback type semiconductor laser, and its manufacturing method is as follows.

まず、n−1nP基板6の表面に分布帰還用の回折格子
10を三光束干渉法等によって形成し、その後、液晶エ
ピタキシャル法によって、光導波路層となるn−InG
、aAsP層59発光層となるInGaAsP活性層4
.クラッド層となるp−InP層、キャップ層となるp
−InGaAs2層2を逐次結晶成長させる。さらに、
光導波路層となる部分を除く両側をエツチングによりn
−InP基板6の内部まで掘り込む。そして、再び、n
−InP層8.p−InP層9をエツチングした部分に
成長さゼ、活性層4を取り囲むよう(、二理込む。最後
に、n電極7、n電極1を取付け、適当な長さとなるよ
うにへき関して、半導体レーザを作る。
First, a diffraction grating 10 for distributed feedback is formed on the surface of the n-1nP substrate 6 by a three-beam interferometry method, etc., and then, by a liquid crystal epitaxial method, an n-InG
, aAsP layer 59 InGaAsP active layer 4 serving as a light emitting layer
.. The p-InP layer becomes the cladding layer, and the p-InP layer becomes the cap layer.
- Sequential crystal growth of InGaAs2 layer 2. moreover,
By etching both sides except for the part that will become the optical waveguide layer.
- Dig deep into the InP substrate 6. And again, n
-InP layer 8. The p-InP layer 9 is grown on the etched part so as to surround the active layer 4.Finally, the n-electrode 7 and the n-electrode 1 are attached and separated to an appropriate length. Make a semiconductor laser.

次にこのレーザの動作について説明する。Next, the operation of this laser will be explained.

このレーザにn電極をプラス、n電極をマイナスとして
電流を流すと、電流は中央部にあるハンドギャップの一
番小さいI nGa A s P層4の活性層に閉し込
められ、p−InP層3から注入された正孔とn−1n
P基板6.n−1nGaAsPガイド層5から注入され
た電子が活性層4内で結合し、発光する。発光した光は
n−1nGaAsP光導波路層5内を往復し、光導波路
層5下部に設けられた回折格子10で特定の波長の光が
反射されて増幅され、やがて発振し、端面より外部に取
り出される。
When a current is passed through this laser with the n-electrode being positive and the n-electrode being negative, the current is confined in the active layer of the InGaAs P layer 4 in the center, where the hand gap is the smallest, and the current flows through the p-InP layer. Holes injected from 3 and n-1n
P substrate6. Electrons injected from the n-1nGaAsP guide layer 5 combine within the active layer 4 to emit light. The emitted light travels back and forth within the n-1nGaAsP optical waveguide layer 5, and light of a specific wavelength is reflected and amplified by the diffraction grating 10 provided at the bottom of the optical waveguide layer 5, and eventually oscillates and is taken out from the end face. It will be done.

注入された電流は、中央部にある一メサ部以外ではn−
p−n形となり、電流はブロックされ流れないため中央
部に閉じ込められる。また、光も屈折率の小さいp−1
nPクラッド層9で、l nGaAsP活性層4、n−
1nGaAsP光導波路層5に閉じ込められるため、効
率良くレーザ発振させることができる。
The injected current is n- except for one mesa in the center.
It becomes a pn type, and the current is blocked and does not flow, so it is confined in the center. In addition, light also has a small refractive index, p-1
nP cladding layer 9, l nGaAsP active layer 4, n-
Since it is confined within the 1nGaAsP optical waveguide layer 5, efficient laser oscillation can be achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の分布帰還型半導体レーザは以上のように構成され
ており、基板に回折格子を形成した後に液相結晶成長す
るため、回折格子面が成長時に融液によってメルトバッ
クされ、回折効率の低下を招いたり、さらに光導波路層
や薄い活性層を良好に成長させるには困難が伴う場合が
あるなどの問題点があった。
Conventional distributed feedback semiconductor lasers are constructed as described above, and since liquid phase crystal growth is performed after forming a diffraction grating on a substrate, the diffraction grating surface is melted back by the melt during growth, resulting in a decrease in diffraction efficiency. In addition, there have been problems such as difficulty in growing an optical waveguide layer and a thin active layer in a good manner.

この発明は上記のような問題点を解消するためになされ
たもので、分布帰還機能のための回折格子を有するとと
もに結晶成長も容易にできる半導体レーザを提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a semiconductor laser that has a diffraction grating for a distributed feedback function and can also easily grow crystals.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体レーザは電流注入用ストライプ電
極と平行な方向に有効な回折格子を光及び電流の閉じ込
めを行うためのメサの側面の一方に形成するとともに、
このメサをクラッド層で埋込んだものである。
In the semiconductor laser according to the present invention, an effective diffraction grating is formed on one side of the mesa for confining light and current in a direction parallel to the current injection stripe electrode, and
This mesa is buried with a cladding layer.

〔作用〕[Effect]

この発明においては、メサ側面に形成された回折格子は
活性層内で発生した光が光導波路層内を伝搬する・うら
に、特定の波長を選択する反射鏡として働く。
In this invention, the diffraction grating formed on the side surface of the mesa acts as a reflecting mirror for selecting a specific wavelength while the light generated in the active layer propagates in the optical waveguide layer.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による半導体レーザを示し
、第2図は本実施例装置の製作手順を示す第1図A−A
部の断面図である。図中、第3図と同一符号は同一部分
を示す。図において、1)は回折格子10を形成するた
めのレジスト、12は該【ノジスト1)に照射される露
光用レーザ光線である。本実施例装置においては、電流
注入用ストライプ電極の方向と平行な方向に有効となる
回折格子10は、基板面に対してメサ状に形成した埋込
面20の一方の面に形成されている。
FIG. 1 shows a semiconductor laser according to an embodiment of the present invention, and FIG. 2 shows the manufacturing procedure of the device of this embodiment.
FIG. In the figure, the same symbols as in FIG. 3 indicate the same parts. In the figure, 1) is a resist for forming a diffraction grating 10, and 12 is an exposure laser beam irradiated onto the resist 1). In the device of this embodiment, the diffraction grating 10, which is effective in the direction parallel to the direction of the current injection stripe electrodes, is formed on one side of the buried surface 20 formed in a mesa shape with respect to the substrate surface. .

まず、第2図に従って、この発明の半導体装置ザの製作
手順を説明する。
First, the steps for manufacturing the semiconductor device of the present invention will be explained with reference to FIG.

n−1nP基板6上にn−1nGaAsP光導波路層5
.n−1nGaAsP活性層4.p−1nPクラッド層
3.p−InGaAsPキャップ層2を、逐次、液相エ
ピタキシャル法等によて結晶成長させる(第2図(a)
)。
n-1nGaAsP optical waveguide layer 5 on n-1nP substrate 6
.. n-1nGaAsP active layer 4. p-1nP cladding layer 3. The p-InGaAsP cap layer 2 is successively crystal-grown by liquid phase epitaxial method or the like (Fig. 2(a)).
).

次に中央部をストライプ状に残しメサエッチングを行う
(第2図(b))。そして、n−rnP基板6面に形成
したメサ状側面にレジスト1)を塗布し、いずれか一方
の側面を、三光束干渉露光法によって露光し、さらにエ
ツチングを行なうことによって該メサ側面に分布帰還用
の回折格子10を形成する(第2図(C)) その後、両メサ部に、p−1nP層9.n−1nP層8
によって埋込み成長を行い、n電極7゜n電極1を取付
け、適当な長さにへき関して半導体レーザチップを作る
(第2図(d))。
Next, mesa etching is performed, leaving the central part in a stripe shape (FIG. 2(b)). Then, resist 1) is applied to the mesa-shaped side surfaces formed on the 6th surface of the n-rnP substrate, one of the side surfaces is exposed by three-beam interference exposure method, and further etching is performed to provide distributed feedback to the mesa side surface. (FIG. 2(C)) After that, a p-1nP layer 9. is formed on both mesa parts. n-1nP layer 8
Embedded growth is performed using the method described above, the n-electrode 7° and the n-electrode 1 are attached, and the semiconductor laser chip is fabricated by cutting to an appropriate length (FIG. 2(d)).

次に本レーザの動作について説明する。Next, the operation of this laser will be explained.

この半導体レーザにn電極をプラス、n電極をマイナス
として電流を流すと、従来の半導体レーザと同様、電流
は中央部にあるバンドギヤ・ノブの一番小さいInGa
AsP層4の活性層に閉じ込められ、p−1nP層3か
ら注入された正孔とn−rnP基板6、n−rnGaA
sP光導波路層5から注入された電子が活性層4内で結
合し、発光する。発光した光はn−InGaAsPガイ
ド層5内をメサストライプ方向に伝搬し、光導波路層5
側面に設けられた回折格子10で、ブラッグ(Brag
g )反射条件を満たず特定の波長の光が反射されて増
幅され、やがて発振し、端面より外部に取り出される。
When current is applied to this semiconductor laser with the n-electrode being positive and the n-electrode being negative, the current flows through the smallest InGa
Holes confined in the active layer of AsP layer 4 and injected from p-1nP layer 3 and n-rnP substrate 6, n-rnGaA
Electrons injected from the sP optical waveguide layer 5 combine within the active layer 4 to emit light. The emitted light propagates in the mesa stripe direction within the n-InGaAsP guide layer 5 and passes through the optical waveguide layer 5.
With the diffraction grating 10 provided on the side, Bragg
g) Light of a specific wavelength that does not meet the reflection conditions is reflected and amplified, and eventually oscillates and is taken out from the end face.

注入された電流は、中央部にあるメサ部以外ではn−p
−n型となり、電流はブロックされ流れないため、中央
部に閉じ込めされる。また、光も屈折率の小さいp−r
nPnチク5フ9により、InGaAsP活性層4+ 
 n−1nGa7a、sPガイド層5に閉じ込められる
ため、効率良くレーザ発振させることができる。
The injected current is n-p except for the mesa in the center.
- It becomes an n-type, and the current is blocked and does not flow, so it is confined in the center. In addition, light also has a small refractive index p-r
InGaAsP active layer 4+ by nPn tick 5 f9
Since it is confined in the n-1nGa7a and sP guide layer 5, efficient laser oscillation can be achieved.

なお、上記実施例では、半導体レーザの端面をへき開に
よって形成したが、レーザ出射端面の一方もしくは両方
をエツチング等によって光導波路層面に対して斜めに加
工してもよい。
In the above embodiment, the end face of the semiconductor laser is formed by cleaving, but one or both of the laser emitting end faces may be processed obliquely to the optical waveguide layer surface by etching or the like.

また、分布帰還型半導体レーザでは三波長で発振する可
能性があるがこれを防ぐため回折格子の中央で格子の位
相を4分の1li1期ずらせるようにしてもよい。
Furthermore, although there is a possibility that a distributed feedback semiconductor laser oscillates at three wavelengths, in order to prevent this, the phase of the grating may be shifted by 1/4 li1 period at the center of the diffraction grating.

さらに、上記実施例では分布帰還型半導体レーザの場合
について説明したが、分布反射型半導体レーザの場合で
あってもよく、上記実施例と同様の効果を奏する。
Further, in the above embodiments, the case of a distributed feedback type semiconductor laser has been described, but a distributed reflection type semiconductor laser may also be used, and the same effects as in the above embodiments can be obtained.

また上記実施例ではrnP系材料を使用した半導体レー
ザについて述べたが、本発明はそれ以外の材料、例えば
GaA3系材料を使用した半導体レーザにも適用できる
ことは言うまでもない。
Further, in the above embodiment, a semiconductor laser using an rnP-based material has been described, but it goes without saying that the present invention can also be applied to a semiconductor laser using other materials, such as a GaA3-based material.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、分布帰還用回折格子
を活性層のメサ側面に形成するようにしたので、結晶成
長が容易で、また、発振波長の精度の高い半導体レーザ
が得られる効果がある。
As described above, according to the present invention, since the distributed feedback diffraction grating is formed on the mesa side surface of the active layer, crystal growth is easy and a semiconductor laser with high precision of the oscillation wavelength can be obtained. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体レーザを示す
斜視図、第2図は上記実施例の半導体レーザの製作手順
を示す図、第3図は従来の半導体レーザを示す斜視図で
ある。 l・・・n電極(アノード) 、4・・・InGaAs
P活性層、5−n−I nGaAsP光導波路層、6・
・・n−1nP基板、7・・・n電極(カソード)、1
0・・・回折格子。 なお図中同一符号は同−又は相当部分を示す。 代理人  早 isi  憲 − 第1図 / 7/−1”ジ 2: I)−1nGaAsP@ 3:1)−1nPクプク/□4 4°InGaAsP幅+z、% 5:n−1nGaASP;Ijf#fjVii5、’n
−InPl像 第2図 手続補正書(自発) 昭和乙θ年’j’J]、、L日 2 発明の名称 半導体レーザ 3、補正をする者 名 称  (601)三菱電機株式会社5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)  明細書第8頁第14行の「閉じ込めされる」
を「閉じ込められる」に訂正する。 以   上
FIG. 1 is a perspective view showing a semiconductor laser according to an embodiment of the present invention, FIG. 2 is a diagram showing a manufacturing procedure of the semiconductor laser of the above embodiment, and FIG. 3 is a perspective view showing a conventional semiconductor laser. l...n electrode (anode), 4...InGaAs
P active layer, 5-n-I nGaAsP optical waveguide layer, 6.
...n-1nP substrate, 7...n electrode (cathode), 1
0...Diffraction grating. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent early isiken - Fig. 1/7/-1" di2: I)-1nGaAsP@3:1)-1nP kupuku/□4 4°InGaAsP width + z, % 5:n-1nGaASP; Ijf#fjVii5, 'n
-InPl image figure 2 procedural amendment (voluntary) Showa Otsu θ year 'j'J], L day 2 Title of invention Semiconductor laser 3 Name of person making the amendment Name (601) Mitsubishi Electric Corporation 5 Amendment Column 6 of Detailed Description of the Invention in the Subject Specification, Contents of Amendment (1) “Confined” in Line 14 of Page 8 of the Specification
is corrected to "be trapped."that's all

Claims (3)

【特許請求の範囲】[Claims] (1)基板面に対してメサ状に形成した埋込面の少なく
とも一方の面に設けられ、電流注入用ストライプ電極と
平行な方向に有効な回折格子を備えたことを特徴とする
半導体レーザ。
(1) A semiconductor laser comprising a diffraction grating that is provided on at least one surface of a buried surface formed in a mesa shape with respect to a substrate surface and is effective in a direction parallel to a current injection stripe electrode.
(2)レーザ出射端面の一方を基板面に対して垂直なへ
き開面とし、他方を斜めの面としたことを特徴とする特
許請求の範囲第1項記載の半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein one of the laser emission end faces is a cleavage plane perpendicular to the substrate surface, and the other is an oblique plane.
(3)上記回折格子の中央で該格子の位相を4分の1周
期ずらせたことを特徴とする特許請求の範囲第1項また
は第2項記載の半導体レーザ。
(3) The semiconductor laser according to claim 1 or 2, characterized in that the phase of the grating is shifted by a quarter period at the center of the diffraction grating.
JP12112385A 1985-06-04 1985-06-04 Semiconductor laser Pending JPS61279192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12112385A JPS61279192A (en) 1985-06-04 1985-06-04 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12112385A JPS61279192A (en) 1985-06-04 1985-06-04 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61279192A true JPS61279192A (en) 1986-12-09

Family

ID=14803449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12112385A Pending JPS61279192A (en) 1985-06-04 1985-06-04 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61279192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837775A (en) * 1985-10-21 1989-06-06 General Electric Company Electro-optic device having a laterally varying region
KR100723833B1 (en) 2004-12-08 2007-05-31 한국전자통신연구원 Distributed feedbackDFB semiconductor laser and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837775A (en) * 1985-10-21 1989-06-06 General Electric Company Electro-optic device having a laterally varying region
KR100723833B1 (en) 2004-12-08 2007-05-31 한국전자통신연구원 Distributed feedbackDFB semiconductor laser and fabrication method thereof

Similar Documents

Publication Publication Date Title
US4426702A (en) Semiconductor laser device
JPH0277185A (en) Grating coupled type surface emitting laser element and modulation thereof
JPWO2009116140A1 (en) Optical semiconductor device and manufacturing method thereof
US4803691A (en) Lateral superradiance suppressing diode laser bar
US4575851A (en) Double channel planar buried heterostructure laser with periodic structure formed in guide layer
US6678302B2 (en) Semiconductor device and manufacturing method thereof
JPH04397B2 (en)
US4644552A (en) Semiconductor laser
JPH0461514B2 (en)
JPS6328520B2 (en)
JP2537924B2 (en) Semiconductor laser
JPS61279192A (en) Semiconductor laser
US6734464B2 (en) Hetero-junction laser diode
JPS63228795A (en) Distributed feedback type semiconductor laser
JP5163355B2 (en) Semiconductor laser device
US20030026309A1 (en) Process for producing semiconductor laser element including S-ARROW structure formed by etching through mask having pair of parallel openings
JPH04209583A (en) Cycle gain type semiconductor laser element
WO2023227189A1 (en) Tilted semiconductor laser
JPS63241978A (en) Distributed feedback semiconductor laser
JPS61166193A (en) Optical integrated circuit
JPH04372185A (en) Semiconductor laser
JPH04133381A (en) Semiconductor laser
JPH11220211A (en) Self-excited oscillating semiconductor laser
JPH06283804A (en) Distributed reflector laser and fabrication thereof
JPH04253387A (en) Semiconductor laser