JPS63173371A - Insulated gate field-effect transistor high in breakdown voltage - Google Patents

Insulated gate field-effect transistor high in breakdown voltage

Info

Publication number
JPS63173371A
JPS63173371A JP540987A JP540987A JPS63173371A JP S63173371 A JPS63173371 A JP S63173371A JP 540987 A JP540987 A JP 540987A JP 540987 A JP540987 A JP 540987A JP S63173371 A JPS63173371 A JP S63173371A
Authority
JP
Japan
Prior art keywords
insulating film
layer
gate insulating
region
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP540987A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaka
和夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP540987A priority Critical patent/JPS63173371A/en
Publication of JPS63173371A publication Critical patent/JPS63173371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7809Vertical DMOS transistors, i.e. VDMOS transistors having both source and drain contacts on the same surface, i.e. Up-Drain VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To draw out all electrodes from an element surface, and make it possible to miniaturize an element and flatten its surface, by forming a buried layer under a dielectric strength layer, forming a drawing out region connecting from a specified region on the element surface to the buried layer, and constituting a groove forming a gate insulating film in a U-shape in which conductive material is buried. CONSTITUTION:In a high breakdown voltage MOS FET, an n<+> type buried layer 13 is formed under a dielectric strength layer 14, and an n<+> type drawing out region 19 reaching a buried layer 13 from an element surface is provided. Therefore a drain electrode can be drawn out with a small ON resistance from the element surface. A groove in which a gate insulating film (silicon oxide film 23) is formed in a U-shape by reactive ion etching RIE, and therein, poly silicon 24 is buried via the gate insulating film. Thereby, the element can be miniaturized and flattened.

Description

【発明の詳細な説明】 〔概要〕 本発明は、縦型構造の高耐圧絶縁ゲート型電界効果トラ
ンジスタ(以下高耐圧MO8FETと称す。)において
、全ての電極を素子の表面から取出せ、且つ、素子の小
型化及び表面の平担化を図ることによって集積回路化に
適した構造の高耐圧MO3FET  を得るものである
[Detailed Description of the Invention] [Summary] The present invention provides a high breakdown voltage insulated gate field effect transistor (hereinafter referred to as a high breakdown voltage MO8FET) with a vertical structure, in which all electrodes can be taken out from the surface of the element, and By reducing the size of the MO3FET and flattening the surface, a high voltage MO3FET with a structure suitable for integrated circuits can be obtained.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法、特にその縦型構造の
高耐圧MO8FETに関する。
The present invention relates to a method for manufacturing a semiconductor device, and in particular to a high breakdown voltage MO8FET having a vertical structure.

〔従来の技術〕[Conventional technology]

従来の縦型高耐圧MO8FETの構造を、その製造工程
の一例を参照して、第2図(3)〜(F)K説明する。
The structure of a conventional vertical high voltage MO8FET will be explained with reference to an example of its manufacturing process in FIGS. 2(3) to 2(F)K.

第2図囚〜には、従来の高耐圧MO8FETを製造工程
順に示す断面図である。
FIGS. 2-2 are cross-sectional views showing a conventional high-voltage MO8FET in the order of manufacturing steps.

従来の高耐圧MO8FETは先ず第2装置及び(Blに
示す様に、例えば<ioo>面のn 型のシリコン層か
らなるドレイン領域1上に、n−型のシリコン層からな
る耐圧層2及びp型のシリコン層からなるチャネル層3
をそれぞれエピタキシャル成長させる。
In the conventional high voltage MO8FET, a second device and a drain region 1 (as shown in Bl), for example, an n-type silicon layer on the Channel layer 3 consisting of a molded silicon layer
are grown epitaxially.

次に、第2図(qの様に、例えばレジストからなる拡散
マスク5を形成し、その拡散窓5aより、例えば砒素(
As )イオンを導入することによシ、n 型のソース
領域4を形成する。
Next, as shown in FIG. 2 (q), a diffusion mask 5 made of, for example, resist is formed, and arsenic (for example) is spread through the diffusion window 5a.
By introducing As) ions, an n-type source region 4 is formed.

次に拡散マスク5を除去した後、第2図(D)の様に、
例えば耐エツチング性の窒化膜からなる工、ツチングマ
スク6を形成し、例えばKOHからなるアルカリ性の異
方性エツチング液によってエツチング窓6aよシ、耐圧
層2にまで達するV溝7を形成する。
Next, after removing the diffusion mask 5, as shown in FIG. 2(D),
For example, an etching mask 6 made of an etching-resistant nitride film is formed, and a V-groove 7 extending from the etching window 6a to the voltage-resistant layer 2 is formed using an alkaline anisotropic etching solution made of, for example, KOH.

次にエツチングマスク6を、除去した後、第2図口の様
に例えば通常の熱酸化法によって、表面に酸化シリコン
膜8を形成し、 次に第2図CF′lの様に、ソース領竣4上の酸化シリ
コン膜8上に図示しないエツチングマスクを使用してコ
ンタクト窓を開口した後、全面に例えばアルミニウム(
A7)からなる電極材を形成し、そのパターンニングを
行なうことによって、ソース電極10及びゲート電極9
を形成すると共に、下面のドレイン領域1上にドレイン
電極11を形成するものである。
Next, after removing the etching mask 6, a silicon oxide film 8 is formed on the surface by, for example, a normal thermal oxidation method as shown in the opening of FIG. After opening a contact window on the silicon oxide film 8 on the finished silicon oxide film 8 using an etching mask (not shown), for example, aluminum (
By forming an electrode material made of A7) and patterning it, the source electrode 10 and the gate electrode 9 are formed.
At the same time, a drain electrode 11 is formed on the drain region 1 on the lower surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来の高耐圧MO8FETは、ゲート電極9を
、ソース領域4及びチャネル層3を介して耐圧層2にま
で達する■溝7の内部に設け、その動作を縦型とするこ
とによって素子の小型化を図ることが可能である。
The conventional high-voltage MO8FET described above has a gate electrode 9 provided inside a trench 7 that reaches the breakdown voltage layer 2 via the source region 4 and channel layer 3, and its operation is vertical, resulting in a compact device. It is possible to achieve this goal.

しかし、耐圧層2け、第3図中、aで示す様に、素子の
逆耐圧を向上させるために、比較的厚く形成されている
However, the two breakdown voltage layers are formed relatively thick, as shown by a in FIG. 3, in order to improve the reverse breakdown voltage of the device.

そのため通常は、その間の抵抗値の増加を防止し、素子
のON抵抗を低減するために、第3図の様に、ドレイン
電極11を素子の下面から取出していた。しかし、全て
の電極を、素子の表面から取出すことができないため、
この耐圧MO8FETを集積回路中に組込むことが困難
であった。
Therefore, in order to prevent the resistance value from increasing during that time and reduce the ON resistance of the element, the drain electrode 11 is usually taken out from the bottom surface of the element as shown in FIG. However, since it is not possible to take out all the electrodes from the surface of the element,
It was difficult to incorporate this high voltage MO8FET into an integrated circuit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記した問題点に鑑み集積回路に適した構造
の耐圧MO8FETを得るために、耐圧層の下部に埋込
層を設け、且つ素子の表面において所定の領域より埋込
層に連結される引出し領域を設け、更に、ゲート絶縁膜
が形成される溝の形状をU型とし、その内部においては
導電性物質を埋込むものである。
In view of the above-mentioned problems, the present invention provides a buried layer under the breakdown voltage layer and connects to the buried layer from a predetermined region on the surface of the element, in order to obtain a breakdown voltage MO8FET with a structure suitable for integrated circuits. Furthermore, the groove in which the gate insulating film is formed has a U-shape, and a conductive material is buried inside the groove.

〔作用〕[Effect]

本発明の高耐圧MO8FETは、耐圧層の下部に埋込層
を設け、更に基板表面より、埋込層にまで達する引出し
領域が設けられているため、低いON抵抗でドレイン電
極を、素子の表面から取出すことが可能である。また、
本発明の高耐圧MO8FET は、ゲート絶縁膜が形成
される溝の形状をU型としているため、例えドレインの
引出領域を設けたとしても前記した従来例に比べて素子
の高密度化を図ることができ、更に溝の内部におりては
、ゲート絶縁膜を介して、導電性物質が埋込まれている
ため、表面の平担化が可能である。
The high-voltage MO8FET of the present invention has a buried layer below the voltage-resistant layer, and is further provided with a lead-out region that reaches from the substrate surface to the buried layer. It is possible to take it out from. Also,
In the high voltage MO8FET of the present invention, the groove in which the gate insulating film is formed has a U-shape, so even if a drain extraction region is provided, the device can be densely packed compared to the conventional example described above. Furthermore, since a conductive material is buried inside the trench via the gate insulating film, the surface can be made flat.

〔実施例〕〔Example〕

以下、本発明の高耐圧MO8FETの一実施例を第1図
(At −(E(lを参照して詳細に説明する。第1図
(A)〜Hは、本実施例を製造工穆順に示す断面図であ
る。
Hereinafter, one embodiment of the high voltage MO8FET of the present invention will be explained in detail with reference to FIG. 1 (At-(E(l). FIG.

本実施例は先ず第1図fA)の様に、例えば、p型のシ
リコン釜飯12上Kn+型の埋込層Bを形成し、更に、
その上部に、例えばCVD法によって、n−型シリコン
の耐圧層14を形成する。
In this embodiment, as shown in FIG. 1fA), for example, a Kn+ type buried layer B is formed on the p-type silicon pot 12, and further,
On top of this, a breakdown voltage layer 14 of n-type silicon is formed by, for example, the CVD method.

次に、第1図(B)の様に、表面に例えばレジストから
なる拡散マスク16を形成した後、その拡散窓16aよ
り、例えばホウ素(Blイオンを注入することによって
、p型のチセネル佃塘15f形成する。
Next, as shown in FIG. 1B, after forming a diffusion mask 16 made of, for example, a resist on the surface, by implanting, for example, boron (Bl) ions through the diffusion window 16a, a p-type chisenel Form 15f.

次に第1図(qの様に、新たに例えばレジストからなる
拡散マスク18を設けた後、その拡散窓18aより、例
えば砒素(As)イオンを注入することによって、n+
型のソース餠峻17を形成する。
Next, as shown in FIG. 1(q), after newly providing a diffusion mask 18 made of, for example, resist, by implanting, for example, arsenic (As) ions through the diffusion window 18a, n+
Form a sauce mold 17.

次に、第1図(D)の様に、新たに例メばレジストから
なる拡散マスク20を形成した後、その拡散窓20aよ
り、更に、例えば砒素(As)イオンを注入し、n+型
の引出し領域19を形成する。
Next, as shown in FIG. 1(D), after forming a new diffusion mask 20 made of, for example, resist, for example, arsenic (As) ions are further implanted through the diffusion window 20a to form an n+ type. A drawer area 19 is formed.

次に、第1図cE)の様に、表面に例えば、通常の熱酸
化法によって、酸化シリコン膜21を形成した後、その
所定の箇所に、エツチング窓21aを形成し、次いで例
えば反応性イオンエツチング(RIE)を施すことによ
って、ソース領域17チヤネル領域15を介して耐圧N
14にまで達するU溝22を形成する。
Next, as shown in FIG. 1 cE), after forming a silicon oxide film 21 on the surface by, for example, a normal thermal oxidation method, an etching window 21a is formed at a predetermined location, and then, for example, reactive ion is etched. By performing etching (RIE), the breakdown voltage N is increased through the source region 17 and the channel region 15.
A U groove 22 reaching up to 14 is formed.

次に、第1図[F]の様に、熱処理を施すことによって
、U溝22の内面に酸化シリコン膜23を形成した後、
全面に例えば通常のCVD法によって、例えばポリシリ
コン24を形成する。
Next, as shown in FIG. 1 [F], a silicon oxide film 23 is formed on the inner surface of the U-groove 22 by heat treatment.
For example, polysilicon 24 is formed on the entire surface by, for example, a normal CVD method.

次に、第1図(0の様に、全面に例えばスパッタエツチ
ングを施すことによってU溝22中にのみ、ポリシリコ
ン24を埋込み、次いでソースfJjt17、引出し領
#19上の酸イビシリコン膜21に1コンタクト窓を開
口した後、全面に例えばアルミニウム(Anからなる電
極材を形成し、そのパターンニングを行なうことにより
、ゲート電極25、ソース電極26、ドレイン電極27
を形成するものである。
Next, as shown in FIG. 1 (0), polysilicon 24 is buried only in the U groove 22 by performing sputter etching on the entire surface, and then the oxidized bisilicon film 21 on the source fJjt17 and the lead-out region #19 is filled with polysilicon 24. After opening the contact window, an electrode material made of, for example, aluminum (An) is formed on the entire surface and patterned to form the gate electrode 25, the source electrode 26, and the drain electrode 27.
It forms the

上記の様にして形成された本実施例の高耐圧MO8FE
Tは耐圧層14の下部に、n+型の埋込層が形成され、
且つ、素子の表面より埋込層14にまで達するn+型の
引出し領域19が設けられているため、低いON抵抗で
ドレイン電極を素子の表面から取出すことが可能である
。また、ゲート絶縁膜(酸化シリコン膜23)が形成さ
れる溝は、その形状が反応性イオンエツチング(RIE
)によってU型に形成されており、更にその内部には、
ゲート絶縁膜を介してポリシリコン24が埋込ま婢 れているため、素子の小型化及び平挿化が図られる。
High voltage MO8FE of this example formed as described above
T is an n+ type buried layer formed under the breakdown voltage layer 14,
In addition, since the n+ type extraction region 19 is provided that reaches the buried layer 14 from the surface of the element, it is possible to extract the drain electrode from the surface of the element with low ON resistance. Furthermore, the shape of the groove in which the gate insulating film (silicon oxide film 23) is formed is etched by reactive ion etching (RIE).
) is formed into a U-shape, and inside it,
Since the polysilicon 24 is embedded through the gate insulating film, the device can be made smaller and can be installed horizontally.

々卦、拡散層15及び17の形成は、第1図(0〔発明
の効果〕 以上、述べた様に、本発明の高耐圧MO8FETは全て
の電極を、素子の表面から取出せ、また、素子の小型化
、及び表面の平担化が可能であるため集積回路中に組込
むに適した構造となる。
The formation of the diffusion layers 15 and 17 is shown in FIG. Since the structure can be made smaller and the surface can be flattened, the structure is suitable for being incorporated into an integrated circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による高耐圧MO8FETの実施例を
説明する図、第2図は、従来の耐圧MO8FE″rf説
明する図、第3図は、従来技術の問題点を説明する図で
ある。 図において、1はドレイン領堵、2及び】4は耐圧層3
及び15はチャネル領域、4及び17はソース領域、5
,16.18及び20け拡散マスク、5a、 16a、
 1.8a、及び20aは拡散窓、6はエツチングマス
ク、6a及び21aはエツチング窓、7は■溝、8.2
1及び23は酸化シリコン膜、9及び25¥′iゲート
ift極、10及び26はソース電極、11及び27は
ドレイン電極、12はシリコン基板、13は埋込層、2
4はポリシリコンであ(、Q) (B) 第 2 ■ (E) 理水の高耐圧MOδFET 第 2 刀
FIG. 1 is a diagram illustrating an embodiment of a high voltage MO8FET according to the present invention, FIG. 2 is a diagram illustrating a conventional voltage MO8FE″rf, and FIG. 3 is a diagram explaining problems in the prior art. In the figure, 1 is the drain region, 2 and ]4 are the withstand voltage layer 3.
and 15 are channel regions, 4 and 17 are source regions, and 5
, 16.18 and 20 diffusion masks, 5a, 16a,
1.8a and 20a are diffusion windows, 6 is an etching mask, 6a and 21a are etching windows, 7 is a groove, 8.2
1 and 23 are silicon oxide films, 9 and 25\'i gate ift electrodes, 10 and 26 are source electrodes, 11 and 27 are drain electrodes, 12 is a silicon substrate, 13 is a buried layer, 2
4 is polysilicon (,Q) (B) 2nd ■ (E) Risui's high voltage MOδFET 2nd sword

Claims (1)

【特許請求の範囲】 一導電型であって、低不純物濃度の耐圧層中に反対導電
型のチャネル領域と、該チャネル領域中に一導電型のソ
ース領域が設けられ、更に該チャネル領域及びソース領
域を介して該耐圧層にまで達する溝が形成され、少なく
ともその内部においては、ゲート絶縁膜が設けられてな
る耐圧絶縁ゲート型電界効果トランジンタにおいて、 該耐圧層の下部に一導電型であって、高不純物濃度の埋
込層が設けられ、 表面の所定の領域より、該埋込層に連結されてなる一導
電型であって高不純物濃度の引出し領域が設けられ、 該ゲート絶縁膜が形成される溝の形状をU型とし、その
内部においてはゲート絶縁膜を介して導電性物質が埋込
まれてなることを特徴とする高耐圧絶縁ゲート型電界効
果トランジスタ。
[Claims] A channel region of one conductivity type and an opposite conductivity type is provided in a low impurity concentration breakdown voltage layer, and a source region of one conductivity type is provided in the channel region, and the channel region and the source region are provided in the channel region. In a voltage-resistant insulated gate type field effect transistor, in which a groove reaching the voltage-resistant layer is formed through a region, and a gate insulating film is provided at least inside the trench, the transistor is provided with a gate insulating film of one conductivity type below the voltage-resistant layer. , a buried layer with a high impurity concentration is provided, a lead-out region of one conductivity type and with a high impurity concentration is provided connected to the buried layer from a predetermined region of the surface, and the gate insulating film is formed. A high breakdown voltage insulated gate type field effect transistor, characterized in that the trench has a U-shape, and a conductive material is buried inside the trench with a gate insulating film interposed therebetween.
JP540987A 1987-01-13 1987-01-13 Insulated gate field-effect transistor high in breakdown voltage Pending JPS63173371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP540987A JPS63173371A (en) 1987-01-13 1987-01-13 Insulated gate field-effect transistor high in breakdown voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP540987A JPS63173371A (en) 1987-01-13 1987-01-13 Insulated gate field-effect transistor high in breakdown voltage

Publications (1)

Publication Number Publication Date
JPS63173371A true JPS63173371A (en) 1988-07-16

Family

ID=11610348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP540987A Pending JPS63173371A (en) 1987-01-13 1987-01-13 Insulated gate field-effect transistor high in breakdown voltage

Country Status (1)

Country Link
JP (1) JPS63173371A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434435A (en) * 1994-05-04 1995-07-18 North Carolina State University Trench gate lateral MOSFET
DE19620021A1 (en) * 1995-05-19 1996-11-21 Nissan Motor U=shaped trench MOS semiconductor power transistor device
KR100230741B1 (en) * 1996-10-29 1999-11-15 김영환 High voltage semiconductor device and method of manufacturing the same
US6037633A (en) * 1996-11-01 2000-03-14 Nissan Motor Co., Ltd. Semiconductor device
JP2005508083A (en) * 2001-10-30 2005-03-24 ゼネラル セミコンダクター,インク. Trench double-diffused metal oxide semiconductor device with improved drain contact
JP2006303084A (en) * 2005-04-19 2006-11-02 Denso Corp Silicon carbide semiconductor device
JP2008166775A (en) * 2006-12-27 2008-07-17 Dongbu Hitek Co Ltd Semiconductor element and manufacturing method thereof
KR20130098913A (en) * 2012-02-28 2013-09-05 세이코 인스트루 가부시키가이샤 Semiconductor device and method for manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434435A (en) * 1994-05-04 1995-07-18 North Carolina State University Trench gate lateral MOSFET
DE19620021B4 (en) * 1995-05-19 2005-06-02 Nissan Motor Co., Ltd., Yokohama Semiconductor device of the trench type
DE19620021A1 (en) * 1995-05-19 1996-11-21 Nissan Motor U=shaped trench MOS semiconductor power transistor device
US5682048A (en) * 1995-05-19 1997-10-28 Nissan Motor Co., Ltd. Groove-type semiconductor device
KR100230741B1 (en) * 1996-10-29 1999-11-15 김영환 High voltage semiconductor device and method of manufacturing the same
US6037633A (en) * 1996-11-01 2000-03-14 Nissan Motor Co., Ltd. Semiconductor device
JP2005508083A (en) * 2001-10-30 2005-03-24 ゼネラル セミコンダクター,インク. Trench double-diffused metal oxide semiconductor device with improved drain contact
JP4660090B2 (en) * 2001-10-30 2011-03-30 ゼネラル セミコンダクター,インク. Trench double diffused metal oxide semiconductor device with improved drain contact
JP2006303084A (en) * 2005-04-19 2006-11-02 Denso Corp Silicon carbide semiconductor device
JP2008166775A (en) * 2006-12-27 2008-07-17 Dongbu Hitek Co Ltd Semiconductor element and manufacturing method thereof
KR20130098913A (en) * 2012-02-28 2013-09-05 세이코 인스트루 가부시키가이샤 Semiconductor device and method for manufacturing the same
JP2013179171A (en) * 2012-02-28 2013-09-09 Seiko Instruments Inc Semiconductor device and manufacturing method of the same
CN103295910A (en) * 2012-02-28 2013-09-11 精工电子有限公司 Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH05226661A (en) Semiconductor device and its manufacture
US5661048A (en) Method of making an insulated gate semiconductor device
JPS63173371A (en) Insulated gate field-effect transistor high in breakdown voltage
JPH0417371A (en) Manufacture of mos field-effect transistor
JP3170610B2 (en) Manufacturing method of vertical field effect transistor
JPH03289141A (en) Manufacture of semiconductor device
JPS63217664A (en) Misfet and manufacture thereof
JPS60229374A (en) Semiconductor device and manufacture thereof
EP0017934B1 (en) Method of manufacturing insulated-gate field-effect transistors
JPH0513756A (en) Mis semiconductor device and its production
JPH03132077A (en) Manufacture of semiconductor device
KR950001152B1 (en) Semiconductor device and manufacturing method thereof
JPH0316154A (en) Integrated circuit device and manufacture thereof
KR940010928B1 (en) Mosfet and manufacturing method thereof
JP2751336B2 (en) Method for manufacturing semiconductor device
RU2234165C1 (en) Method for manufacturing self-scaled bipolar cmos structure
JPH0290567A (en) Semiconductor device and manufacture thereof
JPH0382055A (en) Semiconductor device
JPH03120835A (en) Manufacture of insulated gate field effect transistor
KR930006853B1 (en) Manufacturing method of semiconductor device with source/drain self-aligned type
JP3161429B2 (en) Method for manufacturing semiconductor device
JPH03169025A (en) Manufacture of semiconductor device
JPH0493084A (en) Semiconductor device and manufacture thereof
JPS6038878A (en) Mis-type semiconductor device
JPH04137735A (en) Semiconductor device and manufacture thereof