JPS63173363A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63173363A
JPS63173363A JP395287A JP395287A JPS63173363A JP S63173363 A JPS63173363 A JP S63173363A JP 395287 A JP395287 A JP 395287A JP 395287 A JP395287 A JP 395287A JP S63173363 A JPS63173363 A JP S63173363A
Authority
JP
Japan
Prior art keywords
gate electrode
substrate
contact
semiconductor substrate
contact plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP395287A
Other languages
Japanese (ja)
Inventor
Katsuhiko Takigami
滝上 克彦
Takashi Shinohe
孝 四戸
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP395287A priority Critical patent/JPS63173363A/en
Publication of JPS63173363A publication Critical patent/JPS63173363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent current concentration caused by nonuniformity of contact resistance due to stress concentration generated in GTO, by arranging a very shallow groove part on the gate electrode side of a silicon substrate, vapor-depositing a gate electrode such as Al on the Si substrate surface on which the groove is formed, and burying a metal for the groove part gate electrode at the time of pressuring. CONSTITUTION:Firstly, a four-layered Si substrate of PNPN is formed, the surface the four- layered Si substrate is covered with a photoresist film, and its groove part only is eliminated. Then the vicinity of a part just under the periphery of a contact plate 6 is eliminated to a depth of about 5-15mum by etching and the like. Gate electrode formation in the following process can be performed only by vapor-depositing Al and the like of 10-15mum thick, and eliminating unnecessary part by applying a photoresist film. By arranging grooves, as shown by point P and Q, in the vicinity of a part just under the periphery of a contact plate 6, deformation and transfer of a gate electrode 5 due to pressure at the time of pressuring are enabled. Stress concentration, generated in the gate electrode 5 and the Si substrate in the vicinity of a part just under the periphery of the contact plate 6, can be reduced. Therefor, current concentration caused by nonuniformity of contact resistance due to stress concentration can be prevented, and the gate electrode can be prevented from cutting and alloying.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は大電力容量のゲートターンオフサイリスタ(
以下GTO)のゲート電極構造に係わり、特にセンター
ゲート型のゲート電極構造に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention relates to a large power capacity gate turn-off thyristor (
The present invention relates to a gate electrode structure of a gate electrode (hereinafter referred to as GTO), and particularly relates to a center gate type gate electrode structure.

(従来の技術) GTOの阻止電圧、最大ターンオフ電流は、近年急速に
高くなり、数KV、数KAオーダーの耐量を有するもの
が開発されている。特に最大ターンオフ電流は、ターン
オフメカニズムの解明が進んだことや、不純物濃度プロ
ファイルの最適化が可能になったので定格2500 A
クラスのものが市販されている。
(Prior Art) The blocking voltage and maximum turn-off current of GTOs have increased rapidly in recent years, and GTOs with withstand voltages on the order of several KV and several KA have been developed. In particular, the maximum turn-off current has been rated at 2500 A due to progress in elucidating the turn-off mechanism and optimization of the impurity concentration profile.
Class products are commercially available.

このような状況からゲートターンオフ時にゲートから吸
い出すオフゲート電流も大電流が必要となり、ピーク値
が50OAを超えるまでになっている。したがって、ゲ
ート電極は、効率よく電流を吸い出し、かつ、信頼性の
高い構造のものが重要視されてきた。
Under such circumstances, a large off-gate current is required to be sucked out from the gate at the time of gate turn-off, and the peak value exceeds 50 OA. Therefore, importance has been placed on gate electrodes that can efficiently draw current and have a highly reliable structure.

大容量GTOペレット上のゲート電極と外囲器のゲート
端子とを電気的に接続する方法は大別すると二つある。
Broadly speaking, there are two methods for electrically connecting the gate electrode on the large-capacity GTO pellet and the gate terminal of the envelope.

一つはリングゲートと呼ばれGTOペレットの周辺のア
ルミニウム(以下AN)などで形成するゲート電極から
外部への引出しワイヤーをボンディングなどで接続する
方法である。
One method is called a ring gate, in which a gate electrode formed of aluminum (hereinafter referred to as AN) around the GTO pellet is connected to an external lead wire by bonding or the like.

他の一つは、本発明に係わるセンターゲートと呼ばれる
ものである。
The other one is called a center gate according to the present invention.

このセンターゲート型はボンディング法に比らベボンデ
ィングワイヤーの折れによる切断がない、ボンディング
プロセスに要する時間が不要で簡単に組立てられるなど
の長所を有しているため、このセンターゲート型が主流
になってきている。
Compared to the bonding method, this center gate type has advantages such as no breakage due to bending of the bonding wire, no time required for the bonding process, and easy assembly, so this center gate type has become mainstream. It's coming.

しかし、センターゲート型は前記のように長所を持って
いるが半導体素子にとって極めて重要な寿命の点で問題
が生じることがある。
However, although the center gate type has the above-mentioned advantages, it may cause problems in terms of the life span, which is extremely important for semiconductor devices.

以下図を使ってその問題点を記述する。The problem is described using the diagram below.

第3図は、従来技術でつくられたGT○の中心部近傍の
拡大図である。1はP、N、P、Nの四層からなるGT
○ペレットである。図は省略しであるが、アノード側の
PエミッタとNベースを一部短絡した、いわゆるアノー
ド短絡型のGTOペレットの場合も同じように適用でき
る。2はアノード電極、3a、3bはi等の金属からな
るカソード塩したカソード電流を流す金属である。9は
ゲート引出し線7とスタンプとを短絡防止するセラミッ
ク等からなるスリット入り碍管で、これは単に絶縁のた
めでなく以下に説明するリング状板バネ12の加圧力を
上記コンタクト板6に送達する手段をも兼ねている。1
0は絶縁板であってゲート引出線が上部の金属板11と
電気的に接触しない事を目的としている。11は板バネ
12の加圧力がバネの中心部の相当する部分だけ集中し
て下部の絶縁板10に伝達されないように力の分散をは
かる硬質の金属からなる均圧支持板である。12は、コ
ンタクト板6とゲート電極5とを強く接触させるための
環状バネである。このバネの力は、均圧支持板11→絶
縁板10→碍管9を経てコンタクト板6をゲート電極5
に押しつける。13は、環状バネ12の上部に位置し、
環状バネ12の中央部の中央部がスタンプ8にめり込ま
ないように設けた均圧支持板である。
FIG. 3 is an enlarged view of the vicinity of the center of GT◯ made using the conventional technique. 1 is a GT consisting of four layers of P, N, P, and N.
○It is a pellet. Although not shown in the figure, the same can be applied to a so-called anode short-circuit type GTO pellet in which the P emitter and N base on the anode side are partially shorted. Reference numeral 2 denotes an anode electrode, and 3a and 3b are metals such as i, which are made of a cathode salt and conduct a cathode current. Reference numeral 9 denotes a slit insulator tube made of ceramic or the like to prevent a short circuit between the gate lead wire 7 and the stamp.This is not only for insulation, but also for delivering the pressing force of the ring-shaped leaf spring 12, which will be explained below, to the contact plate 6. It also serves as a means. 1
0 is an insulating plate whose purpose is to prevent the gate lead wire from electrically contacting the upper metal plate 11. Reference numeral 11 denotes a pressure equalizing support plate made of hard metal that distributes the force so that the pressing force of the leaf spring 12 is concentrated only in a corresponding part of the center of the spring and is not transmitted to the lower insulating plate 10. Reference numeral 12 denotes an annular spring for bringing the contact plate 6 and gate electrode 5 into strong contact. The force of this spring passes through the pressure equalizing support plate 11 → insulating plate 10 → insulator tube 9, and connects the contact plate 6 to the gate electrode 5.
to press against. 13 is located above the annular spring 12,
This is a pressure equalizing support plate provided so that the central part of the annular spring 12 does not sink into the stamp 8.

以上従来型GTOの構成を詳述したが、このGTPを稼
動する時は、アノード電極2とカソード側の金属スタン
プ80両側からおよそ300〜400kg/dの圧力を
加えて電流のオン・オフを行なう。又コンタクト板6に
は100kg/cJ前後の圧力を加えているところが、
既に述べたように数百アンペアに達する大電流をゲート
に流す状態で長時間にわたり稼動すると第4図に示すよ
うにコンタクト板6の端部直下のゲート電極5が飛散し
たかの如くなくなり、その幅や深さが不均一な溝状とな
ったり(P点)、あるいは、コンタクト板6、ゲート電
極5、半導体基体(Si)との三者間が合金化しくQ点
)、Slにクラックが生じることがある。これらの事故
は、ゲート電極の厚さの減少に伴なうゲート電流密度の
増大→発熱→断線→ターンオフ失敗に至ることが考えら
れる。一方合金化している部分についてもクラック発生
→接合破壊→耐圧不良(素子破壊)となりいずれも重要
な問題である。
The configuration of the conventional GTO has been described in detail above, but when operating this GTP, a pressure of about 300 to 400 kg/d is applied from both sides of the anode electrode 2 and the metal stamp 80 on the cathode side to turn the current on and off. . Also, a pressure of around 100 kg/cJ is applied to the contact plate 6.
As already mentioned, if the gate is operated for a long time with a large current of several hundred amperes flowing through the gate, the gate electrode 5 directly under the end of the contact plate 6 will disappear as if scattered, as shown in FIG. A groove-like shape with uneven width and depth may occur (point P), or the contact plate 6, gate electrode 5, and semiconductor substrate (Si) may become alloyed (point Q), or cracks may occur in the Sl. This may occur. These accidents are thought to result from an increase in gate current density due to a decrease in the thickness of the gate electrode -> heat generation -> wire breakage -> turn-off failure. On the other hand, in the case of alloyed parts, cracks occur → joint failure → breakdown voltage failure (device destruction), all of which are important problems.

本発明はこの問題に鑑みて考案したもので上記の問題点
の打解策であるが、それを記述する前に上記問題点が発
生するメカニズムの推定を、記述する。
The present invention was devised in view of this problem and is a solution to the above problem, but before describing it, an estimation of the mechanism by which the above problem occurs will be described.

上記問題点の発生メカニズムは、大容量GTOの開発さ
れてからの歴史が浅いため公知の文献等がない状態であ
るが、故障の状態からみて次のことが考えられる。その
一つとしてゲート電極例えばAρの中に空隙が多数発生
して最終的に溝の形成→断線に至った。この場合エレク
トロマイグレーションが考えられるが、その現象を容易
に成立せしめるには、i中を流れる電流の密度が高いこ
と、高温であることが必要である。また合金化している
ことについては、高温であること必要である。
Although there is no known literature on the mechanism by which the above-mentioned problems occur since the development of large-capacity GTOs is short, there are no known documents, but considering the failure state, the following may be considered. One of the problems is that a large number of voids are generated in the gate electrode, for example, Aρ, which ultimately leads to the formation of a groove and then to a disconnection. In this case, electromigration may be considered, but in order for this phenomenon to occur easily, the current flowing through i must have a high density and be at a high temperature. Further, for alloying, it is necessary that the temperature is high.

しかしていづれも高温になる条件があったと考えられる
。また電流密度の高い条件というのは、部分的発熱をま
ねくので両者は強い関係を持っている。上記の観点に立
ち、発熱の因子を高電流密度(電流集中)と仮定すると
、電流集中を生じると考えられるのは下記の二点がある
。その一つは、ゲート電極とコンタクト板の接触抵抗が
コンタクト板の周辺と中心部で異なり特に故障個所があ
る周辺の接触抵抗が中心部のそれより低く、電流分布が
周辺に偏る場合である。このようなことが起り得ること
の例として、加圧時のコンタクト板6とゲート電極5お
よびSiとのコンタクトで生じる応力不均一がある。第
5図(a)は第3図のゲート電極近傍拡大図である。こ
の状態下で加圧するとSiの表面近傍(エーエ′)に生
じる内部応力は同図(b)のようになる(特開昭58−
101433)。つまり周辺に高い応力が集中する。こ
のことはSi上にあるAQも塑性変形し、同様な力を受
ける。その結果第6図で示すように応力が高い程コンタ
クトは良好となるので接触抵抗rは低下すると考えられ
る。
However, it is thought that there were conditions for high temperatures in both cases. Furthermore, conditions of high current density lead to localized heat generation, so there is a strong relationship between the two. From the above point of view, assuming that the heat generation factor is high current density (current concentration), the following two points are thought to cause current concentration. One of these cases is when the contact resistance between the gate electrode and the contact plate is different between the periphery and the center of the contact plate, and the contact resistance in the periphery where the failure is located is lower than that in the center, and the current distribution is biased toward the periphery. An example of how this can occur is stress non-uniformity occurring in the contact between the contact plate 6, gate electrode 5, and Si during pressurization. FIG. 5(a) is an enlarged view of the vicinity of the gate electrode in FIG. 3. When pressure is applied under this condition, the internal stress generated near the surface of Si (A') becomes as shown in Fig.
101433). In other words, high stress is concentrated in the periphery. This means that AQ on Si is also plastically deformed and receives a similar force. As a result, as shown in FIG. 6, it is thought that the higher the stress, the better the contact, and the lower the contact resistance r.

この接触抵抗の不均一が電流非平衡を生み周辺に高電流
密度部分が生じ発熱を起し、場合によってはエレクトロ
マイグレーションをも発生させているという考え方であ
る。
The idea is that this non-uniformity in contact resistance creates current imbalance, creating areas with high current density around the contact resistance, causing heat generation and, in some cases, electromigration.

他の一つは、第5図(、)で示すゲート電極の厚さが通
常10陣前後の極めて薄い膜状なため、横方向抵抗があ
りコンタクト板の周辺部分でゲート電極からコンタクト
板に流れ込むため電流集中による発熱を起るという考え
方である。この考え方の妥当性を調べる一つの方法とし
て、第7図に示すようにコンタクト板の中央から外周ま
でをn個に区切り、さらにi電極の単位体積当りの横方
向抵抗をRよ=R2=・・・=R,1,AQとコンタク
ト板の接触抵抗をl”1: r、・・・=rnと仮定し
、それを第8図のように描きかえ、これを等何回路とし
て各分岐電流jLit−4z・・・J−、を実験的に求
めると第9図のような分布になる。ここではn=7で、
かつパラメータには横方向抵抗Rと接触抵抗rとの比で
表わしている。
The other reason is that the gate electrode shown in Figure 5 (, ) is an extremely thin film with a thickness of usually around 10 lines, so there is lateral resistance and the flow from the gate electrode to the contact plate occurs in the peripheral area of the contact plate. The idea is that heat generation occurs due to current concentration. One way to examine the validity of this idea is to divide the contact plate from the center to the outer periphery into n pieces as shown in Figure 7, and then calculate the lateral resistance per unit volume of the i-electrode as R=R2=. ... = R, 1, Assuming that the contact resistance between AQ and the contact plate is l"1: r, ... = rn, draw it as shown in Figure 8, and use this as an etc. circuit to calculate each branch current. If jLit-4z...J- is found experimentally, the distribution will be as shown in Figure 9.Here, n=7,
The parameters are expressed as a ratio between the lateral resistance R and the contact resistance r.

縦軸はゲート全電流NGOに対する分岐電流の百分率で
ある。
The vertical axis is the percentage of branch current to the total gate current NGO.

この図の結論は、両抵抗の比K (= r / R)が
1あるいはそれ以下の場合、コンタクト板の周辺直下の
みに電流集中してしまい、1<K<10の領域でも明ら
かな電流非平衡であることが判る。そして、分岐電流が
はゾ均一に流れ、電流集中が防止できるのはに〜100
である。即ち、接触抵抗rが著しく高く横方向抵抗Rを
無視できるような場合であるが、それほど接触抵抗rが
高ければ、その点の順電圧降下が高くなりオフゲート電
流ピーク値も抑制されるので、通常加圧力を強くするな
りしているので考えにくい条件である。したがって一般
には、電流集中が生じていると考えられる。
The conclusion from this figure is that if the ratio K (= r / R) of both resistances is 1 or less, the current will concentrate only directly under the periphery of the contact plate, and even in the region of 1 < K < 10, there will be a clear current non-current. It turns out that it is in equilibrium. The branch current flows evenly, preventing current concentration.
It is. In other words, in cases where the contact resistance r is extremely high and the lateral resistance R can be ignored, if the contact resistance r is that high, the forward voltage drop at that point increases and the off-gate current peak value is also suppressed. This is an unlikely condition because it would increase the pressure. Therefore, it is generally considered that current concentration occurs.

以上発熱の因子として二つの電流集中のモードを述べた
が、いづれか一方の原因で集中が起るにしても二つが同
時に起こり、集中が促進されるにしても、GTOの従来
の問題点を解決するには前述した電流集中のモードを取
除く必要があった。この点に鑑み以下本発明を詳述する
The two modes of current concentration have been described above as factors for heat generation, but even if concentration occurs due to one cause or both occur simultaneously and concentration is promoted, the conventional problem of GTO can be solved. In order to do this, it was necessary to remove the current concentration mode mentioned above. In view of this point, the present invention will be described in detail below.

(発明が解決しようとする問題点) 本発明は上述した問題点に鑑み為されたもので、GTO
に生じる応力集中による接触抵抗の不均一が起す電流集
中を防止し、ゲート電極の切断や合金化を防止できる半
導体装置を提供することを目的とする。
(Problems to be solved by the invention) The present invention has been made in view of the above-mentioned problems.
It is an object of the present invention to provide a semiconductor device that can prevent current concentration caused by non-uniform contact resistance due to stress concentration occurring in the semiconductor device, and can prevent cutting and alloying of a gate electrode.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は前述した電流集中発生モードのうち。 (Means for solving problems) The present invention is one of the above-mentioned current concentration generation modes.

応力集中に着目しなされたもので、コンタクト板6の周
辺直下近傍のゲート電極5およびSi基体に発生する応
用集中を緩和することを目的としている。具体的には、
Si基体のゲート電極側に極めて浅い溝部を設け、この
溝のあるSi基体表面にAl1などのゲート電極を蒸着
し、加圧時には前記溝部ゲート電極金属が埋め込まれる
形となる。加圧時の断面図を第1図に示す。
This was done with attention to stress concentration, and the purpose is to alleviate the stress concentration that occurs in the gate electrode 5 and the Si substrate immediately below the periphery of the contact plate 6. in particular,
An extremely shallow groove is provided on the gate electrode side of the Si substrate, and a gate electrode made of Al1 or the like is deposited on the surface of the Si substrate with this groove, so that when pressure is applied, the groove gate electrode metal is buried. A cross-sectional view when pressurized is shown in FIG.

(作 用) 本発明の作用は第1図のようにSi基体1の一部に溝を
設は応力を分散させる作用がある。第1図の点P、Qの
ようにコンタクト板6の周辺直下近傍に溝を設けると加
圧時にゲート電極5が圧力によって変形、移動が可能と
なる。
(Function) The function of the present invention is to provide a groove in a part of the Si substrate 1 as shown in FIG. 1, which has the effect of dispersing stress. If grooves are provided near the periphery of the contact plate 6 as shown at points P and Q in FIG. 1, the gate electrode 5 can be deformed and moved by the pressure when pressurized.

(実施例) 本発明は、前項でも触れたが、先づPNPNの四層のS
i基体を形成した後第1図に示す一実施例の如くコンタ
クト板6の外周部直下近傍をエツチング等でおよそ5〜
15/ffiの深さを除去する。
(Example) As mentioned in the previous section, the present invention first consists of a four-layer S of PNPN.
After forming the i-substrate, as in one embodiment shown in FIG.
15/ffi depth is removed.

このSi基体を部分的にエツチングする方法は広く知ら
れているのでそのプロセス図は省略するが、要はホトレ
ジスト膜で四層Si基体表面をお\い、溝形成部のみ除
去した後Si基体を部分エツチングする。その後の工程
のゲート電極形成は、A11などを10〜15p厚に蒸
着し、不要部を上記と同様にホトレジスト膜を用いて除
去すれば良い。したがって本発明は従来の作製工程とそ
れほどの差がなく容易に加工ができる。第2図は本発明
の他の実施例であってコンタクト板径が大きく、ドーナ
ツ型になっている場合(環状コンタクト板)であって、
この場合中心線の考え方はコンタクト板の外側の半径R
□と内側の半径R2の中間Q、、 Q2にあるとする。
This method of partially etching the Si substrate is widely known, so the process diagram is omitted, but the point is to cover the surface of the four-layer Si substrate with a photoresist film, remove only the groove forming part, and then remove the Si substrate. Partially etched. To form the gate electrode in the subsequent step, A11 or the like may be deposited to a thickness of 10 to 15p, and unnecessary portions may be removed using a photoresist film in the same manner as described above. Therefore, the present invention can be easily processed without much difference from conventional manufacturing processes. FIG. 2 shows another embodiment of the present invention, in which the contact plate has a large diameter and is donut-shaped (annular contact plate),
In this case, the idea of the center line is the outer radius R of the contact plate.
Suppose that it is located at the middle Q,,Q2 between □ and the inner radius R2.

したがって端部は二つづつ合計四個をあり。Therefore, there are four ends, two at each end.

それに対応して四つの溝を形成する。Four grooves are formed correspondingly.

〔発明の効果〕〔Effect of the invention〕

この発明は従来のGT○を作製する時に用いていた技術
を一工程ふやすだけで、従来技術で発生した応力集中に
よる接触抵抗の不均一が起す電流集中を防止し、ゲート
電極の切断や合金化を防止するものである。その結果、
倍頼性を著しく高める有益な特許である。
This invention prevents current concentration caused by uneven contact resistance due to stress concentration caused by conventional technology by adding one step to the technology used to manufacture conventional GT○, and prevents cutting and alloying of the gate electrode. This is to prevent the result,
This is a useful patent that significantly increases reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を用いたセンターゲート型GTOのセン
タ一部の拡大断面、第2図は本発明の他の実施例を示す
断面図、第3図は本発明にかかる実際のセンターゲート
型GTOの断面構造図、第4図GTOの破壊模式断面図
、第5図は、加圧接触時におけるSi基体の応力分布図
、第6図はSi基体の応力分布と接触抵抗の分布の仮定
図、第7図はゲートコンタクト部の電気抵抗のモデルを
示す構造図、第8図は、第7図の等価回路を示す回路図
、第9図は第8図の回路の電流実測図である。 1・・・半導体基体      2・・・アノード電極
3a 、 3b・・・カソード電極   4a 、 4
b・・・温度補償板5・・・ゲート電極      6
・・・コンタクト板7・・・ゲート引出線    8・
・・スタンプ9・・・碍管        10・・・
絶縁板11.13・・・金属板      12・・・
板バネ。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男
Fig. 1 is an enlarged cross section of a part of the center of a center gate type GTO using the present invention, Fig. 2 is a sectional view showing another embodiment of the present invention, and Fig. 3 is an actual center gate type GTO according to the present invention. Figure 4 is a diagram of the cross-sectional structure of the GTO. Figure 4 is a schematic diagram of the fracture of the GTO. Figure 5 is a stress distribution diagram of the Si substrate during pressure contact. Figure 6 is a hypothetical diagram of the stress distribution and contact resistance distribution of the Si substrate. , FIG. 7 is a structural diagram showing a model of electrical resistance of the gate contact portion, FIG. 8 is a circuit diagram showing an equivalent circuit of FIG. 7, and FIG. 9 is a current measurement diagram of the circuit of FIG. 8. DESCRIPTION OF SYMBOLS 1... Semiconductor base 2... Anode electrode 3a, 3b... Cathode electrode 4a, 4
b...Temperature compensation plate 5...Gate electrode 6
...Contact plate 7...Gate leader line 8.
...Stamp 9...Insulator tube 10...
Insulating plate 11.13...Metal plate 12...
leaf spring. Agent Patent Attorney Nori Chika Yudo Kikuo Takehana

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板の主表面に主電流を流す第一の接触電
極板と、これに接続される第一の電極層と、上記主電流
を制御する電流を流す第二の接触電極板とこれに接続さ
れる第二の電極層を有し、第二の接触電極板が、半導体
基板のほゞ中央に位置するものにおいて、第二の接触電
極板の外周端近傍直下に相対する位置の半導体基板に凹
部を設け、凹部も含めた第二の電極層を形成し、加圧接
触時に第二の接触電極板、第二の電極層および半導体基
板に生じる応力の不均一を防止するよう構成したことを
特徴とする半導体装置。
(1) A first contact electrode plate through which a main current flows through the main surface of the semiconductor substrate, a first electrode layer connected to this, a second contact electrode plate through which a current to control the main current flows, and this The semiconductor substrate has a second electrode layer connected to the semiconductor substrate, and the second contact electrode plate is located approximately at the center of the semiconductor substrate, and the second contact electrode plate is located directly below the outer peripheral edge of the second contact electrode plate. A concave portion is provided in the substrate, and a second electrode layer including the concave portion is formed to prevent nonuniformity of stress generated in the second contact electrode plate, the second electrode layer, and the semiconductor substrate during pressurized contact. A semiconductor device characterized by:
(2)半導体基板の二つの主表面にそれぞれ第一、第二
の接触電極板と、それに接続される第一、第二の電極層
を有する特許請求の範囲第一項記載の半導体装置。
(2) A semiconductor device according to claim 1, comprising first and second contact electrode plates on two main surfaces of a semiconductor substrate, and first and second electrode layers connected thereto.
(3)半導体基体はゲートターンオフサイリスタである
ことを特徴とする特許請求の範囲第一項記載の半導体装
置。
(3) The semiconductor device according to claim 1, wherein the semiconductor substrate is a gate turn-off thyristor.
(4)半導体基体に設ける凹が環状をなしていることを
特徴とする特許請求の範囲第一項記載の半導体装置。
(4) The semiconductor device according to claim 1, wherein the recess provided in the semiconductor substrate has an annular shape.
JP395287A 1987-01-13 1987-01-13 Semiconductor device Pending JPS63173363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP395287A JPS63173363A (en) 1987-01-13 1987-01-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP395287A JPS63173363A (en) 1987-01-13 1987-01-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63173363A true JPS63173363A (en) 1988-07-16

Family

ID=11571444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP395287A Pending JPS63173363A (en) 1987-01-13 1987-01-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63173363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220186A (en) * 1990-12-26 1993-06-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with a mushroom-shaped gate electrode
US7242036B1 (en) 2006-04-20 2007-07-10 Mitsubishi Electric Corporation Semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220186A (en) * 1990-12-26 1993-06-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with a mushroom-shaped gate electrode
US7242036B1 (en) 2006-04-20 2007-07-10 Mitsubishi Electric Corporation Semiconductor element
DE102007007807B4 (en) * 2006-04-20 2012-03-15 Mitsubishi Electric Corp. Semiconductor element

Similar Documents

Publication Publication Date Title
JP2739970B2 (en) Pressure contact type semiconductor device
US4542398A (en) Semiconductor devices of multi-emitter type
JPH081914B2 (en) Pressure contact type semiconductor device
US4719500A (en) Semiconductor device and a process of producing same
US3200468A (en) Method and means for contacting and mounting semiconductor devices
US3588632A (en) Structurally reinforced semiconductor device
JPS63173363A (en) Semiconductor device
EP0077922B1 (en) Pressure-applied type semiconductor device
US4556898A (en) Semiconductor device
JPS63173364A (en) Semiconductor device
JP2809419B2 (en) Gate turn-off semiconductor device
JP3351537B2 (en) Pressure welding type semiconductor device
US4882612A (en) Power semiconductor device
JPH039622B2 (en)
JPS5871658A (en) Pressure contact type semiconductor device
US3270255A (en) Silicon rectifying junction structures for electric power and process of production thereof
JP2756826B2 (en) Semiconductor device and manufacturing method thereof
JPS604260A (en) Semiconductor device
JP3843871B2 (en) Electropolishing method and semiconductor device manufacturing method
JPS5923115B2 (en) Mesa type semiconductor device
JPH0737971A (en) Wafer chuck
US3611564A (en) Encasing process for press electrode semiconductor components
JPH02126676A (en) Semiconductor device
JP2654852B2 (en) Electrostatic induction type semiconductor device suitable for pressure contact type package structure.
JPH08330571A (en) Self-extinction semiconductor device