JPS63173325A - Electrostatic controller for charged beam - Google Patents

Electrostatic controller for charged beam

Info

Publication number
JPS63173325A
JPS63173325A JP563387A JP563387A JPS63173325A JP S63173325 A JPS63173325 A JP S63173325A JP 563387 A JP563387 A JP 563387A JP 563387 A JP563387 A JP 563387A JP S63173325 A JPS63173325 A JP S63173325A
Authority
JP
Japan
Prior art keywords
electrode
deflection
electrode supports
electrode support
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP563387A
Other languages
Japanese (ja)
Other versions
JPH0670956B2 (en
Inventor
Yoshiro Shiokawa
善郎 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP563387A priority Critical patent/JPH0670956B2/en
Publication of JPS63173325A publication Critical patent/JPS63173325A/en
Publication of JPH0670956B2 publication Critical patent/JPH0670956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the effect of disturbance noises, and to simplify structure while precisely controlling charged beams with high accuracy by constituting all or one part of electrode supports of a semiconductor while installing an electrode for control outside the electrode supports centering around charged beams. CONSTITUTION:Electrode supports 1 are made of a semiconductor material such as SiC, and a volume resistance value thereof is approximately 10<6>OMEGAcm. The grounding resistance R1 of deflecting electrodes 2 generated by the electrode supports 1 made of SiC is approximately 10<6>OMEGAcm. When R1 takes a resistance value of approximately 10<6>, currents flowing into the deflecting electrodes 2 from a control power 9 is approximately 10<-4>A, and the control power 9 is hardly burdened. The effect of disturbance noises through leads 5 is made remarkably smaller than conventional devices by large lowering from high resistance close to the insulation of the grounding resistance R1, thus also improving the effect of resistors 5 affixed to the leads 5 markedly. Even when charged particles collide with the surfaces of the electrode supports 1, no charge-up is generated because the electrode supports 1 consist of a semiconductor. Accordingly, extremely accurate beam control is enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、荷電ビームを利用して微細加工、元素分析
等を行なう各種装置において、電界によって、ビームを
偏向しまたはビーム径やビーム断面形状を変更するなど
該荷電ビームの制御を行なうのに用いられる、荷電ビー
ム用静電制御器の改良に関するものである。
Detailed Description of the Invention (Industrial Field of Application) This invention is a method of deflecting the beam or changing the beam diameter or beam cross-sectional shape using an electric field in various devices that perform microfabrication, elemental analysis, etc. using a charged beam. This invention relates to an improvement of an electrostatic controller for a charged beam, which is used to control the charged beam by changing the .

(従来技術とその問題点) 従来の荷電ビーム用静電偏向器では、 (以下、静電制
御器を静電偏向器で代表させて説明する)、その主部は
、導電性の偏向用電極(例えば、銅。
(Prior art and its problems) In a conventional electrostatic deflector for a charged beam (hereinafter, the electrostatic controller will be explained as a representative electrostatic deflector), its main part is a conductive deflection electrode. (For example, copper.

ステンレス等)と、それを支える絶縁性の電極支持体(
例えば、アルミナ、ガラス等)で構成され、前記導電性
の偏向用電極に偏向電圧を印加することにより、電界を
形成させて荷電ビームを偏向していた。
stainless steel, etc.) and an insulating electrode support that supports it (
For example, by applying a deflection voltage to the conductive deflection electrode, an electric field is formed and the charged beam is deflected.

従来の静電偏向器は、例えばその正面断面図を第4図A
、平面断面図を第4図Bに示すように、銅製の偏向用電
極2がアルミナ(Al2O2)やガラス(S102)で
作られた絶縁物の電極支持体1に気密にロー付けされ、
さらにこの電極支持体1が、接地されたステンレス鋼製
フレーム4に気密にロー付けされて固定される構成を採
用している。
For example, a front sectional view of a conventional electrostatic deflector is shown in Fig. 4A.
As shown in FIG. 4B, a cross-sectional plan view, a copper deflection electrode 2 is hermetically brazed to an insulating electrode support 1 made of alumina (Al2O2) or glass (S102).
Furthermore, a configuration is adopted in which the electrode support 1 is hermetically brazed and fixed to a grounded stainless steel frame 4.

このようにした偏向用電極2が、X、Y軸の両方向に1
対宛設けられ、それらに印加される偏向電圧によって荷
電ビーム3をX、  Y両方向に静電偏向するようにな
っている。偏向用電極2へのリード線5は、フレーム4
に明けられた穴40と電極支持体1にあけられた穴10
0両者を通って、偏内用電極2の裏面にロー付けされて
いる。
The deflection electrode 2 thus constructed is arranged in one direction in both the X and Y axes.
The charged beam 3 is electrostatically deflected in both the X and Y directions by the deflection voltage applied thereto. The lead wire 5 to the deflection electrode 2 is connected to the frame 4
hole 40 made in the electrode support 1 and hole 10 made in the electrode support 1
0 and is soldered to the back surface of the polarizing electrode 2.

第4図Cに示すのは、そのうちの1つの偏向用電極2に
対する電圧印加の等価回路である。偏向用電極2には制
御電源9からリード線5を経由して偏向用電圧が印加さ
れているが、電極支持体1の前記材料の体積抵抗率が非
常に高<1012乃至1014Ωcmもあるため、その
抵抗値は通常1012乃至1014Ω台の高い接地抵抗
値を示し、従って、接地されたフレーム4と偏向用電極
20間に挿入される電極支持体1の等価抵抗R1は絶縁
に近い高抵抗である。
FIG. 4C shows an equivalent circuit for applying a voltage to one of the deflection electrodes 2. A deflection voltage is applied to the deflection electrode 2 from the control power supply 9 via the lead wire 5, but since the volume resistivity of the material of the electrode support 1 is extremely high (<1012 to 1014 Ωcm), Its resistance value usually shows a high grounding resistance value on the order of 1012 to 1014 Ω, and therefore, the equivalent resistance R1 of the electrode support 1 inserted between the grounded frame 4 and the deflection electrode 20 is a high resistance close to insulation. .

さて、上記の構成の静電偏向器で荷電ビーム3の偏向を
行なって、試料(図示せず)上の任意の位置にビーム照
射を行ない、微細な加工や分析を行なう訳であるが、ビ
ーム照射には非常に高い位置精度が要求される。例えば
、露光装置では10m In程度の偏向幅に対し0.1
μrn以下の精度、即ち10−5程度と言う高精度が要
求されている。
Now, the charged beam 3 is deflected using the electrostatic deflector with the above configuration, and the beam is irradiated onto an arbitrary position on the sample (not shown) to perform fine processing and analysis. Irradiation requires extremely high positional accuracy. For example, in an exposure device, for a deflection width of about 10 m In, 0.1
Accuracy below μrn, that is, high accuracy of about 10 −5 is required.

従って、偏向用電極2に印加される電圧値の変動の許容
値は非常に小さく厳しいものとなり、外乱ノイズその他
に対しては深刻に対処せざるを得なくなっている。
Therefore, the permissible value for variation in the voltage value applied to the deflection electrode 2 is extremely small and strict, and disturbance noise and other problems must be dealt with seriously.

上記の従来の静電偏向器の構成は次の不具合を生む。The configuration of the conventional electrostatic deflector described above causes the following problems.

その1つは、静電偏向器へのリード線5が外界のノイズ
を拾い易いことであり、リード線から侵入する外乱のノ
イズ電圧が偏向用電圧に重畳し、これに禍されて、荷電
ビーム3が不正規に振動乃至動揺することである。
One of them is that the lead wire 5 to the electrostatic deflector easily picks up noise from the outside world, and the disturbance noise voltage that enters from the lead wire is superimposed on the deflection voltage, which causes damage to the charged beam. 3 is irregular vibration or agitation.

他の1つは、荷電ビーム3の一部が散乱して電極支持体
1の表面11に付着する現象(チャージアップ)のある
ことであり、荷電ビームの散乱は到底除き切れるもので
ないため、電極支持体の表面11の電位は荷電粒子の付
着、剥落によって大きく変動し、これが荷電ビーム3の
偏向用電圧を歪ませて偏向に不測の浮動を生じたり、荷
電ビーム3の収束を妨げたりする不都合を生じていた。
Another problem is that a part of the charged beam 3 is scattered and attached to the surface 11 of the electrode support 1 (charge-up), and since the scattering of the charged beam cannot be completely eliminated, The potential of the surface 11 of the support varies greatly due to the attachment and detachment of charged particles, which distorts the deflection voltage of the charged beam 3, causing unexpected fluctuations in deflection and preventing the convergence of the charged beam 3. was occurring.

これらに対する従来の対策としては次記のものがあった
Conventional countermeasures against these problems include the following.

即ち、前者に対しては、リード線5を厳重にシールド(
51)すると共に、放電時の電源保護対策を兼ねて、適
宜の抵抗R5を偏向用電極20近くに付加する処置が採
られた。しかし、その成果はあまり上がっていない。
That is, for the former, the lead wire 5 should be strictly shielded (
51) At the same time, a measure was taken to add an appropriate resistor R5 near the deflection electrode 20, also as a measure to protect the power supply during discharge. However, the results have not been very successful.

後者に対しては、第5図Aに示すように、偏向用電極の
一部21で電極支持体1を覆うなどして、電極支持体の
表面を露出させないようにする対策が採られた。しかし
、これも実施してみると、小型の装置で偏向の精度が高
度に要求されるような場合には、大刀の場合対策が不十
分であることが判明した。
For the latter, measures were taken to prevent the surface of the electrode support from being exposed, such as by covering the electrode support 1 with a portion 21 of the deflection electrode, as shown in FIG. 5A. However, after implementing this, it became clear that this measure was insufficient for large swords in cases where a high degree of deflection accuracy was required using a small device.

一般に、静電偏向器は小型に高精度に仕上げされ組み立
てられ、また、第5図Bに示すように、偏向の精度を高
める目的で8極以上の構成にしたり、更に、こうしたも
のを軸方向に幾段も重ねたりすることが多く、非常むこ
加工に手間がかかり、高価に成り易いものである。第5
図Aの対策は実際上伸々煩雑で、実施は困難であった。
In general, electrostatic deflectors are small, finished and assembled with high precision, and as shown in Figure 5B, they are configured with eight or more poles in order to improve deflection accuracy, and they are also constructed with eight or more poles in the axial direction. They are often stacked in several layers, making it very time-consuming and expensive to process. Fifth
The measures shown in Figure A were actually extremely complicated and difficult to implement.

念のため、第5図Cには、第5図Bの各偏向用電極に印
加する電圧の配分法を示している。X。
As a precaution, FIG. 5C shows a method of distributing the voltages applied to each deflection electrode in FIG. 5B. X.

Y軸方向の偏向用電圧±Vx、  ±V yは、抵抗l
・で作られる抵抗回路網の四方のノードに印加され、そ
の他の各ノード部の電圧が偏向用電極2に印加される。
The deflection voltage in the Y-axis direction ±Vx, ±Vy is the resistance l
The voltage is applied to the nodes on all four sides of the resistor network made by the above, and the voltages at the other nodes are applied to the deflection electrode 2.

さらに次の2つのことも問題として取り上げることが出
来る。即ち、 1つは、導電性の電極の表面電位は一定である。
Furthermore, the following two issues can be raised. That is, one is that the surface potential of a conductive electrode is constant.

このことは、任意の希望する電界強度分布を表面に沿っ
て形成させることが不可能であることを意味する。 (
もしこれを実現しようとすれば、数多くの小電極を並べ
て、そのそれぞれに適宜の電圧を印加するという方法し
か無いが、前記同様、事実上この加工は不可能である。
This means that it is not possible to create any desired electric field strength distribution along the surface. (
If this were to be achieved, the only way would be to line up a large number of small electrodes and apply an appropriate voltage to each of them, but as above, this process is virtually impossible.

) 他の1つは、静電偏向器の構造が複雑であり、電極の取
り付は精度を出すことが仲々困難なことである。
) Another problem is that the structure of the electrostatic deflector is complicated, and it is difficult to attach the electrodes accurately.

などがあった。There was such a thing.

(発明の目的) 本発明は、上記の問題を解決し、外乱ノイズの影響を受
は難く、かつ、ビームの収束を妨げるような電位の変動
等を生ずることがなく、構造が簡単である上に荷電ビー
ムの制御を正確にかつ高精度に行なうことの出来る、荷
電ビーム用静電制御器の提供を目的とする。
(Objective of the Invention) The present invention solves the above problems, is not easily affected by disturbance noise, does not cause fluctuations in potential that would hinder beam convergence, and has a simple structure. The object of the present invention is to provide an electrostatic controller for charged beams that can control charged beams accurately and with high precision.

(発明の構成) 本発明は、制御用電極と電極支持体とで構成される静電
制御器において、該電極支持体の全部または一部を半導
体で構成するとともに、荷電ビームを中心にして、該制
御用電極を該電極支持体の外側に設置したことを特徴と
する荷電ビーム用静電制御器。
(Structure of the Invention) The present invention provides an electrostatic controller composed of a control electrode and an electrode support, in which all or part of the electrode support is made of a semiconductor, and a charged beam is centered on the electrostatic controller. An electrostatic controller for a charged beam, characterized in that the control electrode is installed outside the electrode support.

(実施例) 第1図Aは本発明の第1の実施例の静電偏向器の正面断
面図である。第4図A、  Bに対応する部材には、同
じ符号を付して説明を省略する。
(Embodiment) FIG. 1A is a front sectional view of an electrostatic deflector according to a first embodiment of the present invention. Components corresponding to those in FIGS. 4A and 4B are given the same reference numerals and their explanations will be omitted.

電極支持体1はSiC等の半導体材料で作られており、
その体積抵抗値は106Ωcm程度である。
The electrode support 1 is made of a semiconductor material such as SiC,
Its volume resistance value is about 106 Ωcm.

偏向用電極2に偏向用電圧が印加されて発生した電界は
、電極支持体1を通して荷電ビーム3に作用する。 (
や\詳しく言えば、偏向用電極2から、接地されたフレ
ーム4に電極支持体1を通して電流が流れ、電極支持体
1の表面が偏向用電極2の電位とアース電位との中間の
電位となり、この電位により中央の空間に電界が発生し
て荷電ビーム3が偏向する。) 荷電ビーム用静電偏向器が上記の構成をとるときは、炭
化シリコン(S i C)極電極支持体1で生ずる、第
1図Cの偏向用電極2の接地抵抗R1は106Ω程度で
ある。R1が106程度の抵抗値であれは、制御電源か
ら偏向用電極へ流れ込む電流は10−’A径程度あって
、制御電源6の負担には殆どならない。
An electric field generated by applying a deflection voltage to the deflection electrode 2 acts on the charged beam 3 through the electrode support 1 . (
In detail, a current flows from the deflection electrode 2 to the grounded frame 4 through the electrode support 1, and the surface of the electrode support 1 becomes at a potential intermediate between the potential of the deflection electrode 2 and the ground potential. This potential generates an electric field in the central space, and the charged beam 3 is deflected. ) When the electrostatic deflector for a charged beam has the above configuration, the ground resistance R1 of the deflection electrode 2 shown in FIG. . If R1 has a resistance value of about 106, the current flowing from the control power source to the deflection electrode will be about 10-'A diameter, and will hardly place a burden on the control power source 6.

この接地抵抗R1の絶縁に近い高抵抗から106 Ω程
度への大幅な低下によって、リード線5を経由する外乱
ノイズの影響は、従来に比へて格段に減少し、リード線
5には加する抵抗R5の効果も著しく上昇する。
By significantly reducing the grounding resistance R1 from a high resistance close to insulation to about 106 Ω, the influence of disturbance noise passing through the lead wire 5 is significantly reduced compared to the past, and the influence of disturbance noise passing through the lead wire 5 is significantly reduced. The effectiveness of resistor R5 is also significantly increased.

さらに、電極支持体1の表面に荷電粒子が衝突しても、
電極支持体1が半導体であるためにチャージアップは全
く発生しない。従って、非常に正確なビーム制御が可能
となる。
Furthermore, even if charged particles collide with the surface of the electrode support 1,
Since the electrode support 1 is made of a semiconductor, charge-up does not occur at all. Therefore, very accurate beam control is possible.

但し、この効果を可能にする条件は次の通りである。However, the conditions that make this effect possible are as follows.

先ず、荷電ビーム3の位置に所望通りの電界が発生する
ためには、電極支持体1の抵抗値が、偏向用電源(図示
しない)から偏向用電極2に流す電流によって、設計通
りの電位を持つだけの値を持たなければならない。
First, in order to generate a desired electric field at the position of the charged beam 3, the resistance value of the electrode support 1 must be adjusted to a designed potential by a current flowing from a deflection power source (not shown) to the deflection electrode 2. It must have enough value to hold it.

電位の現実的な数値は102■程度、電流のそれは10
−’A径程度ので、その抵抗値は106Ω以上が必要と
なる。もし電極支持体1が一様な抵抗値を持ち、寸法が
断面積10m2、長さIcmとすると、その体積抵抗率
は106Ω11cmとなる。実際的には、電気的に2桁
、寸法的に2桁程度の変更が許容可能として、電界発生
に必要とされる体積抵抗率は102ΩCm以上と判断す
ることができる。
The realistic value for potential is about 102■, and that for current is 10
-'A diameter, so its resistance value needs to be 106Ω or more. If the electrode support 1 has a uniform resistance value and has dimensions of a cross-sectional area of 10 m2 and a length of Icm, its volume resistivity will be 106Ω11cm. Practically, it can be determined that the volume resistivity required to generate an electric field is 102 ΩCm or more, assuming that changes of about two orders of magnitude electrically and two orders of magnitude in dimensions are acceptable.

次に、電荷の蓄積(チャージアップ)の影響を防止する
ためには、荷電ビーム3の一部の微少電流が電極支持体
1に衝突しても、その電流量では荷電ビームに影響を与
えるような電圧は発生しない低い抵抗値でなければなら
ない。現実的な数値として、衝突する電流は1O−6A
、  ビームに影響を与えない電圧は10°と推定され
るので、抵抗値は106Ω以下が必要となる。そしてこ
れにも上記と同様に、電気的、寸法的許容幅を適用する
と体積抵抗率は1010Ωcm以下が必要となる。
Next, in order to prevent the influence of charge accumulation (charge-up), even if a small amount of current in a part of the charged beam 3 collides with the electrode support 1, the amount of current will not affect the charged beam. The resistance value must be low so that no significant voltage is generated. As a realistic value, the collision current is 1O-6A
, Since the voltage that does not affect the beam is estimated to be 10°, the resistance value needs to be 106Ω or less. Similarly to the above, if electrical and dimensional tolerances are applied to this, the volume resistivity must be 1010 Ωcm or less.

以上2つの条件から、電極支持体は、全体としてほぼ1
02〜1012Ωam程度の体積抵抗率を持つ必要があ
る。
From the above two conditions, the electrode support as a whole has approximately 1
It is necessary to have a volume resistivity of about 02 to 1012 Ωam.

第1図Bは本発明の第2の実施例の静電偏向器の正面断
面図である。
FIG. 1B is a front sectional view of an electrostatic deflector according to a second embodiment of the present invention.

この実施例では、偏向用電極2は、電極支持体1に付着
された単純な導電性膜2′となっている。
In this embodiment, the deflection electrode 2 is a simple electrically conductive film 2' attached to an electrode support 1.

この導電性膜2′の製作法には、メタライズ法によって
電極支持体1に金属膜を塗布する方法、または例えば、
SiCの電極支持体1を焼成で作ったとき電極支持体1
の表面に現れる導電性析出層をそのまま電極として利用
する方法、更には配線ケーブルを折り曲げて平面的に敷
き詰める方法等がある。
The method of manufacturing this conductive film 2' includes a method of applying a metal film to the electrode support 1 by a metallization method, or, for example,
When the SiC electrode support 1 is made by firing, the electrode support 1
There are methods such as using the conductive deposited layer that appears on the surface as an electrode as it is, and furthermore, bending the wiring cable and laying it flat.

半導体である電極支持体1には、電荷の移動によって自
から電界を均一にしようとする働きがあるため、本発明
の偏向用電極2はその取り付は精度についての条件が可
成り緩和される。これは本発明の副次的効果である。
Since the electrode support 1, which is a semiconductor, has the function of trying to make the electric field uniform by itself through the movement of electric charges, the conditions regarding the accuracy of the mounting of the deflection electrode 2 of the present invention are considerably relaxed. . This is a side effect of the present invention.

第2図A(正面断面図)、第2図B(平面断面図)は本
発明の第3の実施例の静電偏向器の図である。
FIG. 2A (front sectional view) and FIG. 2B (plane sectional view) are diagrams of an electrostatic deflector according to a third embodiment of the present invention.

この実施例では、第1にフレーム4を廃止し、電極支持
体1そのものがフレームの役割を兼ねている。従来は、
こうした静電偏向器の部分には、ドリフトチューブと呼
ばれる導電性のチューブを設置するか、接地されたフレ
ーム4を設けるかで荷電ビームを完全に囲むようにして
いた。しかし、本発明では、電極支持体1が半導体であ
るため、これにドリフトチューブの役目をさせることが
可能となり、そのため構造を非常に簡略化出来たもので
ある。
In this embodiment, first, the frame 4 is eliminated, and the electrode support 1 itself serves as the frame. conventionally,
In the electrostatic deflector, a conductive tube called a drift tube is installed, or a grounded frame 4 is installed to completely surround the charged beam. However, in the present invention, since the electrode support 1 is made of a semiconductor, it is possible to make it function as a drift tube, and therefore the structure can be greatly simplified.

静電偏向器は通常、1個の傾向器に8極(第2図B参照
)、または16極の偏向用電極を使用しくマルチポール
偏向)、更にこうした偏向器を軸方向に2段重ね(第2
図A参照)とし荷電ビームの偏向を振り戻す(ダブル偏
向)方式を採用するため、この構造の簡素化は重大な意
味を持つ。電極支持体2とフレーム4の接合部が無くな
るため、特別なシール技術を全く必要とせず、電極支持
体そのものが真空隔壁となり得るのも大きい長所である
Electrostatic deflectors usually use 8-pole (see Figure 2B) or 16-pole deflection electrodes in one deflector (multipole deflection), and further stack these deflectors in two stages in the axial direction ( Second
This simplification of the structure is of great significance, as it employs a double deflection method in which the deflection of the charged beam is reversed (see Figure A). Since there is no joint between the electrode support 2 and the frame 4, there is no need for any special sealing technology, and another great advantage is that the electrode support itself can serve as a vacuum barrier.

さらにまた、偏向用電極2の位置の精度はその機械的加
工精度で一意的に決定され、しかも機械加工は殆ど外径
側で行なわれることになるため、容易に高精度を生み出
すことが出来る。電極支持体1によるの電界の分布の均
一化作用も期待できる。
Furthermore, the accuracy of the position of the deflection electrode 2 is uniquely determined by its mechanical processing accuracy, and since most of the machining is performed on the outer diameter side, high precision can be easily achieved. The electrode support 1 can also be expected to have a uniform effect on electric field distribution.

第2図Cは、本発明の第4の実施例の平面断面図である
FIG. 2C is a sectional plan view of a fourth embodiment of the present invention.

上記の実施例の第2図Bでは、発生する電界の電界強度
の分布を、従来同様空間的には段階的とするため、電極
間に切欠き(水平方向の切欠き7)を入れてあり、隣接
する電極に電流が流れ込み難いようにしである。この実
施例はこの配慮を無用にするとともに、更に高精度の制
御を行なうものである。即ちXとYの偏向用電極相互間
で、半導体の電極支持体1を流れる電流によって、第5
図Cで述べたと同様の電界を分布定数的に発生せしめる
。電界の強度は空間的に連続的になだらかに変化し、高
度の荷電ビームの制御を行なうに適したものとなる。
In FIG. 2B of the above embodiment, a notch (horizontal notch 7) is inserted between the electrodes in order to make the distribution of the electric field intensity of the generated electric field spatially stepwise as in the conventional case. , so that it is difficult for current to flow into adjacent electrodes. This embodiment eliminates this consideration and provides even more precise control. That is, between the X and Y deflection electrodes, the fifth
An electric field similar to that described in Figure C is generated in a distributed constant manner. The electric field strength changes spatially and continuously, making it suitable for highly controlled charged beams.

もともと、8極または16極の偏向用電極を使用するの
はX、  Y方向の中間の電界の乱れを補正するためで
ある。この実施例の構成によれば、X。
Originally, the purpose of using 8-pole or 16-pole deflection electrodes was to correct disturbances in the electric field in the middle of the X and Y directions. According to the configuration of this embodiment, X.

Yの偏向用電圧がその場合々々に応じて適当に混じり合
うように電極支持体の形状を工夫することが出来、互い
に電流が適当に流れ込むことにより、電極自体は4極で
あっても、無限数種の静電偏向器とすることが出来る。
The shape of the electrode support can be devised so that the Y deflection voltages are appropriately mixed depending on the case, and by allowing current to flow into each other appropriately, even if the electrodes themselves have four poles, An infinite number of types of electrostatic deflectors can be used.

第3図Aは本発明の第5の実施例の正面断面図である。FIG. 3A is a front sectional view of a fifth embodiment of the present invention.

前記の実施例が水平方向の電界分布の改善であったのに
対して、本実施例では鉛直方向の電界分布の改善を行な
うものである。即ち先の第2図りに示した段階的な空間
分布を第3図Bに示すような、連続的な電界強度の空間
分布に変え、ダブル偏向に伴う収差を低減している。本
発明により電極支持体の形状をかえることにより、3次
元方向の殆どあらゆる態様の電界分布を実現することが
出来る。
While the above-mentioned embodiments improved the electric field distribution in the horizontal direction, this embodiment improves the electric field distribution in the vertical direction. That is, the stepwise spatial distribution shown in the second diagram above is changed to a continuous spatial distribution of electric field intensity as shown in FIG. 3B, thereby reducing aberrations associated with double deflection. By changing the shape of the electrode support according to the present invention, almost any form of electric field distribution in three-dimensional directions can be realized.

なお、上記実施例では、半導体電極支持体としてSiC
を用い、一様な体積抵抗率をもつ材料の場合で説明した
が、これは絶対的な条件ではなく、絶縁物の表面に半導
体膜が存在するような、■合わせ型の電極支持体であっ
ても、その抵抗値が前記の値に入るものであれば、上記
と同様の効果が得られる。
In the above embodiment, SiC is used as the semiconductor electrode support.
We have explained the case of a material with a uniform volume resistivity, but this is not an absolute condition. However, if the resistance value falls within the above range, the same effect as above can be obtained.

また上記実施例では、荷電ビームの制御器としてビーム
軌道の方向を変える Deflector機能のものだ
けを取り上げて説明したが、本発明の適用はこれに限定
されるものではなく、ビームの形状を変えるSt i 
gmator機能や、ビームの径の大きさを変えるLe
ns機能のものに於ても大きい効果を現すことは明かで
ある。
Further, in the above embodiment, only the Deflector function that changes the direction of the beam trajectory as a controller of the charged beam was explained, but the application of the present invention is not limited to this. i
gmator function and Le to change the size of the beam diameter
It is clear that even those with ns function exhibit great effects.

さらに、炭化シリコンには、酸化アルミニウム等に比べ
て熱伝導率が非常に大きいという長所があり、熱設計も
非常に楽であり、また、酸化アルミニウムと同様に表面
のメタライジングや制御用電極、リード線のロー付は等
も容易であり、曲げ強度、硬度も若干上回っている。こ
のため静電制御器のように非常に高精度に制御用電極を
固定しなければならない場合には最適な電極支持体用材
料と言える。さらに、従来、炭化シリコンはその良好な
耐摩耗性と耐薬品性とにより、軸受は等の=15− シール部やケミカルポンプ用部品として広く利用されて
おり、その材質の安定性も充分に実証されていて本発明
には特に適した材料である。
Furthermore, silicon carbide has the advantage of extremely high thermal conductivity compared to aluminum oxide, etc., making thermal design very easy. It is easy to braze lead wires, and its bending strength and hardness are slightly higher. For this reason, it can be said to be the optimal material for electrode supports in cases where control electrodes must be fixed with extremely high precision, such as in electrostatic controllers. Furthermore, due to its good wear resistance and chemical resistance, silicon carbide has been widely used in bearings, seals, and parts for chemical pumps, and the stability of the material has been fully demonstrated. This material is particularly suitable for the present invention.

ただし、本発明の電極支持体の材料は炭化シリコン乙こ
限られるものではなく、適当な体積抵抗率を持つ物質で
あればすべて使用できる。例えば、Tic、A(LN、
BN、更には金属を混入させた酸化アルミニウムや酸化
シリコンなどの材料も使用できる。
However, the material for the electrode support of the present invention is not limited to silicon carbide, and any material having an appropriate volume resistivity can be used. For example, Tic, A(LN,
Materials such as BN and even metal-mixed aluminum oxide and silicon oxide can also be used.

(発明の効果) 本発明によれば、従来不可能であった荷電ビームの正確
な制御はもとより、ビームの位置、形状、径の各要素を
高度に制御することの出来る荷電ビーム用静電制御器を
提供することが出来る。
(Effects of the Invention) According to the present invention, electrostatic control for charged beams allows precise control of charged beams, which was previously impossible, as well as highly controlled elements such as beam position, shape, and diameter. We can provide equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、B、第2図A1  第3図Aは、それぞれ本
発明の実施例の静電制御器の正面断面図。第1図Cは、
等価回路図。第2図B、  Cは平面断面図。 第2図りと第3図Bは、電界強度の分布を示す図。 第4図A、B、Cは、従来の静電偏向器の正面断面図、
平面断面図9等価回路図。 第5図Aは、従来の静電偏向器の部分的正面断面図。 第5図Bは、従来の8極用の静電偏向器の平面断面図で
、第5図Cはそれに用いられる電圧配分用回路図。 1・・・電極支持体、2・・・偏向用電極、3・・・荷
電ビーム、4・・・フレーム、5・・・リード線、 6
,7・・・切欠き。 特許出願人  日電アネルバ株式会社 代理人    弁理士  村上 健次 −17= Wt閉開口UO3−173325(6)手続補正書(方
式) 昭和62年4月 60 昭和62年特許願第5633号 2、発明の名称 荷電ビーム用静電制御器 3、補正をする者 事件との関係    特許出願人 住所   東京都府中市四谷 5−8−1名称    
日電アネルバ株式会社 代表者  安1)進 4、代理人 住所   東京都府中市四谷 5−8−16、補正の対
象    図 面 7、補正の内容 第2図B、第2図C2第3図A、第3図Bに関する図面
FIGS. 1A and 1B, FIG. 2A, and FIG. 3A are front sectional views of electrostatic controllers according to embodiments of the present invention. Figure 1C is
Equivalent circuit diagram. Figures 2B and 2C are plan sectional views. The second diagram and FIG. 3B are diagrams showing the distribution of electric field strength. FIGS. 4A, B, and C are front sectional views of a conventional electrostatic deflector,
Plane sectional view 9 equivalent circuit diagram. FIG. 5A is a partial front sectional view of a conventional electrostatic deflector. FIG. 5B is a plan sectional view of a conventional 8-pole electrostatic deflector, and FIG. 5C is a voltage distribution circuit diagram used therein. DESCRIPTION OF SYMBOLS 1... Electrode support body, 2... Deflection electrode, 3... Charged beam, 4... Frame, 5... Lead wire, 6
,7...notch. Patent Applicant Nichiden Anelva Co., Ltd. Agent Patent Attorney Kenji Murakami-17 = Wt Closed Opening UO3-173325 (6) Procedural Amendment (Method) April 1988 60 1988 Patent Application No. 5633 2, Title of Invention Electrostatic controller for charged beam 3, relationship with the amended case Patent applicant address 5-8-1 Yotsuya, Fuchu-shi, Tokyo Name
Nichiden Anelva Co., Ltd. Representative: An 1) Susumu 4, Agent address: 5-8-16 Yotsuya, Fuchu-shi, Tokyo, Subject of amendment: Drawing 7, Details of amendment: Fig. 2 B, Fig. 2 C2, Fig. 3 A, Drawings related to Figure 3B.

Claims (1)

【特許請求の範囲】[Claims] (1)制御用電極と電極支持体とで構成される荷電ビー
ム用静電制御器において、該電極支持体の全部または一
部を半導体で構成するとともに、荷電ビームを中心にし
て、該制御用電極を該電極支持体の外側に設置したこと
を特徴とする荷電ビーム用静電制御器。
(1) In an electrostatic controller for a charged beam consisting of a control electrode and an electrode support, all or part of the electrode support is made of a semiconductor, and the control An electrostatic controller for a charged beam, characterized in that an electrode is installed outside the electrode support.
JP563387A 1987-01-13 1987-01-13 Static controller for charged beam Expired - Lifetime JPH0670956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP563387A JPH0670956B2 (en) 1987-01-13 1987-01-13 Static controller for charged beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP563387A JPH0670956B2 (en) 1987-01-13 1987-01-13 Static controller for charged beam

Publications (2)

Publication Number Publication Date
JPS63173325A true JPS63173325A (en) 1988-07-16
JPH0670956B2 JPH0670956B2 (en) 1994-09-07

Family

ID=11616549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP563387A Expired - Lifetime JPH0670956B2 (en) 1987-01-13 1987-01-13 Static controller for charged beam

Country Status (1)

Country Link
JP (1) JPH0670956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190129A (en) * 1992-01-13 1993-07-30 Toshiba Corp Electrostatic type lens
JP2013093567A (en) * 2011-10-03 2013-05-16 Param Co Ltd Electron beam drawing method and drawing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190129A (en) * 1992-01-13 1993-07-30 Toshiba Corp Electrostatic type lens
JP2013093567A (en) * 2011-10-03 2013-05-16 Param Co Ltd Electron beam drawing method and drawing apparatus

Also Published As

Publication number Publication date
JPH0670956B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
CN107078010B (en) Plasma processing apparatus and system and the method for controlling ion beam
US5077500A (en) Air transporting arrangement
JP2857686B2 (en) Charged particle energy analyzer and mass spectrometer incorporating the same
JPH09139184A (en) Manufacture of electrostatic deflection unit
EP0255981B1 (en) Charged particle optical systems having therein means for correcting aberrations
FI84864C (en) ANORDINATION BETWEEN THE REDUCER OF THE MAGNETIC FAILURE STANDARD AND THE IMMUNIZATION.
JPS63173325A (en) Electrostatic controller for charged beam
KR100521271B1 (en) Wien filter for use in a scanning electron microscope or the like
JPS63136449A (en) Electrostatic deflector for charged beams
JP4959288B2 (en) Electro-optic multilayer column
US4424549A (en) Corona device
JPH02247966A (en) Electrostatic deflection apparatus
JP3335798B2 (en) Electrostatic lens and method of manufacturing the same
JPH0453222A (en) Electron beam exposing device
US3808498A (en) Electron beam generating source
TWI749693B (en) Shielding deflector and charged particle beam drawing device
JP3067154B2 (en) Charged particle beam column
JPH01146230A (en) Propagation waveguide deflection structure
JPH0619565Y2 (en) Electrode structure of arc ion plating device
CN115295382A (en) Self-adaptive ion beam correction deflection plate
JPH07326314A (en) Method and device for removing vibration of charged beam due to noise current
US6297512B1 (en) Double shield for electron and ion beam columns
JPH02201855A (en) Wien filter
JPH04174510A (en) Manufacture of electrostatic deflector for electron beam exposure device
JP3409799B2 (en) Traveling wave deflector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term