JPS6317220B2 - - Google Patents

Info

Publication number
JPS6317220B2
JPS6317220B2 JP56111869A JP11186981A JPS6317220B2 JP S6317220 B2 JPS6317220 B2 JP S6317220B2 JP 56111869 A JP56111869 A JP 56111869A JP 11186981 A JP11186981 A JP 11186981A JP S6317220 B2 JPS6317220 B2 JP S6317220B2
Authority
JP
Japan
Prior art keywords
silicon
film
insulating film
substrate
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56111869A
Other languages
Japanese (ja)
Other versions
JPS5814529A (en
Inventor
Junji Sakurai
Haruhisa Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56111869A priority Critical patent/JPS5814529A/en
Publication of JPS5814529A publication Critical patent/JPS5814529A/en
Publication of JPS6317220B2 publication Critical patent/JPS6317220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特に絶縁膜上
に形成されるSOI(Silicon on Insulating
Substrate)構造の半導体装置の製造方法に関す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, especially SOI (Silicon on Insulating) formed on an insulating film.
This invention relates to a method for manufacturing a semiconductor device having a substrate structure.

例えば酸化シリコンよりなる絶縁膜上に島状に
分離された半導体素子を形成するSOI構造の半導
体装置の製造工程において、絶縁膜上の非単結晶
シリコンすなわち多結晶シリコン或いは非結晶シ
リコンにより形成された島状に分離された薄膜状
半導体領域を波動或いは粒子ビーム照射による熱
処理により融解し、冷却再結晶化せしめて単結晶
シリコンとする場合において、融解されたシリコ
ンの絶縁膜を形成する二酸化シリコン(SiO2
面への濡れの悪さから、単結晶化後に半導体領域
が絶縁膜から剥離することがあるなど、付着力が
不充分である。
For example, in the manufacturing process of semiconductor devices with an SOI structure in which semiconductor elements separated into islands are formed on an insulating film made of silicon oxide, non-monocrystalline silicon, that is, polycrystalline silicon or amorphous silicon formed on an insulating film, is used. When thin film-like semiconductor regions separated into islands are melted by heat treatment using wave or particle beam irradiation, and then cooled and recrystallized to form single-crystal silicon, silicon dioxide (SiO 2 )
Due to poor surface wetting, the semiconductor region may peel off from the insulating film after single crystallization, resulting in insufficient adhesion.

本発明は、前記の如く再結晶化により形成され
た単結晶シリコン領域と酸化シリコン絶縁膜との
付着力を増大し、剥離等の障害を未然に防止する
ことを目的とする。
An object of the present invention is to increase the adhesion between the single crystal silicon region formed by recrystallization as described above and the silicon oxide insulating film, and to prevent problems such as peeling.

本発明は酸化シリコン絶縁膜の表面近傍におい
て、酸素原子に対してシリコン原子を過剰とする
ことにより、その表面上に融解再結晶により形成
された単結晶シリコン薄膜との付着力を増加せし
めるものである。
The present invention increases the adhesion force with the single-crystal silicon thin film formed on the surface of the silicon oxide insulating film by melting and recrystallization by making silicon atoms in excess of oxygen atoms near the surface of the silicon oxide insulating film. be.

以下に本発明を実施例により図面を用いて詳細
に説明する。
The present invention will be explained in detail below using examples and drawings.

第1図aに断面図を示す如く、シリコン基板1
上に二酸化シリコン(SiO2)により厚さ約500n
mの絶縁膜2を形成する。二酸化シリコン絶縁膜
2はモノシラン(SiH4)10%:アルゴン(Ar)
90%の混合気体と酸素(O2)とを容量比200:1
として、温度約650℃の反応管内で反応せしめる
化学蒸着法により基板1上に成長せしめられる。
As shown in the cross-sectional view in FIG. 1a, a silicon substrate 1
Approximately 500n thick with silicon dioxide (SiO 2 ) on top
m insulating film 2 is formed. Silicon dioxide insulating film 2 is monosilane (SiH 4 ) 10%: argon (Ar)
90% mixed gas and oxygen (O 2 ) volume ratio 200:1
The film is grown on the substrate 1 by a chemical vapor deposition method in which a reaction is carried out in a reaction tube at a temperature of about 650°C.

次いで前記モノシランの混合気体と酸素との容
量比を1000:1程度として、酸素原子に対してシ
リコン原子の過剰な酸化物SixOyにより膜3を厚
さ100nmに成長せしめる。しかる後酸素の供給
を完全に停止し、多結晶シリコン膜4を厚さ約
400nmに成長せしめる。
Next, the film 3 is grown to a thickness of 100 nm using an oxide SixOy containing an excess of silicon atoms relative to oxygen atoms, with the volume ratio of the monosilane gas mixture to oxygen being about 1000:1. After that, the supply of oxygen is completely stopped, and the polycrystalline silicon film 4 is reduced to a thickness of approximately
Grow to 400nm.

なお多結晶シリコン膜4形成後、通常の気相成
長法によつて、窒化シリコン(Si3N4)膜5を厚
さ約100nm成長せしめ被覆層とすることが望ま
しい。以上の実施例の如くに形成された第1図a
の如き構造を有する基板に対して、第1図bの断
面図に示す如く、窒化シリコン膜5及び多結晶シ
リコン膜4を選択的に除去して島状に分離された
領域を形成し、波動或いは粒子ビーム照射により
多結晶シリコン膜4を融解、再結晶せしめて単結
晶シリコン膜よりなる領域4′を得る。
After forming the polycrystalline silicon film 4, it is preferable to grow a silicon nitride (Si 3 N 4 ) film 5 to a thickness of about 100 nm by a normal vapor phase growth method to form a covering layer. FIG. 1a formed as in the above embodiment
As shown in the cross-sectional view of FIG. 1b, the silicon nitride film 5 and the polycrystalline silicon film 4 are selectively removed from a substrate having a structure as shown in FIG. Alternatively, the polycrystalline silicon film 4 is melted and recrystallized by particle beam irradiation to obtain a region 4' made of a single-crystalline silicon film.

本実施例においては、融解したシリコンはシリ
コン過剰なシリコン酸化物上にあるために、二酸
化シリコン上にある場合と異なり濡れ性が良く、
単結晶シリコン領域4′とSixOy膜3との付着力
は充分にある。
In this example, since the molten silicon is on silicon oxide with excess silicon, it has good wettability unlike when it is on silicon dioxide.
Adhesion between the single crystal silicon region 4' and the SixOy film 3 is sufficient.

更に窒化シリコン膜5を被覆層とすることによ
り、再結晶後の単結晶シリコン領域4′の上面は
平滑であり、更にSixOy膜3との付着力が強化さ
れる効果を有する。
Further, by using the silicon nitride film 5 as a covering layer, the upper surface of the single crystal silicon region 4' after recrystallization is smooth, and the adhesive force with the SixOy film 3 is further strengthened.

次に他の実施例を第2図a及びbの断面図を用
いて説明する。単結晶シリコン基板11上の半導
体素子を形成すべき位置に選択的に二酸化シリコ
ン膜12を熱酸化法により厚さ約600nmに形成
し、次いで基板全面に前記例と同様な化学蒸着法
により多結晶シリコン膜13を厚さ約100nmに
成長せしめる。この基板全面にAr+イオンを約
180KeVにて1×1016/cm2程度のドーズ量にイオ
ン注入すると、多結晶シリコン膜13中のシリコ
ン原子がAr+イオンとの衝突により5×1015/cm2
程度二酸化シリコン膜12中に入る。なお本実施
例においては、Ar+イオンの分布のピークは二酸
化シリコン膜12中にある。
Next, another embodiment will be described using the cross-sectional views of FIGS. 2a and 2b. A silicon dioxide film 12 is selectively formed on the single crystal silicon substrate 11 at a position where a semiconductor element is to be formed to a thickness of about 600 nm by a thermal oxidation method, and then a polycrystalline silicon film 12 is formed on the entire surface of the substrate by a chemical vapor deposition method similar to the above example. A silicon film 13 is grown to a thickness of about 100 nm. Approximately Ar + ions are applied to the entire surface of this substrate.
When ions are implanted at a dose of about 1×10 16 /cm 2 at 180 KeV, silicon atoms in the polycrystalline silicon film 13 collide with Ar + ions, resulting in 5×10 15 /cm 2
It enters into the silicon dioxide film 12 to a certain extent. Note that in this embodiment, the peak of the distribution of Ar + ions is located in the silicon dioxide film 12.

以上の如く、二酸化シリコン膜12の表層部分
12′をシリコン過剰とした後に、再び化学蒸着
法により多結晶シリコンを厚さ約400nm成長せ
しめて、多結晶シリコン膜14を得る。
As described above, after the surface layer portion 12' of the silicon dioxide film 12 is made to have an excess of silicon, polycrystalline silicon is grown to a thickness of about 400 nm by chemical vapor deposition again to obtain the polycrystalline silicon film 14.

次いで、例えば10W連続波アルゴンレーザ光を
ビーム直径50μm、50%オーバーラツプとして10
cm/secの速度で走査照射することにより、多結
晶シリコン膜14を融解し、再結晶せしめると
き、基板11に接する部分より基板11の単結晶
にエピタキシヤルに再結晶化が進行し、二酸化シ
リコン膜12の上部に及んで単結晶シリコン膜1
4′を得る。本実施例においても前記実施例と同
様に単結晶シリコン膜14′と二酸化シリコン膜
12との付着力は充分である。
Next, for example, a 10W continuous wave argon laser beam is used with a beam diameter of 50μm and a 50% overlap.
When the polycrystalline silicon film 14 is melted and recrystallized by scanning irradiation at a speed of cm/sec, recrystallization progresses epitaxially to the single crystal of the substrate 11 from the part in contact with the substrate 11, and the silicon dioxide The single crystal silicon film 1 extends over the top of the film 12.
We get 4'. In this embodiment, as in the previous embodiment, the adhesion between the single crystal silicon film 14' and the silicon dioxide film 12 is sufficient.

なお前記第二の実施例の多結晶シリコン膜13
を200nm程度と厚くし、同様のAr+イオン注入を
行えばAr+イオン分布のピークは多結晶シリコン
膜13中にあり、一旦この多結晶シリコン膜13
を除去し、改めて多結晶シリコン膜14を成長せ
しめても同様の効果が得られる。
Note that the polycrystalline silicon film 13 of the second embodiment
If the thickness is increased to about 200 nm and similar Ar + ion implantation is performed, the peak of Ar + ion distribution will be in the polycrystalline silicon film 13, and once this polycrystalline silicon film 13
The same effect can be obtained by removing the polycrystalline silicon film 14 and growing the polycrystalline silicon film 14 again.

前記各実施例の如く、表層部分を深部よりシリ
コン過剰とした酸化シリコン絶縁膜上に形成され
た単結晶シリコン領域4′或いは14′に半導体素
子を形成すれば、絶縁膜との付着力不足等の懸念
なく安定した半導体素子を得ることが可能とな
る。
As in each of the above embodiments, if a semiconductor element is formed in the single crystal silicon region 4' or 14' formed on a silicon oxide insulating film in which the surface layer has an excess of silicon from the deep part, problems such as insufficient adhesion with the insulating film will occur. This makes it possible to obtain a stable semiconductor element without any concerns.

本発明は以上説明した如く、シリコン基板上に
酸化シリコンよりなる絶縁膜を形成し、該絶縁膜
上の非単結晶シリコン領域を波動或いは粒子ビー
ム照射により融解再結晶せしめて単結晶シリコン
とし、これより半導体素子を形成するSOI構造の
半導体装置の製造方法において、該絶縁膜の表層
部分をシリコン過剰とすることにより単結晶シリ
コン領域と該絶縁層との付着力を充分ならしめる
ものであつて、SOI構造の半導体装置の発展に大
きく寄与する。
As explained above, the present invention forms an insulating film made of silicon oxide on a silicon substrate, melts and recrystallizes a non-single crystal silicon region on the insulating film by wave or particle beam irradiation to form single crystal silicon. In a method for manufacturing a semiconductor device having an SOI structure in which a semiconductor element is formed, the surface layer portion of the insulating film is made to have an excess of silicon to ensure sufficient adhesion between the single crystal silicon region and the insulating layer, This will greatly contribute to the development of semiconductor devices with SOI structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは本発明の一実施例を示す基板
断面図、第2図a及びbは本発明の他の実施例を
示す基板断面図である。 図において、1はシリコン基板、2は二酸化シ
リコン絶縁膜、3はSixOy膜、4は多結晶シリコ
ン膜、5は窒化シリコン膜、11はシリコン基
板、12は二酸化シリコン膜、12′はシリコン
過剰な表層部分、13は多結晶シリコン膜、14
は多結晶シリコン膜を示す。
1A and 1B are cross-sectional views of a substrate showing one embodiment of the present invention, and FIGS. 2A and 2B are cross-sectional views of a substrate showing another embodiment of the present invention. In the figure, 1 is a silicon substrate, 2 is a silicon dioxide insulating film, 3 is a SixOy film, 4 is a polycrystalline silicon film, 5 is a silicon nitride film, 11 is a silicon substrate, 12 is a silicon dioxide film, and 12' is an excess silicon film. Surface layer portion, 13, polycrystalline silicon film, 14
indicates a polycrystalline silicon film.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上にシリコン酸化物よりなる絶縁膜を形
成し、前記絶縁膜を含む前記基板面上に非単結晶
シリコン膜を形成し、前記非単結晶シリコン膜を
波動或いは粒子ビーム照射により融解後結晶化せ
しめて単結晶シリコン膜とし、前記単結晶シリコ
ン膜に半導体素子を形成する半導体装置の製造方
法において、前記絶縁膜の深部に比較し表層部分
において酸素原子に対しシリコン原子を過剰とす
ることを特徴とする半導体装置の製造方法。
1. An insulating film made of silicon oxide is formed on a substrate, a non-single-crystal silicon film is formed on the surface of the substrate including the insulating film, and the non-single-crystal silicon film is melted by wave or particle beam irradiation and then crystallized. In the method for manufacturing a semiconductor device, in which a semiconductor element is formed in the single crystal silicon film, silicon atoms are present in excess of oxygen atoms in the surface layer of the insulating film compared to the deep part of the insulating film. A method for manufacturing a featured semiconductor device.
JP56111869A 1981-07-17 1981-07-17 Manufacture of semiconductor device Granted JPS5814529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56111869A JPS5814529A (en) 1981-07-17 1981-07-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56111869A JPS5814529A (en) 1981-07-17 1981-07-17 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5814529A JPS5814529A (en) 1983-01-27
JPS6317220B2 true JPS6317220B2 (en) 1988-04-13

Family

ID=14572196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56111869A Granted JPS5814529A (en) 1981-07-17 1981-07-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5814529A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614511B2 (en) * 1983-05-10 1994-02-23 ソニー株式会社 Crystallization method of semiconductor thin film
JPS61270812A (en) * 1985-05-22 1986-12-01 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5814529A (en) 1983-01-27

Similar Documents

Publication Publication Date Title
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
JPH0454370B2 (en)
JPS6046074B2 (en) Semiconductor crystal growth method
JPS6317220B2 (en)
JPH0475649B2 (en)
JPS58116722A (en) Preparation of semiconductor device
JPH0236052B2 (en)
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JPS5825220A (en) Manufacture of semiconductor substrate
JP2850319B2 (en) Method of forming silicon thin film
JPH0810669B2 (en) Method of forming SOI film
JPH0517693B2 (en)
JP2532252B2 (en) Method for manufacturing SOI substrate
JPH01264215A (en) Manufacture of semiconductor device
JPH02177534A (en) Manufacture of semiconductor device
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPH0335830B2 (en)
JPH04373171A (en) Forming method of semiconductor crystal article
JPH0334847B2 (en)
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JPH02105517A (en) Manufacture of semiconductor device
JPS6038809A (en) Manufacture of semiconductor device
JPS5812320A (en) Manufacture of semiconductor device
JPS5837916A (en) Manufacture of semiconductor device
JPS62226621A (en) Forming method for single crystal silicon thin film