JPS63172075A - Oil pressure controlling method by solenoid valve - Google Patents

Oil pressure controlling method by solenoid valve

Info

Publication number
JPS63172075A
JPS63172075A JP370387A JP370387A JPS63172075A JP S63172075 A JPS63172075 A JP S63172075A JP 370387 A JP370387 A JP 370387A JP 370387 A JP370387 A JP 370387A JP S63172075 A JPS63172075 A JP S63172075A
Authority
JP
Japan
Prior art keywords
solenoid valve
duty
time
oil pressure
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP370387A
Other languages
Japanese (ja)
Inventor
Koji Kitano
孝二 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP370387A priority Critical patent/JPS63172075A/en
Publication of JPS63172075A publication Critical patent/JPS63172075A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To securely carry out an oil pressure control in a low duty ratio zone by setting the operating time per one period at a defined time larger than the operation limit time of a solenoid valve and changing the period or nonoperating time of a duty control signal. CONSTITUTION:A pulley control valve 43 and a starting control valve 45 operate solenoids 44, 46 by means of a duty control signal outputted from an electronic control device 60. The operating time per one period is set at a defined time larger than the operation limit time of a solenoid valve, and a duty ratio call be varied by changing the period or nonoperating time. Thereby, a valve body can be securely operated even in a low duty ratio zone, e.g., below 20 %, generating an output oil pressure. Also, by changing the periods of the duty control signal at random, the resonance of a mechanical system and a hydraulic system can be securely prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電磁弁による油圧制御方法、特にデユーティ制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hydraulic control method using a solenoid valve, and more particularly to a duty control method.

従来技術とその問題点 従来、自動車用変速機やクラッチの油圧制御装置として
、コンピュータによるパルス幅変調制御(PWM)によ
って電磁弁を制御し、精密な油圧制御を実現するものが
知られている。
BACKGROUND OF THE INVENTION Conventionally, as hydraulic control devices for automobile transmissions and clutches, devices are known that control electromagnetic valves using pulse width modulation control (PWM) using a computer to achieve precise hydraulic control.

上記パルス幅変調制御は別名デユーティ制御とも言われ
、電磁弁に入力されるデユーティ制御信号の周期に対す
る作動時間の比(これをデユーティ比という)を変化さ
せることにより、第5図のようにデユーティ比にほぼ比
例した出力油圧を発生させるものである。
The above pulse width modulation control is also called duty control, and by changing the ratio of the operating time to the cycle of the duty control signal input to the solenoid valve (this is called the duty ratio), the duty ratio can be adjusted as shown in Fig. 5. This system generates an output oil pressure approximately proportional to.

一般にデユーティ制御に使用される周波数は数11z〜
数百Hz程度であるが、デユーティ周波数を低(すると
出力油圧の脈動が大きく、精密な油圧制御ができなくな
るため、デユーティ周波数を高める必要がある。ところ
が、デユーティ比と出力油圧の特性はデユーティ周波数
によって変化し、例えばデユーティ周波数が数Hz程度
の低周波数では第5図Aのように全デユーティ比域にお
いてデユーティ比と出力油圧とがほぼ比例した良好な特
性が得られるのに対し、数百Hz以上の高周波数では第
5図Bのように低デユーティ比域において出力油圧を殆
ど発生しなくなる。その原因は、電磁弁には作動限界時
間(弁体が一方の弁座から他方の弁座へ動作する最短時
間)が存在し、デユーティ比の変化につれて一周期当り
の作動時間が上記作動限界時間より短くなると、弁体が
動作し得なくなるからである。
Generally, the frequency used for duty control is several 11z ~
The frequency is approximately several hundred Hz, but the duty frequency must be set low (if this happens, the output hydraulic pressure will pulsate greatly and accurate hydraulic control will not be possible, so the duty frequency must be increased. However, the characteristics of the duty ratio and output hydraulic pressure depend on the duty frequency. For example, at a low duty frequency of several Hz, good characteristics are obtained in which the duty ratio and output oil pressure are almost proportional in the entire duty ratio range as shown in Fig. 5A, whereas at a duty frequency of several hundred Hz, At higher frequencies, almost no output oil pressure is generated in the low duty ratio region as shown in Figure 5B. This is because there is a minimum operating time), and as the duty ratio changes, if the operating time per cycle becomes shorter than the operating limit time, the valve body will no longer be able to operate.

発明の目的 本発明はかかる従来の問題点に鑑みてなされたもので、
その目的は、低デユーティ比域における油圧制御を確実
に行うことができる電磁弁による油圧制御方法を提供す
ることにある。
Purpose of the Invention The present invention has been made in view of such conventional problems.
The purpose is to provide a hydraulic control method using a solenoid valve that can reliably control hydraulic pressure in a low duty ratio range.

発明の構成 上記目的を達成するために、本発明は、電磁弁に入力さ
れるデユーティ制御信号の周期に対する作動時間の比を
変化させることにより、出力油圧を制御する油圧制御方
法において、デユーティ制御信号の一周期当りの作動時
間を電磁弁の作動限界時間以上の一定時間に設定し、か
つデユーティ制御信号の周期または非作動時間を変化さ
せることにより、周期に対する作動時間の比を可変とし
たものである。
Structure of the Invention In order to achieve the above object, the present invention provides a hydraulic control method for controlling output hydraulic pressure by changing the ratio of the operating time to the cycle of the duty control signal input to a solenoid valve. The operating time per cycle is set to a fixed time longer than the operating limit time of the solenoid valve, and the ratio of the operating time to the cycle is variable by changing the cycle or non-operating time of the duty control signal. be.

すなわち、デユーティ比が如何に低くなっても一周期当
りの作動時間を常に電磁弁の作動限界時間以上としであ
るので、電磁弁が確実に作動でき、従来のような低デユ
ーティ比域における油圧特性の悪化を防止できる。
In other words, no matter how low the duty ratio becomes, the operating time per cycle is always equal to or longer than the solenoid valve's operating limit time, so the solenoid valve can operate reliably and the hydraulic characteristics in the low duty ratio range are the same as in the past. can prevent deterioration.

実施例の説明 第1図は本発明の油圧制御方法を用いるためのVベルト
式無段変速機の一例を示し、エンジン1のクランク軸2
はダンパ機構3を介して入力軸4に接続されている。入
力軸4の端部には外歯ギヤ5が固定されており、この外
歯ギヤ5は無段変速装置10の駆動軸11に固定された
内歯ギヤ6と噛み合い、入力軸4の動力を減速して駆動
軸11に伝達している。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of a V-belt type continuously variable transmission for using the hydraulic control method of the present invention.
is connected to the input shaft 4 via the damper mechanism 3. An external gear 5 is fixed to the end of the input shaft 4, and this external gear 5 meshes with an internal gear 6 fixed to the drive shaft 11 of the continuously variable transmission 10 to transfer the power of the input shaft 4. The speed is decelerated and transmitted to the drive shaft 11.

無段変速装置10は駆動軸11に設けた駆動側プーリ1
2と、従動軸13に設けた従動側プーリ14と、両プー
リ間に巻き掛けたVベルト15とで構成されている。駆
動側プーリ12は固定シーブ12aと可動シーブ12b
とを有しており、可動シーブ12bの背後にはトルクカ
ム装置16と圧縮スプリング17とが設けられている。
The continuously variable transmission 10 includes a drive pulley 1 provided on a drive shaft 11.
2, a driven pulley 14 provided on the driven shaft 13, and a V-belt 15 wound between both pulleys. The drive pulley 12 has a fixed sheave 12a and a movable sheave 12b.
A torque cam device 16 and a compression spring 17 are provided behind the movable sheave 12b.

上記トルクカム装置16は入力トルクに比例した推力を
発生し、圧縮スプリング17はVベルト15が弛まない
だけの初期推力を発生し、これら推力によりVベルト1
5にトルク伝達に必要なベルト張力を付与している。一
方、従動側プーリ14も駆動側プーリ12と同様に、固
定シーブ14aと可動シーブ14bとを有しており、可
動シーブ14bの背後には変速比制御用の油圧室18が
設けられている。この油圧室18への油圧は後述するプ
ーリ制御弁43にて制御される。
The torque cam device 16 generates a thrust proportional to the input torque, and the compression spring 17 generates an initial thrust sufficient to prevent the V-belt 15 from loosening.
5 is given the belt tension necessary for torque transmission. On the other hand, similarly to the driving pulley 12, the driven pulley 14 has a fixed sheave 14a and a movable sheave 14b, and a hydraulic chamber 18 for speed ratio control is provided behind the movable sheave 14b. The hydraulic pressure to this hydraulic chamber 18 is controlled by a pulley control valve 43, which will be described later.

従動軸13の外周には中空軸19が回転自在に支持され
ており、従動軸13と中空軸19とは湿式多板クラッチ
からなる発進クラッチ20によって断続される。上記発
進クラッチ20への油圧は後述する発進制御弁45によ
って制御される。中空軸19には前進用ギヤ21とt&
進用ギヤ22とが回転自在に支持されており、前後進切
換用ドッグクラッチ23によって前進用ギヤ21又は後
進用ギヤ22のいずれか一方を中空軸19と連結するよ
うになっている。後進用アイドラ軸24には後進用ギヤ
22に噛み合う後進用アイドラギヤ25と、別の後進用
アイドラギヤ26とが固定されている。また、カウンタ
軸27には上記前進用ギヤ21と後進用アイドラギヤ2
6とに同時に噛み合うカウンタギヤ28と、終減速ギヤ
29とが固定されており、終減速ギヤ29はディファレ
ンシャル装置30のリングギヤ31に噛み合い、動力を
出力軸32に伝達している。
A hollow shaft 19 is rotatably supported on the outer periphery of the driven shaft 13, and the driven shaft 13 and the hollow shaft 19 are connected and connected by a starting clutch 20 consisting of a wet multi-disc clutch. The hydraulic pressure applied to the starting clutch 20 is controlled by a starting control valve 45, which will be described later. The hollow shaft 19 has a forward gear 21 and a t&
A forward gear 22 is rotatably supported, and either the forward gear 21 or the reverse gear 22 is connected to the hollow shaft 19 by a forward/reverse switching dog clutch 23 . A reverse idler gear 25 that meshes with the reverse gear 22 and another reverse idler gear 26 are fixed to the reverse idler shaft 24. Further, the counter shaft 27 is provided with the forward gear 21 and the reverse idler gear 2.
6 and a final reduction gear 29 are fixed, and the final reduction gear 29 meshes with a ring gear 31 of a differential device 30 and transmits power to an output shaft 32.

調圧弁40は油溜41からオイルポンプ42によって吐
出された油圧を調圧し、ライン圧としてプーリ制御弁4
3及び発進制御弁45に出力している。プーリ制御弁4
3及び発進制御弁45は電子制御装置60から出力され
るデユーティ制御信号によりソレノイド44.46を作
動させ、ライン圧を制御してそれぞれ従動側プーリ14
の油圧室18と発進クラッチ20とに制御油圧を出力し
ている。上記制御弁43.45の具体的構造は、例えば
第2図のようにスプール弁50と電磁弁52とを組合せ
たものの他、第3図のようにボール状弁体54で入力ボ
ート55とドレンボート56とを選択的に開閉し、出力
ボート57へ制御油圧を出力する3ボ一ト式電磁弁53
単体で構成してもよい。
The pressure regulating valve 40 regulates the hydraulic pressure discharged from the oil reservoir 41 by the oil pump 42, and outputs it as line pressure to the pulley control valve 4.
3 and the start control valve 45. Pulley control valve 4
3 and the start control valve 45 actuate the solenoids 44 and 46 in accordance with the duty control signal output from the electronic control device 60, and control the line pressure to control the driven pulley 14, respectively.
Control hydraulic pressure is output to the hydraulic chamber 18 and the starting clutch 20. The specific structure of the control valves 43 and 45 includes, for example, a combination of a spool valve 50 and a solenoid valve 52 as shown in FIG. A three-bottom solenoid valve 53 that selectively opens and closes the boat 56 and outputs control hydraulic pressure to the output boat 57.
It may be configured by a single unit.

上記制御弁43.45を第2図のようなスプール弁50
と信号油圧発生用電磁弁52とで構成した場合には、電
磁弁52に入力される信号のデユーティ比をり、とする
と、電磁弁52の出力油圧P1は次式で与えられる。
The control valves 43 and 45 are replaced by a spool valve 50 as shown in FIG.
and a signal oil pressure generation solenoid valve 52, and assuming that the duty ratio of the signal input to the solenoid valve 52 is , the output oil pressure P1 of the solenoid valve 52 is given by the following equation.

P arr= P :n X (1−D+ )    
 −(11上式において、P inは入力油圧(例えば
ライン圧)である。
P arr= P :n X (1-D+)
-(11 In the above equation, P in is the input oil pressure (for example, line pressure).

上記出力油圧P1はスプール50の右端室に信号油圧と
して入力され、スプール弁50から出力される制御油圧
PCは次式で与えられる。
The output oil pressure P1 is input as a signal oil pressure to the right end chamber of the spool 50, and the control oil pressure PC output from the spool valve 50 is given by the following equation.

P、XA、=Pゆ×A2+F    ・・・(2)上式
において、A、、A2はそれぞれスプール弁50のラン
ド50a、 50bの受圧面積、Fはスプリング51の
ばね荷重である。
P.

また、制御弁43.45を第3図のような電磁弁53単
体で構成した場合には、コイルに入力される信号のデユ
ーティ比をD2とすると、出力油圧PUは次式で与えら
れる。
Further, when the control valves 43, 45 are constructed of a single electromagnetic valve 53 as shown in FIG. 3, the output oil pressure PU is given by the following equation, assuming that the duty ratio of the signal input to the coil is D2.

Prm= P :n X D2        −−−
(31なお、上記実施例では電磁弁として常閉形を使用
した例について説明したが、常開形を使用してもよい。
Prm=P:nXD2 ---
(31. In the above embodiment, a normally closed type solenoid valve is used, but a normally open type may be used.

また、デユーティ比り、、D2も電磁弁の種類やその使
用態様によってデユーティ制御信号の周期に対するON
時間の比(ONデユーティ)のほか、周期に対するOF
F時間の比(OFFデヱーテイ)を使用することもでき
る。
In addition, depending on the type of solenoid valve and how it is used, D2 can also be turned ON with respect to the cycle of the duty control signal.
In addition to the time ratio (ON duty), OF
It is also possible to use the ratio of F times (OFF data).

上記構成のVベルト式無段変速機において、電磁弁に入
力されるデユーティ制御信号の作動周波数を精密な油圧
制御を行うために高くすると、周期が短くなるので、低
デユーティ比では一周期当りの作動時間(実施例ではO
N時間)が短くなる。
In the V-belt continuously variable transmission with the above configuration, when the operating frequency of the duty control signal input to the solenoid valve is increased to perform precise hydraulic control, the cycle becomes shorter, so at a low duty ratio, Operating time (O in the example)
N time) becomes shorter.

そして、作動時間が電磁弁の作動限界時間以下になると
、弁体が動作し得なくなり、第5図Bのように低デユー
ティ比時に出力油圧を発生しなくなる。
When the operating time becomes less than the operating limit time of the electromagnetic valve, the valve body becomes inoperable and no output oil pressure is generated at low duty ratios as shown in FIG. 5B.

本発明ではこのような問題を解消するため、−周期当り
の作動時間を電磁弁の作動限界時間以上の一定時間とし
、周期あるいは非作動時間(実施例ではOFF時間)を
変化させることにより・デユーティ比を可変としたもの
である。
In the present invention, in order to solve such problems, - the operating time per cycle is set to a fixed time longer than the operating limit time of the solenoid valve, and the cycle or non-operating time (in the embodiment, the OFF time) is changed. The ratio is variable.

第4図はデユーティ比が25%、50%、70%におけ
る本発明の各信号波形図であり、いずれの信号波形にお
いても作動時間(ON時間)Tは一定で、その値Tは電
磁弁の作動限界時間よりやや長めに設定されている。電
磁弁の作動限界時間は電磁弁の種類や形式によって異な
り、第3図のようなボール状弁体54を用いた電磁弁5
3の場合には弁体54が弁本体と摺動しないので、第2
図のようなニードル形弁体を用いた電磁弁52に比べて
作動限界時間が短く、数ms程度である。したがって、
作動時間Tを電磁弁の作動限界時間よりやや大きめの値
に設定し、周期あるいは非作動時間を変化させれば、2
0%以下の低デユーティ比域においても弁体が確実に動
作して出力油圧を発生させることができ、第5図Aと同
様な良好な特性を得ることができる。また、デユーティ
比が高くなるにつれて周波数も高くなるので、出力油圧
の脈動も解消される。
Figure 4 is a diagram of each signal waveform of the present invention when the duty ratio is 25%, 50%, and 70%. In any signal waveform, the operating time (ON time) T is constant, and the value T is the value of the solenoid valve. It is set slightly longer than the operating limit time. The operating limit time of a solenoid valve varies depending on the type and type of the solenoid valve.
In case 3, the valve body 54 does not slide on the valve body, so the second
Compared to the electromagnetic valve 52 using a needle-shaped valve body as shown in the figure, the operating limit time is shorter, on the order of several milliseconds. therefore,
If the operating time T is set to a value slightly larger than the operating limit time of the solenoid valve and the period or non-operating time is changed, 2
Even in a low duty ratio range of 0% or less, the valve body can operate reliably to generate output oil pressure, and good characteristics similar to those shown in FIG. 5A can be obtained. Furthermore, as the duty ratio increases, the frequency also increases, so pulsations in the output oil pressure are also eliminated.

また、一般の電磁弁ではスプリングのバネ力、コイルの
巻数、コイルの延抗などの部品バラツキにより作動限界
時間が一定せず、そのため第5図に示す特性の立ち上が
り点、即ち出力油圧が発生するときの最低デユーティ比
も一定しない。これに対し、本発明では作動時間を部品
バラツキを見込んだ作動限界時間以上の一定値に設定し
ておけば、上記のような出力油圧の立ち上がり点のバラ
ツキを解消できる。
In addition, in general solenoid valves, the operating limit time is not constant due to variations in parts such as the spring force of the spring, the number of turns of the coil, and the extension of the coil.As a result, the rising point of the characteristics shown in Figure 5, that is, the output oil pressure occurs. The minimum duty ratio is also not constant. On the other hand, in the present invention, by setting the operating time to a constant value equal to or longer than the operating limit time taking into account variations in parts, the above-mentioned variations in the rise point of the output oil pressure can be eliminated.

さらに、本発明では作動時間を一定とし、周期または非
作動時間を変化させることによりデユーティ比を可変と
したので、いわばデユーティ制御信号を周波数変調した
ことになり、次のような効果が期待できる。すなわち、
従来のようにデユーティ周波数が一定の場合には、その
周波数がエンジンの固有振動数や油圧回路の固有振動数
と一致すると共振を起こす、エンジンのような機械系の
振動源については、予めその固有振動数と異なるデユー
ティ周波数に設定しておけば共振を防げるが、油圧系の
振動に対しては入力油圧や温度によってその固有振動数
が変動するため、ある条件下で油圧系の固を振動数と異
なるデユーティ周波数に設定しても、入力油圧や温度が
変化すれば共振を起こすおそれがある。これに対し、本
発明の油圧制御方法ではデユーティ制御信号の周期をラ
ンダムに変化させることになるので、機械系および油圧
系との共振を確実に防止できる。さらに、デユーティ制
御では短い周期で弁体が弁座に衝突するために高周波騒
音が発生し、特に従来では周期が一定であるため単位時
間当りの衝突回数が一定となり、鋭い音圧ビークをもた
らす結果となっていたが、本発明ではデユーティ制御信
号の周期をランダムに変化させることにより、音圧ビー
クが緩和される効果がある。
Furthermore, in the present invention, the operating time is fixed and the duty ratio is made variable by changing the cycle or non-operating time, so that the duty control signal is frequency modulated, so to speak, and the following effects can be expected. That is,
Conventionally, when the duty frequency is constant, vibration sources of mechanical systems such as engines, which cause resonance when the frequency matches the natural frequency of the engine or the natural frequency of the hydraulic circuit, are Resonance can be prevented by setting a duty frequency that is different from the vibration frequency, but since the natural frequency of vibration in the hydraulic system varies depending on the input oil pressure and temperature, under certain conditions the duty frequency of the hydraulic system may change Even if a different duty frequency is set, resonance may occur if the input oil pressure or temperature changes. On the other hand, in the hydraulic control method of the present invention, the period of the duty control signal is changed randomly, so resonance with the mechanical system and the hydraulic system can be reliably prevented. Furthermore, in duty control, high-frequency noise is generated because the valve body collides with the valve seat in a short period.In particular, in conventional control, since the period is constant, the number of collisions per unit time is constant, resulting in a sharp sound pressure peak. However, in the present invention, by randomly changing the period of the duty control signal, the sound pressure peak is effectively alleviated.

発明の効果 以上の説明で明らかなように、本発明によればデユーテ
ィ制御信号の一周期当りの作動時間を電磁弁の弁体の作
動限界時間以上の一定時間に設定し、かつデユーティ制
御信号の周期または非作動時間を変化させることにより
デユーティ比を可変としたので、低デユーティ比域にお
いても電磁弁が確実に作動でき、従来のような低デユー
ティ比域における油圧特性の悪化を防止できる。また、
−周期当りの作動時間を部品バラツキを見込んだ値に設
定しておけば、部品バラツキに基づ(出力油圧の立ち上
がり点のバラツキも解消できる。しかも、低デユーティ
比域では低周波数、高デユーテイ比域では高周波数とな
るように周波数変調を行うことになるので、機械系およ
び油圧系との共振を防止でき、騒音の発生や油圧の脈動
を解消できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, the operating time per cycle of the duty control signal is set to a constant time longer than the operating limit time of the valve body of the solenoid valve, and the duty control signal is Since the duty ratio is made variable by changing the cycle or the non-operating time, the solenoid valve can operate reliably even in the low duty ratio range, and it is possible to prevent deterioration of hydraulic characteristics in the low duty ratio range as in the prior art. Also,
- By setting the operating time per cycle to a value that takes into account component variations, it is possible to eliminate variations in the rise point of output oil pressure based on component variations. Since frequency modulation is performed to obtain a high frequency in the range, resonance with the mechanical system and hydraulic system can be prevented, and noise generation and hydraulic pulsation can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される■ベルト式無段変速機の一
例の概略図、第2図、第3図は制御弁の具体的構造図、
第4図は本発明のデユーティ制御信号の信号波形図、第
5図は低周波数および高周波数におけるデユーティ比と
出力油圧との特性図である。 1・・・エンジン、10・・・無段変速装置、20・・
・発進クラッチ、43・・・ブーり制御弁、45・・・
発進制御弁、52゜53・・・電磁弁、60・・・電子
制御装置。 第1図 第2図        第3図 ヂエー予イに(’/、)
Figure 1 is a schematic diagram of an example of a belt-type continuously variable transmission to which the present invention is applied; Figures 2 and 3 are specific structural diagrams of a control valve;
FIG. 4 is a signal waveform diagram of the duty control signal of the present invention, and FIG. 5 is a characteristic diagram of the duty ratio and output oil pressure at low and high frequencies. 1... Engine, 10... Continuously variable transmission, 20...
・Starting clutch, 43...Booty control valve, 45...
Start control valve, 52° 53... Solenoid valve, 60... Electronic control device. Figure 1 Figure 2 Figure 3 Figure 3 ('/,)

Claims (1)

【特許請求の範囲】[Claims] 電磁弁に入力されるデューティ制御信号の周期に対する
作動時間の比を変化させることにより、出力油圧を制御
する油圧制御方法において、デューティ制御信号の一周
期当りの作動時間を電磁弁の作動限界時間以上の一定時
間に設定し、かつデューティ制御信号の周期または非作
動時間を変化させることにより、周期に対する作動時間
の比を可変としたことを特徴とする電磁弁による油圧制
御方法。
In a hydraulic control method that controls output oil pressure by changing the ratio of the operating time to the cycle of the duty control signal input to the solenoid valve, the operating time per cycle of the duty control signal is greater than or equal to the operating limit time of the solenoid valve. A hydraulic control method using a solenoid valve, characterized in that the ratio of the operating time to the cycle is made variable by setting the duty control signal to a constant time and changing the cycle or non-operating time of the duty control signal.
JP370387A 1987-01-10 1987-01-10 Oil pressure controlling method by solenoid valve Pending JPS63172075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP370387A JPS63172075A (en) 1987-01-10 1987-01-10 Oil pressure controlling method by solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP370387A JPS63172075A (en) 1987-01-10 1987-01-10 Oil pressure controlling method by solenoid valve

Publications (1)

Publication Number Publication Date
JPS63172075A true JPS63172075A (en) 1988-07-15

Family

ID=11564726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP370387A Pending JPS63172075A (en) 1987-01-10 1987-01-10 Oil pressure controlling method by solenoid valve

Country Status (1)

Country Link
JP (1) JPS63172075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234522A (en) * 2008-03-28 2009-10-15 Advics Co Ltd Solenoid valve control device and method for controlling solenoid valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881277A (en) * 1981-11-11 1983-05-16 Hitachi Ltd Control method of expansion valve
JPS58174773A (en) * 1982-04-05 1983-10-13 Komatsu Ltd Driving process of solenoid valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881277A (en) * 1981-11-11 1983-05-16 Hitachi Ltd Control method of expansion valve
JPS58174773A (en) * 1982-04-05 1983-10-13 Komatsu Ltd Driving process of solenoid valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234522A (en) * 2008-03-28 2009-10-15 Advics Co Ltd Solenoid valve control device and method for controlling solenoid valve

Similar Documents

Publication Publication Date Title
US4459879A (en) Torque ratio control device for a V-belt type continuously variable transmission for vehicles
US5083982A (en) System for controlling a continuously variable transmission of a motor vehicle
US6098644A (en) Method and apparatus for controlling duty-cycle type solenoid valve
EP0467519A1 (en) Pulse width modulation technique
JPH02300556A (en) Submodulation for pulse width modulation solenoid-operated control valve
US4854920A (en) Control device of non-stage transmission
JPH02138565A (en) Shift control device of continuously variable transmission
JPS63172075A (en) Oil pressure controlling method by solenoid valve
US4644827A (en) Hydraulic control system for an infinitely variable belt-drive transmission
JPS63172074A (en) Hydraulic controlling method by solenoid valve
JP2008101632A (en) Controller of automatic transmission for vehicle
JPH01216152A (en) Clutch controller for speed change gear
JPS6246063A (en) Hydraulic control device for speed change gear
JPS6328740A (en) Control method of continuously variable transmission associated with direct-coupled mechanism
JPS63203982A (en) Duty control method for solenoid valve
KR100369056B1 (en) Apparatus for enlargement control pressure of clutch using oil hammer appearance
KR100412809B1 (en) continuously variable transmission with resilient chain and cone type sprocket
KR20040018967A (en) Line pressure controlling device in continously variable transmission
JPH11236965A (en) Hydraulic control device for transmission
US11047402B2 (en) Electrically controllable hydraulic system for a vehicle transmission and method for controlling the same
JPS62113955A (en) Hydraulic control device for v-belt type continuously variable transmission
JP2779799B2 (en) Control device for automatic transmission
KR101134300B1 (en) Hydraulic control system of continuously variable transmission for vehicle
KR20020049309A (en) Shift ratio control system for cvt
JP2881505B2 (en) Control device for belt type continuously variable transmission