JPS6328740A - Control method of continuously variable transmission associated with direct-coupled mechanism - Google Patents

Control method of continuously variable transmission associated with direct-coupled mechanism

Info

Publication number
JPS6328740A
JPS6328740A JP17459886A JP17459886A JPS6328740A JP S6328740 A JPS6328740 A JP S6328740A JP 17459886 A JP17459886 A JP 17459886A JP 17459886 A JP17459886 A JP 17459886A JP S6328740 A JPS6328740 A JP S6328740A
Authority
JP
Japan
Prior art keywords
continuously variable
direct
variable transmission
drive
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17459886A
Other languages
Japanese (ja)
Inventor
Takumi Honda
匠 本多
Hiroshi Aikawa
合川 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP17459886A priority Critical patent/JPS6328740A/en
Publication of JPS6328740A publication Critical patent/JPS6328740A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To eliminate hunting phenomenon, by setting the width of hysteresis such that the engine rotation for switching from direct-coupled driving the continuously variable driving is lower than the engine rotation for switching from continuously variable driving to direct-coupled driving. CONSTITUTION:When the speed change ratio of a continuously variable speed change path reaches to a direct-coupled transmission ratio, a start clutch 20 is disengaged while a direct-coupled clutch 5 is engaged so as to switch to direct-coupled driving. During said direct-coupled driving, a continuously variable transmission 10 is controlled to the optimal speed change ratio at the lower speed ratio side than the highest speed ratio so as to idle the continuously variable transmission 10 turns reducing the loss torque. When it is switched from direct-coupled driving to continuously variable driving, a hysteresis width corresponding to the throttle opening is set below the target engine rotation and it is controlled such that the continuously variable transmission is not switched to the continuously variable speed change driving until the engine rotation drops below said hysteresis width. In such a manner, hunting phenomenon can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は直結機構付無段変速機の制御方法、特に直結駆
動と無段変速駆動との切換制御方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a control method for a continuously variable transmission with a direct coupling mechanism, and particularly to a method for controlling switching between a direct coupling drive and a continuously variable transmission drive.

従来技術とその問題点 従来、■ヘルド式無段変速機において、高速走行時の伝
達効率を高めるために入、出力軸間に固定伝達比を有す
る直結駆動経路と無段変速装置を有する無段変速経路と
を並列に設けたものが、例えば特公昭57−23136
号公報に記載されている。
Conventional technology and its problems Conventionally, in a held-type continuously variable transmission, a continuously variable transmission has a directly coupled drive path with a fixed transmission ratio between the input and output shafts and a continuously variable transmission device to improve transmission efficiency during high-speed running. For example, the one provided in parallel with the speed change path is
It is stated in the No.

上記の場合には直結駆動中、無段変速装置を停止させ、
動力iff失の低減並びにヘルドの劣化防止を図ってい
る。
In the above case, the continuously variable transmission is stopped during direct drive,
This aims to reduce power loss and prevent deterioration of the heald.

ところが、この種の直結機構付無段変速機の直結駆りj
、無段変速駆動の切換制御には次のような幾つかのi1
題点がある。
However, the direct drive of this type of continuously variable transmission with a direct drive mechanism
, the following i1 are used to control the switching of the continuously variable speed drive.
There is an issue.

まず、第1は切換ンヨソクの問題である。上記のように
直結駆動中、無段変速装置を停止させていると、直結駆
動から無段変速駆動へ切り換えた時、無段変速装置が急
激に始動されるため、捲めて大きなショックを伴うとと
もにヘルドのU&損などの問題を招くおそれがある。こ
の問題を解決するには、直結駆動中無段変速装置と入力
軸又は出力軸との間を遮断し、無段変速装置1を直結伝
達比(最高速比)に保って空転させる方法が考えられる
。この場合には、無段変速装置が直結駆すノ中常に空転
しているので、直結駆動から無段変速駆動へ急激に切り
換えてもショックを伴わず、ヘルドが破11するおそれ
もない。
The first problem is the switching problem. As mentioned above, if the continuously variable transmission is stopped during direct drive, the continuously variable transmission will suddenly start when switching from direct drive to continuously variable drive, resulting in a large shock. This may also lead to problems such as held U&loss. In order to solve this problem, one idea is to cut off the connection between the continuously variable transmission during direct drive and the input shaft or output shaft, and keep the continuously variable transmission 1 at the direct drive transmission ratio (maximum speed ratio) and let it idle. It will be done. In this case, since the continuously variable transmission is always idling during direct drive, there is no shock even if there is a sudden switch from direct drive to continuously variable drive, and there is no risk of the heald being damaged.

第2は直結駆動中におけるtn失1−ルクの問題である
。すなわち、上記のように直結¥jA勤中、無段変速装
置を最高速比で空転させると、直結駆動時間は全走行時
間の大部分を占めるため、空転時の無段変速装置のtn
失トルクが無視できなくなり、燃費が悪くなる。特に、
無段変速装置は一般の変速機と同様に最d)i連化のと
き[i大トルクが最も大きくなる傾向がある。この問題
は、直結駆動中、無段変速装置を最高速比より低速比側
、例えば中間変速比(変速比−1)に制御して空転させ
れば改菩できる。ところが、この場合には直結駆動から
無段変速駆動へ切り換わった時、直結駆動経路と無段変
速経路の変速比の相違により、急激へエンジンブレーキ
状態となって運転フ、C−リングを1nうことになる。
The second problem is the tn loss of 1-lux during direct drive. In other words, when the continuously variable transmission is idled at the highest speed ratio during direct drive as described above, the direct drive time occupies most of the total travel time, so the tn of the continuously variable transmission during idle is
Lost torque becomes impossible to ignore, and fuel efficiency worsens. especially,
In a continuously variable transmission, like a general transmission, d) the i large torque tends to be the largest when the i is connected. This problem can be solved by controlling the continuously variable transmission to a lower speed ratio than the highest speed ratio, for example, an intermediate speed ratio (speed ratio -1), and causing it to idle during direct drive. However, in this case, when switching from direct drive to continuously variable speed drive, due to the difference in gear ratio between the direct drive path and the continuously variable speed path, engine braking suddenly occurs, causing the C-ring to drop by 1n. That's what happens.

第3の問題は、駆動切換時における走行の不安定さであ
る。つまり、直結駆動から無段変1818駆りjへ切り
換える時のエンジン回転数と、無段変速駆動から直結駆
動へ切り換える時のエンジン回転数とを同一とすると、
この切換時点においてスロットル開度を少しでも変化さ
せると、直結′gAil+と無段変速駆動とを往復する
所謂ハンチング現象を引き起こし、走行が著しく不安定
になるという問題がある。
The third problem is the instability of running during drive switching. In other words, if the engine speed when switching from direct drive to continuously variable 1818 drive is the same as the engine speed when switching from continuously variable speed drive to direct drive,
If the throttle opening degree is changed even slightly at this switching point, a problem arises in that a so-called hunting phenomenon occurs in which the direct coupling 'gAil+ and the continuously variable speed drive go back and forth, resulting in extremely unstable running.

発明の目的 本発明は上記問題点に迄みてなされたもので、その目的
は、直結駆動時の損失トルクを低減し、直結駆動から無
段変速駆り」への切換時のエンジンブレーキシッソクを
軽減し、かつ駆動切換時の走行安定性を実現できる直粘
機横付無段変速機の制御方法を堤供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and its purpose is to reduce torque loss during direct drive, and reduce engine braking during switching from direct drive to continuously variable speed drive. The object of the present invention is to provide a control method for a continuously variable transmission with a horizontally viscous machine that can achieve running stability during drive switching.

発明の構成 上記目的を達成するために、本発明は、入、出力軸間に
、固定伝達比を有する直結駆動経路と無段変速装置を有
する無段変速経路とを並列に段け、直結駆動中、無段変
速装置を空転させるようにした直結機十■付無段変速機
において、直結駆動中、無段変速装置の変速比を直結駆
動へのりJ換時における最終変速比より低速比例へ制i
llするとともに、同一スロットル開度で直結駆動から
無段変速駆動へ切り換わる時のエンジン回転数が無段変
速駆動から直結駆動ヘリノり換わる時のエンジン回転数
より低くなるようにヒステリシス幅を設定し、エンジン
回転数が一ヒ記ヒステリンス幅内に入った時に、無段変
速装置の変速比を)′−め]!1速比測へ制1311す
るものである。
Structure of the Invention In order to achieve the above object, the present invention provides a direct drive path with a fixed transmission ratio and a continuously variable transmission path with a continuously variable transmission in parallel between the input and output shafts. In a continuously variable transmission with a direct-coupled gearbox that allows the continuously variable transmission to idle, during direct-coupling drive, the gear ratio of the continuously variable transmission is set to a lower speed proportional than the final gear ratio at the time of switching to direct-coupling drive. Control i
At the same time, the hysteresis width is set so that the engine speed when switching from direct drive to continuously variable speed drive is lower than the engine speed when switching from continuously variable speed drive to direct drive at the same throttle opening. , when the engine speed falls within the hysteresis range described in 1), change the gear ratio of the continuously variable transmission.)'-! This is to control 1311 the first speed ratio measurement.

すなわち、直結駆りj中は無段変速装置を最高速比より
必す低速比側へ制1l111 シた状態で空転さけるた
め、tU失トルクを低減できる。また、的拮駆+hから
無段変速駆fIljへの切換エンジン回転数を、無段変
速駆動から直結駆りJへのり月るエンジン回転数より低
くなるようにヒステリシス幅を設定したので、ハンチン
グ現象を解消でき、かつ上記ヒステリシス幅内に入った
時に無段変速装置を予め高速比側へ制御するため、直結
駆動から無段変速駆動へ切り換えた時の変速比の相違が
小さく、エンジン1転数がヒステリシス幅以下となった
時に即座に無段変速駆動へ切り換えてもエンジンブレー
キンヨノクを軽減できる。
That is, during direct drive, the continuously variable transmission is controlled from the highest speed ratio to the lowest speed ratio to avoid idling, so that tU lost torque can be reduced. In addition, the hysteresis width was set so that the engine speed when switching from target drive +h to continuously variable speed drive fIlj is lower than the engine speed when switching from continuously variable speed drive to direct drive J, so hunting phenomenon can be prevented. Since the continuously variable transmission is controlled in advance to the high speed ratio side when the hysteresis falls within the above hysteresis width, the difference in gear ratio when switching from direct drive to continuously variable speed drive is small, and the engine speed per rotation is small. Even if you immediately switch to continuously variable speed drive when the hysteresis width falls below, engine braking can be reduced.

実施例の説明 第1図は本発明にかかる直情機構付、無段変速機の一例
を示し、エンジンlのクランク軸2はダンパ機構3を介
して入力軸4に接続されている。人力軸4上には湿式多
板クラッチからなる直情クラッチ5と、回転自在な直結
駆動ギt−6とか設2すられており、直結クラッチ5は
後述する直結駆1lllI弁47によって直結駆動時に
直!11!;駆りjギヤ6を入力軸4に対して連結する
ようになっている。入力軸4の端部には外I7iチャフ
が固定されており、この外1!1ギート7は無段変速装
置10の駆υ」軸IIにi?il定された内歯ギヤ8と
噛み合い、入力軸4の4す】力を域側して駆りIf内山
1に(三重している。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows an example of a continuously variable transmission with a direct motion mechanism according to the present invention, in which a crankshaft 2 of an engine 1 is connected to an input shaft 4 via a damper mechanism 3. On the human power shaft 4, a direct clutch 5 consisting of a wet type multi-disc clutch and a rotatable direct drive gear t-6 are installed. ! 11! ; The driving gear 6 is connected to the input shaft 4. An outer I7i chaff is fixed to the end of the input shaft 4, and this outer I7i chaff is connected to the drive shaft II of the continuously variable transmission 10. It meshes with the determined internal gear 8, and drives the input shaft 4's 4th force to the inner gear 1 (triple).

無段変速装置10は駆動軸11に設けた駆動側ブー1月
2と、従動軸13に設けた従動側ブー1月4と、両ブー
り間に巻き掛けた■ヘルド15とで構成されている。駆
動側プーリ12は固定シーブ12aと可動シーブ12b
とを有しており、可動シーブ12bの背後にはトルクカ
ム装21Gと圧縮スプリング17とが設けられている。
The continuously variable transmission 10 is composed of a drive-side boot 2 provided on a drive shaft 11, a driven-side boo 4 provided on a driven shaft 13, and a heald 15 wound between both the boots. There is. The drive pulley 12 has a fixed sheave 12a and a movable sheave 12b.
A torque cam device 21G and a compression spring 17 are provided behind the movable sheave 12b.

上記トルクカム装216は入力トルクに比例した推力を
発生し、圧縮スプリング17は■ヘルド15が弛まない
だけの初期推力を発生し、これら推力により■ヘルド1
5にトルク伝達に必要なベルト張力を付与している。一
方、従動側プーリ14も駆動側プーリ12と同様に、固
定シーブ14aと可動シーブ14bとを有しており、可
動シーブ14bの背後には変速比制御用の油圧室18が
設けられている。この油圧室18の油圧は後述するプー
リ制御弁43にて制御される。
The torque cam device 216 generates a thrust proportional to the input torque, and the compression spring 17 generates an initial thrust sufficient to prevent the heald 15 from loosening.
5 is given the belt tension necessary for torque transmission. On the other hand, similarly to the driving pulley 12, the driven pulley 14 has a fixed sheave 14a and a movable sheave 14b, and a hydraulic chamber 18 for speed ratio control is provided behind the movable sheave 14b. The oil pressure in this oil pressure chamber 18 is controlled by a pulley control valve 43, which will be described later.

従動軸13の外周には中空軸19が回転自在に支持され
ており、従動軸13と中空軸19とは湿式多板クラッチ
からなる発進クラッチ20によってllS続される。上
記発進クラッチ20への油圧は後述する発進制御弁45
によって制御される。中空軸19には前進用ギヤ21と
後進用ギヤ22とが回転自在に支持されており、前後進
切換用ドッグクラッチ23によって前進用ギヤ21又は
後進用ギヤ22のいずれか一方を中空軸19と連結する
ようになっている。後進用アイドラ軸24には後進用ギ
ヤ22に噛み合う後進用アイドラギヤ25と、別の後進
用アイドラギヤ26とが固定されている。また、カウン
タ軸27には上記前進用ギヤ21と後進用アイドラギヤ
26とに同時に噛み合うカウンタギヤ28と、終減速ギ
ヤ29とが固定されており、終減速ギヤ29はディファ
レンシャル装置30のリングギヤ31に噛み合い、動力
を出力軸32に伝達している。
A hollow shaft 19 is rotatably supported on the outer periphery of the driven shaft 13, and the driven shaft 13 and the hollow shaft 19 are connected to each other by a starting clutch 20 consisting of a wet multi-disc clutch. The hydraulic pressure to the starting clutch 20 is provided by a starting control valve 45, which will be described later.
controlled by A forward gear 21 and a reverse gear 22 are rotatably supported on the hollow shaft 19, and a forward/reverse switching dog clutch 23 connects either the forward gear 21 or the reverse gear 22 to the hollow shaft 19. It is designed to be connected. A reverse idler gear 25 that meshes with the reverse gear 22 and another reverse idler gear 26 are fixed to the reverse idler shaft 24. Further, a counter gear 28 that meshes with the forward gear 21 and the reverse idler gear 26 at the same time, and a final reduction gear 29 are fixed to the counter shaft 27, and the final reduction gear 29 meshes with the ring gear 31 of the differential device 30. , transmits power to the output shaft 32.

上記無段変速機において、直結クラッチ5、直結駆動ギ
ヤ6、カウンタギヤ28、終減速ギヤ29、ディファレ
ンシャル装置30は直結駆動経路を構成し、外歯ギヤ7
、内歯ギヤ8、無段変速装置lO2発進クラッチ20、
前進用ギヤ21、カウンタギ−1・28、終減速ギヤ2
9、ディファレンンヤル装置30は無段変速経路(前進
時)を構成している。そして、直結駆動経路における入
力軸4と出力軸32間の直結伝達比!。は、無段変速経
路における人力軸4と出力軸32間の最高速比i o+
inに比べてやや低速比側に設定されている。
In the above continuously variable transmission, the direct coupling clutch 5, the direct coupling drive gear 6, the counter gear 28, the final reduction gear 29, and the differential device 30 constitute a direct coupling drive path, and the external gear 7
, internal gear 8, continuously variable transmission lO2 starting clutch 20,
Forward gear 21, counter gears 1 and 28, final reduction gear 2
9. The differential gear device 30 constitutes a continuously variable transmission path (when moving forward). And the direct transmission ratio between the input shaft 4 and the output shaft 32 in the direct drive path! . is the maximum speed ratio i o+ between the human power shaft 4 and the output shaft 32 in the continuously variable transmission path
The speed ratio is set to a slightly lower speed ratio than the in.

調圧弁40は油溜41からオイルポンプ42によって吐
出された油圧を調圧し、ライン圧としてプーリ制御弁4
31発進制御弁45.直結制御弁47に出力している。
The pressure regulating valve 40 regulates the hydraulic pressure discharged from the oil reservoir 41 by the oil pump 42, and outputs it as line pressure to the pulley control valve 4.
31 Start control valve 45. It is output to the direct control valve 47.

ブーり制7ffll弁435発進制御弁45及び直結制
御弁47はソレノイド44.46.48によってライン
圧を制?311 L、それぞれ従動側プーリ14の油圧
室18と発進クラッチ20と直結クラッチ5とに制御油
圧を出力している。
The boolean control 7ffll valve 435, the start control valve 45, and the direct control valve 47 control the line pressure by solenoids 44, 46, and 48. 311L, which outputs control hydraulic pressure to the hydraulic chamber 18 of the driven pulley 14, the starting clutch 20, and the direct coupling clutch 5, respectively.

制御回路50には、エンジン回転数、車速、スロットル
開度、ブレーキ信号、ポジションスイッチ信号などの信
」−が入力され、これら信号と予め落債されたデータと
を比較判別することにより、1転状態に応してソレノイ
ド4=L46.48に制御18勺、例えばデユーティ制
御信号を出力している。
Signals such as engine speed, vehicle speed, throttle opening, brake signal, position switch signal, etc. are input to the control circuit 50, and by comparing and determining these signals with data recorded in advance, one turn is determined. Depending on the state, a control signal, for example, a duty control signal, is output to solenoid 4=L46.48.

上記:Ijl 1ff11弁43,45.47(7) 
%体的+Rmハ、例エバ第2 [2!Iに示すようにス
プール弁51と電磁弁52とを組合せたものでもよく、
あるいは第3図に示すようにボール状弁体53で入力ポ
ート54とドレンポート55とを選択的に開閉し、出力
ポート56の出力油圧を制御する3ポ一ト式電磁弁単体
で構成してもよい。いずれの場合も、制御弁43,45
.47をデユーティ制御すれば、デユーティ比に比例し
た制御311油圧を出力できるので、無段変速装置lO
の変速比や発進クラッチ20の伝達トルクのル制御に好
適である。
Above: Ijl 1ff11 valve 43, 45.47 (7)
% Physical + Rm Ha, Example Eva No. 2 [2! It may be a combination of a spool valve 51 and a solenoid valve 52 as shown in I.
Alternatively, as shown in FIG. 3, it may be composed of a single three-point solenoid valve that selectively opens and closes the input port 54 and the drain port 55 with a ball-shaped valve body 53 and controls the output oil pressure of the output port 56. Good too. In either case, the control valves 43, 45
.. If the duty ratio of 47 is controlled, the control 311 oil pressure proportional to the duty ratio can be output, so the continuously variable transmission lO
This is suitable for controlling the transmission gear ratio of the starting clutch 20 and the transmission torque of the starting clutch 20.

なお、直結クラッチ5は単に断続制御のみであるから、
デユーティ制御を行う必要はなく、0N10FF制御の
みでもよい。
In addition, since the direct coupling clutch 5 only performs intermittent control,
There is no need to perform duty control, and only 0N10FF control may be used.

第・1図は上記無段変速機の変速線図を示し、その動作
を説明すると、まずスロットル開度を一定として発進す
る場合には、エンジン回転数が発進時の目標値(A点)
G4達するまでは発進クラッチ20を遮断し、A点に到
達した後は発進クラ、チ20を徐々に結合し、B点に到
達すると発進クラッチ20を完全結合快感に維持して発
進制御から変速制1allへ移行する。変速制illに
おいては、まず最低速比いmax)の直線に沿って加速
じ、エンジン回転数がそのときのスロットル開度に応し
た目標エンジン回転数Nc  (C点)に到達すると、
変速領域に移行し、目標エンジン回転数N、を保持しな
がら高速比側へ変速する。1叫[i変速経路の変速比が
直結伝達比l。(D点)に達すると、発進クラッチ20
を遮断するとともに直結クラッチ5を結合して直結駆り
)へ切換え、以後直結伝達比I。の直線に沿って走行す
る。
Figure 1 shows a speed change diagram of the above-mentioned continuously variable transmission. To explain its operation, first of all, when starting with a constant throttle opening, the engine speed is set to the target value at the time of starting (point A).
The starting clutch 20 is disconnected until reaching G4, and after reaching point A, the starting clutch 20 is gradually engaged, and when reaching point B, the starting clutch 20 is maintained in a fully engaged state, and the starting control is changed to shift control. Move to 1all. In the variable speed control, the engine is first accelerated along the straight line of the minimum speed ratio (max), and when the engine speed reaches the target engine speed Nc (point C) corresponding to the throttle opening at that time,
The engine shifts to a shift region and shifts toward a high speed ratio while maintaining the target engine speed N. 1 [The gear ratio of the i-shift path is the direct transmission ratio l. (Point D), the starting clutch 20
At the same time, the direct coupling clutch 5 is engaged to switch to direct coupling drive), and thereafter the direct coupling transmission ratio is I. travel along a straight line.

直結駆動中、無段変速装置10は無負荷状聾で空転を続
けるが、空転時のヘルド屈曲H1失は最高速比及び最低
速比で大きく、かつこの屈曲fi失と変速比との兼ね合
いによって、無段変速装置lOの空転時のin失トルク
は第5図のように最高速比で最も大きく、低速比側へ移
行するにつれて小さくなるという特性を示す。そこで、
直結駆動中は無段変速装置lOを最高速比より低速比側
の最適変速比、例えば中間変速比im (im−1)に
制1ffll Lで空転させ、ti失トルクを低減して
いる。なお、空転時における無段変速装置10の変速比
制御は、無段変速駆動時と同様にプーリ制御弁・13を
デユーティ制1311 L、、てもよいが、さほど積度
を必要としないのでfllなる0N10FF制御であっ
てもよい。
During direct drive, the continuously variable transmission 10 continues idling with no load, but during idling the heald bending H1 loss is large at the highest and lowest speed ratios, and due to the balance between this bending fi loss and the gear ratio. As shown in FIG. 5, the in-lost torque of the continuously variable transmission 1O during idling is greatest at the highest speed ratio, and decreases as it moves toward lower speed ratios. Therefore,
During direct drive, the continuously variable transmission IO is idled at an optimum speed ratio lower than the highest speed ratio, for example, an intermediate speed ratio im (im-1), to reduce ti loss torque. Note that the gear ratio control of the continuously variable transmission 10 during idling may be performed by controlling the pulley control valve 13 with a duty ratio of 1311 L, as in the case of continuously variable transmission driving, but since it does not require much accumulation, 0N10FF control may also be used.

また、無段変速駆動から直結駆動への切換は、上記のよ
うに目標エンジン回転数を維持したまま無段変速経路の
変速比が直結伝達比と一致した11.5に切り喚えれば
よいが、直結駆動から無段変速駆動へのりJ喚をエンジ
ン回転数が目標エンジン回転数と一致した時とすると、
スロットル開度をわずかに変化さ雇るだけで直結駆動と
無段変化駆動とが頻繁に切り換わり、所謂ノλンチング
現象を起こす。これを無くすため、第4図に示すように
目標エンジン回転数N、の下方にスロットル開度に応じ
たヒステリシス幅ΔF(を設定し、エンジン回転数がこ
のヒステリシス幅より低くなったときに初めて直結駆動
から無段変速駆動へ切り換わるように制御し、ハンチン
グを防止している。上記ヒステリシス幅Δ11は第6図
実線で示すように、低スロツトル開度域で大きく、高ス
ロットル開度域では小さくなるように設定されている。
Furthermore, switching from continuously variable transmission drive to direct transmission drive can be achieved by simply switching the gear ratio of the continuously variable transmission path to 11.5, which matches the direct transmission ratio, while maintaining the target engine speed as described above. , if the transition from direct drive to continuously variable speed drive is when the engine speed matches the target engine speed, then
A slight change in throttle opening causes frequent switching between direct drive and continuously variable drive, causing the so-called λ-nching phenomenon. In order to eliminate this, a hysteresis width ΔF (according to the throttle opening) is set below the target engine speed N as shown in Figure 4, and direct connection is only made when the engine speed becomes lower than this hysteresis width. The control switches from drive to continuously variable speed drive to prevent hunting.As shown by the solid line in Figure 6, the hysteresis width Δ11 is large in the low throttle opening range and small in the high throttle opening range. It is set to be.

これは、低スロツトル開度で走行する頻度は高スロット
ル開度時より遥かに高く、しかも低スロツトル開度域で
は頻繁にスロットル開度を変化させることが多いからで
ある。なお、ヒステリシス幅の設定は、第6図実線で示
すようにスロットル開度の増大につれて連続的に低下す
る場合に限らず、第6図破線のように段階的に変化させ
てもよい。
This is because the frequency of running at a low throttle opening is much higher than when driving at a high throttle opening, and moreover, the throttle opening is frequently changed in the low throttle opening range. Note that the setting of the hysteresis width is not limited to the case where it decreases continuously as the throttle opening degree increases, as shown by the solid line in FIG. 6, but may be changed stepwise as shown by the broken line in FIG.

ところで、上記のようにエンジン回転数がヒステリシス
幅以下(NE −ΔH以下)となった時に直結駆動から
無段変速駆動へ切り喚えるといっても、無段変速装置1
0が中間変速比imに維持されていると、直結伝達比i
。と中間変速比1fflの差のために急1斂なエンジン
ブレーキがかかり、運転フィーリングを打】うことにな
る。この問題を解消するため、本発明では直結駆TりJ
中にエンジン回転数がその時のスロットル開度に応した
ヒステリシス幅内に入った時1、無段変速装置IOを中
間変速比inから予め高速比側へ変化しておき、ヒステ
リシス幅以下となった11.5に即座に無段変速駆υJ
へ切り換えても、直1、l、伝達比との変速比差が小さ
いので切換時のエンジンブレーート/ヨ、りを軽減でき
るようにしている。なお、上記のようにエンジン回転数
がヒステリシス幅内に入った時には、その都度無段変速
装置lOを中間変速比から高速比側へ変速しなければな
らないが、無段変速装置lOは直結駆動中は空転してい
るので、変速は迅速であり、何ら支障がない。
By the way, even though it is possible to switch from direct drive to continuously variable transmission drive when the engine speed falls below the hysteresis width (NE - ΔH or below) as described above, the continuously variable transmission 1
0 is maintained at the intermediate gear ratio im, the direct transmission ratio i
. Due to the 1ffl difference between the intermediate gear ratio and the intermediate gear ratio, sudden engine braking is applied, which affects the driving feeling. In order to solve this problem, in the present invention, the direct drive T
During engine rotation, when the engine speed falls within the hysteresis width corresponding to the throttle opening at that time, the continuously variable transmission IO is changed from the intermediate gear ratio in to the high speed ratio in advance, and the speed becomes below the hysteresis width. Continuously variable speed drive υJ immediately at 11.5
Even when switching to the straight 1, 1, and transmission ratios, the difference in gear ratio is small, so the engine brake/yaw can be reduced when switching. As mentioned above, when the engine speed falls within the hysteresis range, the continuously variable transmission lO must be shifted from the intermediate gear ratio to the high speed ratio each time, but the continuously variable transmission lO is not in direct drive mode. Since it is idling, the gear shift is quick and there is no problem.

ここで、上記の直結駆動から無段変速駆動への具体的な
切換制御を第7図のフローチャートにしたがって説明す
る。
Here, specific switching control from the above-mentioned direct drive to continuously variable speed drive will be explained with reference to the flowchart of FIG. 7.

制御がスタートすると、まず直結駆動中か否かを−Fl
l別する(60)。この判別は、具体的には直結制御弁
47がONLでいるか、発進制御弁45がOFFしてい
るか、あるいは変速比が直結伝達比に固定されているか
否かで判別できる。直結駆1す」中でない場合には、次
に変速中か否かを判別する(61)。
When control starts, first check whether direct drive is in progress by -Fl
Separate (60). Specifically, this determination can be made based on whether the direct coupling control valve 47 is ONL, the start control valve 45 is OFF, or whether the gear ratio is fixed to the direct coupling transmission ratio. If the direct drive is not in progress, it is then determined whether or not the gears are being shifted (61).

変速中でなければ発進過程にあることを0味するので、
発進制御を行う(62)。この発進制御は、ブーり制御
弁43をON状態に維持し、発進側1llll弁、15
をデユーティ制御することにより行う。一方、変速中で
あれば変速制1fIllを行い(63)、発北;j;1
1 fコ11弁・15をON状態に維持し、プーリ制御
弁43をデユーティ制御する。
If you are not changing gears, you will have no idea that you are in the process of starting, so
Start control is performed (62). This starting control maintains the boolean control valve 43 in the ON state, and the starting side 1llllll valve, 15
This is done by controlling the duty. On the other hand, if the gear is being changed, perform the gear shift control 1fIll (63) and start north;
1 maintains the valves 11 and 15 in the ON state and performs duty control on the pulley control valve 43.

また、(60)の判別において直結駆動中の場合には、
その時のエンジン回転数Nがヒステリシス幅ΔH内に入
っているか、即ち N、−ΔH≦N≦N。
In addition, in the determination of (60), if direct drive is in progress,
Is the engine speed N at that time within the hysteresis width ΔH, that is, N, -ΔH≦N≦N?

であるか否かを判別する(64)。もしNINEであれ
ば、直結駆動を続行すべき状態にあるから、無段変速装
置10を中間変速比へ制御する(65)。また、N<N
、−ΔHの時には、既に無段変速駆動へ切り換えるべき
状態となっているので、即座に直結クラッチ5を遮断す
るとともに発進クラッチ20を締結し、無段変速駆動へ
切り喚える(66)。さらに、N、−Δl(≦N≦NE
の時には、直結駆動を続行するか無段変速駆動・\切り
換えるか不安定な状態にあるので、無段変速駆動へ切り
換えた時のエンジンブレーキショソクを軽減できるよう
に、無段変速装置10を予め中間変速比から高速比側へ
制御しておく (67)。
It is determined whether or not (64). If it is NINE, the continuously variable transmission 10 is controlled to an intermediate gear ratio (65) because the direct drive is in a state where it should be continued. Also, N<N
, -ΔH, it is already in a state to switch to continuously variable speed drive, so the direct coupling clutch 5 is immediately disconnected and the starting clutch 20 is engaged to switch to continuously variable speed drive (66). Furthermore, N, −Δl (≦N≦NE
At this time, it is unstable whether to continue direct drive or to switch to continuously variable transmission drive. Therefore, in order to reduce the engine brake shock when switching to continuously variable transmission drive, the continuously variable transmission 10 is switched on. Control is performed in advance from the intermediate gear ratio to the high speed ratio side (67).

なお、上記実施例では■ヘルド式無段変速機について説
明したが、本発明はトロイダル形無段変速機やその他の
如何なる直結機構付無段変速機にも通用できる。
Incidentally, in the above embodiment, the description has been given of the held type continuously variable transmission; however, the present invention can be applied to a toroidal type continuously variable transmission or any other continuously variable transmission with a direct coupling mechanism.

発明の効果 以上の説明で明らかなように、本発明によれば直結UA
勤中、無段変速装置を最高速比より必ず低速比側へ制御
した状態で空転させるため、m失トルクを低減でき、効
率の良い直結走行を実現できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, direct connection UA
During operation, the continuously variable transmission is always controlled to a lower speed ratio than the highest speed ratio and idles, so lost torque can be reduced and efficient direct drive can be achieved.

また、直結駆動から無段変速駆動への切換エンジン回転
数を、無段変速駆動から直結駆動への切換エンジン回転
数より低くなるようにヒステリシス幅を設定したので、
ハンチング現象を解消でき、安定した走行を実現できる
In addition, the hysteresis width was set so that the engine speed when switching from direct drive to continuously variable speed drive was lower than the engine speed when switching from continuously variable speed drive to direct drive.
Hunting phenomenon can be eliminated and stable running can be achieved.

さらに、直結駆動時のエンジン回転数がヒステリシス幅
内に入った時、無段変速装置を予め高速比αリヘ制御す
るため、直結駆動から無段変速駆動へ切り換えた時の変
速比の差が小さく、エンジン回転数がヒステリシス幅以
下となった時に即座に無段変速駆動へ切り換えてもエン
ジンブレーキノョソクを軽減できる。
Furthermore, when the engine speed during direct drive is within the hysteresis range, the continuously variable transmission is controlled to the high speed ratio α in advance, so the difference in gear ratio when switching from direct drive to continuously variable drive is small. Even if the system immediately switches to continuously variable speed drive when the engine speed falls below the hysteresis width, engine braking noise can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御方法を通用した直結機構付無段変
速機の一例の構成図、第2図、第3図は制御弁の具体的
構造図、第4図は変速線図、第5図は無段変速装置の損
失トルク特性図、第6図はスロットル開度とヒステリシ
ス幅との関係図、第7図は本発明の制御方法の一例のフ
ローチャート図である。 l・・・エンジン、4・・・入力軸、5・・・直結クラ
ッチ、6・・・直結駆シ」ギヤ、10・・・無段変速装
置、20・・・発進クラッチ、32・・・出力軸、43
・・・プーリ制御弁、45・・・発進制御弁、47・・
・直結制御弁、50・・・制御回路。 出 願 人  ダイハツ工業株式会社 代 理 人  弁理士 筒片 秀隆 第1図 ’、(’+ 2 l”!         、。31,
1第4図 第5図 8.1 イ;6B+ ↑ ス 0 ・Llしル昌度 第7図
Fig. 1 is a configuration diagram of an example of a continuously variable transmission with a direct coupling mechanism using the control method of the present invention, Figs. 2 and 3 are specific structural diagrams of the control valve, and Fig. 4 is a transmission diagram. FIG. 5 is a loss torque characteristic diagram of the continuously variable transmission, FIG. 6 is a relationship diagram between throttle opening and hysteresis width, and FIG. 7 is a flowchart of an example of the control method of the present invention. l...Engine, 4...Input shaft, 5...Direct coupling clutch, 6...Direct coupling drive gear, 10...Continuously variable transmission, 20...Starting clutch, 32... Output shaft, 43
...Pulley control valve, 45...Start control valve, 47...
- Directly connected control valve, 50... control circuit. Applicant Daihatsu Motor Co., Ltd. Agent Patent Attorney Hidetaka Tsutsukata Figure 1', ('+2 l'!,.31,
1 Figure 4 Figure 5 8.1 A; 6B+ ↑ S 0 ・Ll change rate Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)入、出力軸間に、固定伝達比を有する直結駆動経
路と無段変速装置を有する無段変速経路とを並列に設け
、直結駆動中、無段変速装置を空転させるようにした直
結機構付無段変速機において、直結駆動中、無段変速装
置の変速比を直結駆動への切換時における最終変速比よ
り低速比側へ制御するとともに、同一スロットル開度で
直結駆動から無段変速駆動へ切り換わる時のエンジン回
転数が無段変速駆動から直結駆動へ切り換わる時のエン
ジン回転数より低くなるようにヒステリシス幅を設定し
、エンジン回転数が上記ヒステリシス幅内に入った時に
、無段変速装置の変速比を予め高速比例へ制御すること
を特徴とする直結機構付無段変速機の制御方法。
(1) A direct drive path with a fixed transmission ratio and a continuously variable transmission path with a continuously variable transmission are provided in parallel between the input and output shafts, and the continuously variable transmission is idled during direct drive. In a continuously variable transmission with a mechanism, during direct drive, the gear ratio of the continuously variable transmission is controlled to a lower speed ratio than the final gear ratio at the time of switching to direct drive, and the gear ratio is changed from direct drive to continuously variable transmission with the same throttle opening. The hysteresis width is set so that the engine speed when switching to drive is lower than the engine speed when switching from continuously variable speed drive to direct drive, and when the engine speed falls within the above hysteresis width, the A control method for a continuously variable transmission with a direct coupling mechanism, characterized in that the gear ratio of the step-change transmission is controlled in advance to high-speed proportionality.
JP17459886A 1986-07-23 1986-07-23 Control method of continuously variable transmission associated with direct-coupled mechanism Pending JPS6328740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17459886A JPS6328740A (en) 1986-07-23 1986-07-23 Control method of continuously variable transmission associated with direct-coupled mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17459886A JPS6328740A (en) 1986-07-23 1986-07-23 Control method of continuously variable transmission associated with direct-coupled mechanism

Publications (1)

Publication Number Publication Date
JPS6328740A true JPS6328740A (en) 1988-02-06

Family

ID=15981369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17459886A Pending JPS6328740A (en) 1986-07-23 1986-07-23 Control method of continuously variable transmission associated with direct-coupled mechanism

Country Status (1)

Country Link
JP (1) JPS6328740A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112280A (en) * 1990-02-14 1992-05-12 Fuji Jukogyo Kabushiki Kaisha System for controlling a continuously variable transmission
US5135038A (en) * 1990-07-20 1992-08-04 The Goodyear Tire & Rubber Company Tire treads
US5301788A (en) * 1991-10-21 1994-04-12 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for transferring and positioning pallet
JP2010138961A (en) * 2008-12-10 2010-06-24 Jatco Ltd Transmission having a plurality of transmission routes, and control method therefor
US20120035818A1 (en) * 2009-04-13 2012-02-09 Toyota Jidosha Kabushiki Kaisha Driving force control device
WO2015162492A1 (en) 2014-04-25 2015-10-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
WO2015181615A1 (en) 2014-05-30 2015-12-03 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle transmission

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112280A (en) * 1990-02-14 1992-05-12 Fuji Jukogyo Kabushiki Kaisha System for controlling a continuously variable transmission
US5135038A (en) * 1990-07-20 1992-08-04 The Goodyear Tire & Rubber Company Tire treads
US5301788A (en) * 1991-10-21 1994-04-12 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for transferring and positioning pallet
JP2010138961A (en) * 2008-12-10 2010-06-24 Jatco Ltd Transmission having a plurality of transmission routes, and control method therefor
US20120035818A1 (en) * 2009-04-13 2012-02-09 Toyota Jidosha Kabushiki Kaisha Driving force control device
US8688337B2 (en) * 2009-04-13 2014-04-01 Toyota Jidosha Kabushiki Kaisha Driving force control device
WO2015162492A1 (en) 2014-04-25 2015-10-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
JP2015209915A (en) * 2014-04-25 2015-11-24 トヨタ自動車株式会社 Control device of vehicle
CN106233043A (en) * 2014-04-25 2016-12-14 丰田自动车株式会社 Control equipment for vehicle
US10323745B2 (en) 2014-04-25 2019-06-18 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle
WO2015181615A1 (en) 2014-05-30 2015-12-03 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle transmission
CN106415074A (en) * 2014-05-30 2017-02-15 丰田自动车株式会社 Control apparatus for vehicle transmission
US10047859B2 (en) 2014-05-30 2018-08-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle transmission

Similar Documents

Publication Publication Date Title
JP2743379B2 (en) Transmission hydraulic control device
JP2554698B2 (en) Transmission hydraulic control device
JP2722467B2 (en) V-belt type continuously variable transmission
JP2502241Y2 (en) Line pressure control device for V-belt type continuously variable transmission
JP2748511B2 (en) Transmission control device
JPS6328740A (en) Control method of continuously variable transmission associated with direct-coupled mechanism
JP2893757B2 (en) Transmission hydraulic control device
JP2605788B2 (en) Transmission control device
JPS6338759A (en) Method of controlling continuous variable transmission provided with direct-coupling mechanism
JPH01141271A (en) Switching control method for continuously variable transmission provided with direct-coupling mechanism
JPS6338750A (en) Hydraulic controller for v-belt type continuously variable transmission
JPH0338517Y2 (en)
JPS63231057A (en) Control device for continuously variable transmission with direct connection mechanism
JPH01164631A (en) Control device for automatic starting clutch
JPS6293562A (en) Switching control method of transmission
JPH01283470A (en) Continuously variable transmission for vehicle
JPS63227432A (en) Controller for continuously variable transmission with direct coupling mechanism
JPS63121535A (en) Control method for continuously variable transmission with direct coupling mechanism
JPS62215152A (en) Device for controlling wet clutch
JPS63154434A (en) V-belt type continuously variable transmission for vehicle
JPH0762499B2 (en) Hydraulic control device for V-belt type continuously variable transmission
JPH0198741A (en) Hydraulic control device for automatic transmission
JPS6390443A (en) Method of controlling start clutch for vehicle automatic transmission
JPH01148631A (en) Control method for continuously variable transmission of vehicle
JPH0667695B2 (en) Control device for automatic starting clutch