JPS63170253A - Glass/poly(carboxylic acid) cement composition - Google Patents

Glass/poly(carboxylic acid) cement composition

Info

Publication number
JPS63170253A
JPS63170253A JP62084922A JP8492287A JPS63170253A JP S63170253 A JPS63170253 A JP S63170253A JP 62084922 A JP62084922 A JP 62084922A JP 8492287 A JP8492287 A JP 8492287A JP S63170253 A JPS63170253 A JP S63170253A
Authority
JP
Japan
Prior art keywords
glass
strontium
manufacturing
strontium fluoride
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62084922A
Other languages
Japanese (ja)
Other versions
JP2572060B2 (en
Inventor
リヴハード ウイリアム ビリントン
ジル アン ウイリアムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dentsply Ltd
Original Assignee
Dentsply Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dentsply Ltd filed Critical Dentsply Ltd
Publication of JPS63170253A publication Critical patent/JPS63170253A/en
Application granted granted Critical
Publication of JP2572060B2 publication Critical patent/JP2572060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61K6/889Polycarboxylate cements; Glass ionomer cements

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)

Abstract

A process for producing a radiopaque cement comprises reacting a polymer containing free carboxyl groups (generally a homo or copolymer of acrylic acid) with a particulate acid-leachable source of polyvalent metal ions (such as an acid-leachable glass) in the presence of water and strontium fluoride.

Description

【発明の詳細な説明】 本発明は、ガラス/ポリ(カルボン酸)組成物の改良お
よびガラス/ポリ(カルボン酸)組成物に係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in glass/poly(carboxylic acid) compositions and to glass/poly(carboxylic acid) compositions.

ガラス/ポリ(カルボン酸)セメント組成物は、よく知
られており、既に確立されている。
Glass/poly(carboxylic acid) cement compositions are well known and established.

このような組成物は、基本的には、(i)遊離カルボン
酸基を含むポリマー(典型的にはアクリル酸のホモポリ
マーまたはコポリマー)および(it)酸浸出性多価金
属イオン源[例えばアルミノフルオロケイ酸カルシウム
ガラスのような酸で浸出されるガラス(laachab
leglass) ]から構成されている。水の存在に
、おいて、ポリ酸が多価金属イオン源から多価金属イオ
ンを浸出し、これらがポリマー分子鎖を架橋結合させて
固体物質(セメント)を与えるのに役立つ、このような
組成物は、専門的に信頼に足る議論がなされており、例
えば、“有機石材高分子材料”(Organolith
ic Macro−molecular Materi
alg)、著者ニー、ディー。
Such compositions essentially consist of (i) a polymer containing free carboxylic acid groups (typically a homopolymer or copolymer of acrylic acid) and (it) a source of acid-leachable polyvalent metal ions [e.g. Acid leached glasses such as calcium fluorosilicate glasses (laachab
It is composed of [legglass]]. In such a composition, in the presence of water, the polyacid leaches polyvalent metal ions from the polyvalent metal ion source and these serve to crosslink the polymer molecular chains to give a solid material (cement). Materials have been subject to reliable professional discussion, such as “Organolith polymeric materials.”
ic Macro-molecular Materi
alg), Author Ni, Dee.

ウィルソン(A、D、11i1son)およびニス、ク
リスプ(S、 Cr1spL応用科学出版社(Appl
iedScience Publishers) 、1
977 (特に4章参照)が取扱っている。
Wilson (A, D, 11ilson) and Niss, Crisp (S, Cr1spL Applied Science Publishers (Appl.
iedScience Publishers), 1
977 (see especially Chapter 4).

ガラス/ポリ(カルボン酸)セメント組成物は、歯科修
復材料(d antal r astorativem
aterial)として特別な用途を有することが見出
されているが、しかし実用的な欠点としては放射線透過
性があることで、本質的にX線を透過することが障害と
なっている。結果として、例えば、このような組成物を
使用して行なわれた歯科修復をX線技術で検査すること
が不可能となり、更に、動かされたり、人によって飲み
込まれたりすることのある歯科修復の任意の部分を、X
線技術を用いてその所在を確かめることが不可能となる
Glass/poly(carboxylic acid) cement compositions are used as dental restorative materials.
It has been found to have special uses as a material, but its practical drawback is that it is radiolucent, essentially making it a hindrance to transmit X-rays. As a result, for example, it becomes impossible to examine dental restorations made using such compositions with X-ray techniques, and furthermore, dental restorations that may be moved or swallowed by a person are Any part, X
It becomes impossible to ascertain its whereabouts using line technology.

歯物質の放射線不透過性(即ち歯物質がX線を吸収する
程度)は、歯物質の1mmと同じ放射線不透過性を有す
るアルミニウムの厚さくmm)によって便宜的に定義さ
れることができる。エナメル質の典型的な値は、エナメ
ル質mm当りでアルミニウム1.3−2.7mmであり
、象牙質では、象牙質mm当りでアルミニウム0 、6
−2 、0 m mとなる。
The radiopacity of a tooth material (ie the extent to which it absorbs X-rays) can be conveniently defined by the thickness of aluminum (mm) which has the same radiopacity as 1 mm of tooth material. Typical values for enamel are 1.3-2.7 mm of aluminum per mm of enamel, and for dentin 0.6 mm of aluminum per mm of dentin.
-2, 0 mm.

本発明によって、放射線不透過性セメント剤が、遊離カ
ルボキシル基を含むポリマー、酸浸出性多価金属イオン
源および水、更にフッ化ストロンチウムを含むことから
成る組成物から生成されることができるということがわ
かったのである。フッ化ストロンチウムは、他の若干放
射線不透過性性質を有している他の物質が存在していて
も、本質的にすべての放射線不透過性を与える、現在主
要な放射線不透過剤である6 更にフッ化ストロンチウムの使用は、光学的に透明な硬
化セメント剤(フッ化ストロンチウムが無い場合に得ら
れる硬化セメント剤に似ている)を与え、このことが本
発明の硬化セメント剤を歯科修復で価値有るものにして
いることが、見出されている。この半透明性は、 CI
L7゜値の表現で表わされれば、適切には0.7より少
なく、好ましくは0.6以下で、最も好ましくは0.5
以下である。
According to the present invention, a radiopaque cement can be produced from a composition comprising a polymer containing free carboxyl groups, an acid-leachable source of polyvalent metal ions and water, and further comprising strontium fluoride. That's what I found out. Strontium fluoride is currently the predominant radiopaque agent, providing essentially all radiopacity, even in the presence of other substances that have other, slightly radiopaque properties. Furthermore, the use of strontium fluoride provides an optically clear hardened cement (similar to the hardened cement that would be obtained in the absence of strontium fluoride), which makes the hardened cement of the present invention useful in dental restorations. What makes it valuable has been discovered. This translucency is due to CI
When expressed in terms of L7° value, it is suitably less than 0.7, preferably less than 0.6 and most preferably 0.5.
It is as follows.

従って、本発明によれば、遊離カルボキシル基を含むポ
リマーを、水およびフッ化ストロンチウムの存在下で微
粒子状の酸またはアルカリ浸出性多価金属イオン源と反
応させることから成る架橋結合セメント剤を製造する方
法が与えられる。
According to the invention, therefore, a crosslinked cement is produced which consists of reacting a polymer containing free carboxyl groups with a particulate source of acid- or alkali-leachable polyvalent metal ions in the presence of water and strontium fluoride. You will be given a way to do so.

使用時に満足な放射線不透過性を達成するためには、フ
ッ化ストロンチウムが、適切には、遊離カルボキシル基
を含むポリマー、酸浸出性多価金属イオン源およびフッ
化ストロンチウムの合計重量基準で、7.5から 50
重量%、好ましくは15から33重量%、より好ましく
は19から23重量%で存在している。
In order to achieve satisfactory radiopacity in use, strontium fluoride is suitably used in a proportion of 7 to 7 %, based on the total weight of the polymer containing free carboxyl groups, the acid-leachable polyvalent metal ion source, and the strontium fluoride. .5 to 50
Preferably from 15 to 33%, more preferably from 19 to 23% by weight.

多価金属イオン源は、例えば、アルミノフルオロケイ酸
カルシウムガラスのような酸浸出性ガラスであることが
でき、それは好ましくは、カルシウム(CaOとして計
算)9ないし25重量%;アルミニウム(AQ、O,と
して計算)28ないし38重量% 寥 シリカ(Sin
、として計算)25ないし30重量%;そしてフッ素(
F、として計算)0ないし12重量%;そしてリン(P
 * Osとして計算)Oないし9重量%を含んでなる
ものである1便宜のために、以後は多価金属イオン源を
単に“ガラス”と称することにする。理解されるところ
であろうが、フッ化ストロンチウム自身は、多価金属イ
オン源として役立つことができる。
The source of polyvalent metal ions can be, for example, an acid-leaching glass such as a calcium aluminofluorosilicate glass, which preferably contains 9 to 25% by weight of calcium (calculated as CaO); aluminum (AQ, O, ) 28 to 38% by weight Silica (Sin
, calculated as ) 25 to 30% by weight; and fluorine (calculated as
F, calculated as ) 0 to 12% by weight; and phosphorus (P
*calculated as Os).For convenience, the multivalent metal ion source will be referred to simply as "glass" hereinafter. As will be appreciated, strontium fluoride itself can serve as a source of multivalent metal ions.

遊離カルボキシル基を含むポリマーは、好ましくは、 
アクリル酸ホモポリマーである。
Polymers containing free carboxyl groups are preferably
It is an acrylic acid homopolymer.

アクリル酸コポリマーも使用することができるが、ホモ
ポリマーの方が好ましい[ディー。
Acrylic acid copolymers can also be used, but homopolymers are preferred [D.

ジェー、セッチェル(D、 J 、 5etchell
)および共同研究者、英国歯科学雑誌(B rftis
hDental Journal) 、 1985 、
 158巻、220頁参照]、アクリル酸ポリマーまた
はコポリマーは、適切には、20,000がら125.
000までの範囲の分子量を有し、好ましくは、35,
000ないし7o、ooOlそして最も好ましくは、4
5,000  から55.000  までの範囲の分子
量を有している0便宜のために、遊離カルボキシル基を
含むポリマーを今後単に“ポリアクリル酸″と称するこ
とにする。
J, Setchell (D, J, 5etchell
) and collaborators, British Dental Journal (B rftis
hDental Journal), 1985,
158, p. 220], the acrylic acid polymer or copolymer suitably has a molecular weight of between 20,000 and 125.
000, preferably 35,000, preferably 35,000,
000 to 7o, ooOl and most preferably 4
For convenience, polymers containing free carboxyl groups having molecular weights ranging from 5,000 to 55,000 will be referred to hereinafter simply as "polyacrylic acids".

ガラスは、微粒子の形状でなければならず。The glass must be in particulate form.

適切には0.5から60μmの範囲の粒径を有している
。ガラスの粒径は、これらの範囲内で、本組成物の1的
となる最終用途に応じて変化することができる。かくし
て1例えば。
Suitably they have a particle size in the range 0.5 to 60 μm. The particle size of the glass can vary within these ranges depending on the intended end use of the composition. Thus, for example.

本組成物が簡単な歯科修復材料(即ち充填材または封止
材)として使用されるべき場合には1粒径は適切には0
.5から40μmの範囲であり、好ましくは、1から3
0μm、最も好ましくは2から20μmの範囲であり、
そしていわゆる“複合”歯科修復材料(即ちエチレン系
不飽和樹脂物質、不活性微粒子充填剤および樹脂物質の
硬化剤の混合物)の下で副充填剤、基剤または裏打剤(
ライナー)として使用する目的の場合には、粒径は適切
には2から60μmの範囲、好ましくは2から40μm
、そして最も好ましくは5から30μmの範囲である。
If the composition is to be used as a simple dental restorative material (i.e. a filling or sealing material), a particle size of 1 is suitably 0.
.. in the range of 5 to 40 μm, preferably 1 to 3
0 μm, most preferably in the range of 2 to 20 μm;
and sub-fillers, bases or backings (
For use as a liner), the particle size suitably ranges from 2 to 60 μm, preferably from 2 to 40 μm.
, and most preferably in the range of 5 to 30 μm.

ポリアクリル酸のガラスに対する重量比率は、適切には
0.15 : 1から0.5 : 1、好ましくは0.
2 : 1から0.3 : 1であり、そして水のガラ
スに対する重量比率は、適切には0.2: 1から0.
5: 1.好ましくは約0.25:1である。
The weight ratio of polyacrylic acid to glass is suitably from 0.15:1 to 0.5:1, preferably 0.15:1 to 0.5:1.
2:1 to 0.3:1 and the weight ratio of water to glass is suitably between 0.2:1 and 0.2:1.
5: 1. Preferably it is about 0.25:1.

ポリアクリル酸とガラスの反応は、混合物の処理時間及
び/又は硬化時間を変えたりまたは調整したりするのに
役立つ他の物質の存在において行なわれることができ、
例えば酒石酸のようなヒドロキシカルボン酸が、処理時
間に影響することなしに組成物の硬化速度を増加させる
のに役立っている。
The reaction of polyacrylic acid and glass can be carried out in the presence of other substances that serve to change or adjust the processing and/or curing times of the mixture,
Hydroxycarboxylic acids, such as tartaric acid, have been useful in increasing the curing rate of the composition without affecting processing time.

ガラス、ポリアクリル酸およびフッ化ストロンチウムか
ら固体セメント剤を形成するための組成物は、二成分系
パックとして出されることができ、この−成分はポリア
クリル酸水溶液(必要により処理/硬化時間調整剤を含
む)を含んで成り、他成分はフッ化ストロンチウムと共
に微粒子ガラスを含んで成るものである。別の方法では
、乾燥混合物(トライブレンド)が、微粒子ガラスおよ
び粉末ポリマーおよびフッ化ストロンチウムから作り上
げられることができ、続いてこれに水を加えれば、セメ
ント形成組成物となる。
A composition for forming a solid cement from glass, polyacrylic acid and strontium fluoride can be presented as a two-component pack, in which the -component is an aqueous solution of polyacrylic acid (optionally a treatment/hardening time regulator). ), and other components include strontium fluoride and fine glass particles. Alternatively, a dry mixture (triblend) can be made up of particulate glass and powdered polymer and strontium fluoride, to which water is subsequently added to yield a cement-forming composition.

本発明に従って生成されるセメント剤は、一般的に放射
線不透過性であり、そしてこれらが顕著にベース−充填
剤、基剤またはライナーとして上述のいわゆる複合充填
剤材料の下で使用されるのに適していることが見出され
たのである。
The cementitious agents produced according to the present invention are generally radiopaque and they are particularly used as base-fillers, substrates or liners under the so-called composite filler materials mentioned above. It was found to be suitable.

多種類のこのような複合充填剤材料が、知られあるいは
提案されている。より普通に用いられるこれらの材料は
、ポレエチレン系の不飽和上ツマ−またはオリゴマー(
例えばビス−〇MAまたはその誘導体またはウレタンジ
アクリレート)、エチレン系不飽和成分(例えばエチレ
ングリコールジメタクリレート)、充填剤および重合開
始剤を含んでなるものである。典型的な充填剤は1粒径
が1から80μmの範囲にあるガラスセラミックスまた
は微粒子石英、またはホウケイ酸ガラス及び/又は粒径
0.005から0.2μmの範囲のコロイダルシリカで
ある0重合開始剤は、室温温度で作用する開始剤で1例
えば過酸化ベンゾイルおよび三級アミンであることがで
き、あるいは化学線照射感受性開始剤1例えばベンゾフ
ェノンまたはカンファーキノンであることができる。
A wide variety of such composite filler materials are known or proposed. These more commonly used materials are polyethylene-based unsaturated polymers or oligomers (
For example, bis-0MA or a derivative thereof or urethane diacrylate), an ethylenically unsaturated component (for example, ethylene glycol dimethacrylate), a filler, and a polymerization initiator. Typical fillers are glass ceramics or particulate quartz with particle sizes ranging from 1 to 80 μm, or borosilicate glasses and/or colloidal silica with particle sizes ranging from 0.005 to 0.2 μm. The initiator can be an initiator that operates at room temperature, such as benzoyl peroxide and a tertiary amine, or it can be an actinic radiation sensitive initiator, such as benzophenone or camphorquinone.

従って1本発明の別の具体例では、基剤、ライナーまた
は副充填剤を本発明方法に従って形成し、次に1個また
は1個以上のエチレン系不飽和化合物、微粒子充填剤お
よびエチレン系不飽和化合物用の重合開始剤を含んでな
る複合歯科組成物からのオーバレイイング充填剤を基剤
の上に形成することを含んで成る歯科修復方法が与えら
れる。
Thus, in another embodiment of the invention, a base, liner or subfiller is formed according to the method of the invention, and then one or more ethylenically unsaturated compounds, particulate filler and ethylenically unsaturated A dental restoration method is provided that comprises forming an overlaying filler on a base from a composite dental composition comprising a polymerization initiator for the compound.

フッ化ストロンチウムは、本発明に従って他の歯科修復
材料、例えば上述の複合型材料における放射線不透過剤
として用いられることができる。特に、フッ化ストロン
チウムは複合充填剤材料において、およびピットおよび
組織の密封剤において用いられることができ、ここでは
イオンでのフッ化物のカリエス(caries)抑制効
果が特に望ましいものであり、そしてフッ化ストロンチ
ウムの放射線不透過性効果が、再発カリエスの診断にお
いて手助けとなることができる。
Strontium fluoride can be used according to the invention as a radiopaque agent in other dental restorative materials, such as the composite materials mentioned above. In particular, strontium fluoride can be used in composite filler materials and in pit and tissue sealants, where the caries-inhibiting effects of fluoride on ions are particularly desirable, and strontium fluoride The radiopaque effect of strontium can aid in the diagnosis of recurrent caries.

より広い観点に立てば、本発明は、放射線不透過剤とし
て、好ましくは主要なまたは唯一の放射線不透過剤とし
てストロンチウムを含む樹脂構造物を与える。好ましく
は半透明であるこのような構造物は、構造物mm当りで
少なくともアルミニウム1.0mm、好ましくは少なく
とも1.5mm、  最も好ましくは構造物mm当りで
少なくともアルミニウム2.0mm の放射線不透過性
を適切に有している。このような構造物は、歯科修復方
法に適切に使用される。
In broader terms, the present invention provides resin structures that include strontium as a radiopaque agent, preferably as the primary or only radiopaque agent. Such structures, which are preferably translucent, have a radiopacity of at least 1.0 mm of aluminum per mm of structure, preferably at least 1.5 mm, and most preferably at least 2.0 mm of aluminum per mm of structure. Have it in place. Such structures are suitable for use in dental restorative methods.

本発明がよく理解されることができるために、次の諸実
施例が、唯説明の方法ということで与えられている。諸
実施例においては、すべてのパーセントは、別に指示さ
れない限り1重量パーセントとなっている。
In order that the invention may be better understood, the following examples are given by way of illustration only. In the examples, all percentages are 1 weight percent unless otherwise indicated.

去!tU セメント−形成粉末が、(a)  62.1重量%の微
粒子フルオロアルミノケイ酸カルシウムガラス[ケムフ
ィル■(Chemfil u )として市販]でソータ
ー平均径(S auter MeanDiameter
)  5 μmのもの、(b)15.1%の分子量45
,000を有するポリアクリル酸、(c)1.3%の酒
石酸、および (d)21.5%のフッ化ストロンチウ
ムから、製造された。
Leave! tU Cement-forming powder was mixed with (a) 62.1% by weight fine-grained calcium fluoroaluminosilicate glass (commercially available as Chemfil) with a sorter mean diameter.
) 5 μm, (b) 15.1% molecular weight 45
,000, (c) 1.3% tartaric acid, and (d) 21.5% strontium fluoride.

その粉末を、歯科用スパーチルおよびガラスブロックを
用いて、粉末/水比率6.8:1で、手で水と混合した
。得られたセメント剤は、典型的には23℃で、3分間
の作用時間を有し、セメント剤1mm当りアルミニウム
2.5mmの放射線不透過性を有しており。
The powder was mixed with water by hand using a dental spartil and a glass block at a powder/water ratio of 6.8:1. The resulting cement has a typical working time of 3 minutes at 23° C. and a radiopacity of 2.5 mm of aluminum/mm of cement.

圧縮強さ182MPa、  表面強さ15.3MPaで
、0.25%の溶解度であった。
The compressive strength was 182 MPa, the surface strength was 15.3 MPa, and the solubility was 0.25%.

去J42Lu 粉末を、69.3%の粉末ガラスと14.3%のフッ化
ストロンチウムを含んでいること以外は、実施例1で述
べられたと同じようにして製造した。同粉末を、実施例
1で述べられたと同じように評価し、典型的作用時間が
23℃で2分間であり、圧縮強さが204MPa、放射
線不透過性がセメント剤1mm当りでアルミニウム1.
4mmであることが見出された。
J42Lu powder was prepared in the same manner as described in Example 1, except that it contained 69.3% powdered glass and 14.3% strontium fluoride. The same powder was evaluated in the same manner as described in Example 1, with a typical working time of 2 minutes at 23°C, a compressive strength of 204 MPa, and a radiopacity of 1.0 mm of aluminum/mm of cement.
It was found to be 4 mm.

失産涯−1 ヒドロキシプロピルメタクリレート2モルとトリーメチ
ル−ヘキサメチレンジイソシアネートからのウレタン付
加体の5部を含む樹脂10グラムを、トリエチレングリ
コールジメタクリレート10グラム中に溶解する0次に
、この溶液中に、0.03 g  のカンファーキノン
および0.2gのメチルジェタノールアミンを溶解し、
最後に10μmより小さい粒径を有するフッ化ストロン
チウム15gを同溶液中に分散する。得られた組成物を
、プリズマライト(Pris+*alite)  [デ
ンツプライ社(Dentsply Inc、)エル、デ
、r−,=1−))ディビジミン(L、 D、 Cau
lk Division)の製品]を用いての化学線に
より、20秒間の照射によって重合し、ピットおよび亀
裂の封止に適する放射線不透過性の組成物を与える。
Abortion-1 10 grams of a resin containing 2 moles of hydroxypropyl methacrylate and 5 parts of a urethane adduct from trimethyl-hexamethylene diisocyanate are dissolved in 10 grams of triethylene glycol dimethacrylate. 0.03 g of camphorquinone and 0.2 g of methyljetanolamine were dissolved in
Finally, 15 g of strontium fluoride with a particle size of less than 10 μm are dispersed in the same solution. The resulting composition was mixed with Pris+*alite (Dentsply Inc. L, D, r-, =1-)) Divisimin (L, D, Cau).
Polymerized by irradiation for 20 seconds with actinic radiation using a product of LK Division) to give a radiopaque composition suitable for sealing pits and cracks.

Claims (1)

【特許請求の範囲】 1、遊離カルボキシル基を含むポリマーを水およびフッ
化ストロンチウムの存在下反応させることを含んでなる
架橋結合セメント剤の製造方法。 2、遊離カルボキシル基を含むポリマー、 浸出性多価イオン源およびフッ化ストロンチウムの合計
重量基準で、フッ化ストロンチウムが7.5から50重
量%の範囲で存在することを特徴とする特許請求の範囲
第1項記載による製造方法。 3、浸出性多価金属イオン源が酸浸出性ガラスであるこ
とを特徴とする特許請求の範囲第1項または第2項に記
載の製造方法。 4、酸浸出性ガラスが、アルミノフルオロケイ酸カルシ
ウムガラスであることを特徴とする特許請求の範囲第3
項記載による製造方法。 5、遊離カルボキシル基を含むポリマーが、アクリル酸
のホモポリマーまたはコポリマーであることを特徴とす
る特許請求の範囲第1項から第4項までのいずれか一項
に記載の製造方法。 6、遊離カルボキシル基を含むポリマーが、分子量35
,000から70,000までの範囲にあるアクリル酸
のホモポリマーであることを特徴とする特許請求の範囲
第5項記載による製造方法。 7、ガラスが0.5から60μmの範囲の粒径であるこ
とを特徴とする特許請求の範囲第1項から第6項までの
いずれか一項に記載の製造方法。 8、諸実施例に述べられている方法を本質的に特徴とす
る特許請求の範囲第1項記載による製造方法。 9、前記特許請求の範囲のいずれか一項に記載されてい
る方法に従って、基剤、ライナーまたは副充填剤を形成
し、次に1個または1個以上のエチレン系不飽和化合物
、微粒子充填剤およびエチレン系不飽和化合物用の重合
開始剤を含んでなる複合歯科組成物からのオーバレイイ
ング充填剤を副充填剤の上に形成することを含んでなる
歯科修復方法。 10、本質的に上述の諸特徴を含む特許請求の範囲第9
項記載による方法。 11、フッ化ストロンチウムを含む重合マトリックスを
含んでなる歯科修復材料。 12、重合マトリックスが、1個または1個以上のエチ
レン系不飽和化合物、微粒子充填剤および重合開始剤を
含んでなる複合組成物から形成されることを特徴とする
特許請求の範囲第11項記載の歯科修復材料。 13、重合マトリックスがポリアクリレート歯科セメン
ト剤であることを特徴とする特許請求の範囲第11項記
載による歯科修復材料。 14、ストロンチウムを放射線不透過剤として含むこと
を特徴とする放射線不透過性樹脂構造物。 15、ストロンチウムが、主要な放射線不透過剤である
ことを特徴とする特許請求の範囲第14項記載の構造物
。 16、ストロンチウムが、実際上唯一の放射線不透過剤
であることを特徴とする特許請求の範囲第15項記載の
構造物。 17、ストロンチウムが、フッ化ストロンチウムとして
存在することを特徴とする特許請求の範囲第14項から
第16項までのいずれか一項に記載の構造物。 18、構造物mm当りで、少なくともアルミニウム1.
0mmの放射線不透過性を有することを特徴とする特許
請求の範囲第14項から第17項までのいずれか一項に
記載の構造物。 19、構造物mm当りで、少なくともアルミニウム1.
5mmの放射線不透過性を有することを特徴とする特許
請求の範囲第18項記載の構造物。 20、構造物mm当りで、少なくともアルミニウム2.
0mmの放射線不透過性を有することを特徴とする特許
請求の範囲第19項記載の構造物。 21、実際上半透明であることを特徴とする特許請求の
範囲第14項から第20項までのいずれか一項に記載の
構造物。
Claims: 1. A method for producing a crosslinked cement comprising reacting a polymer containing free carboxyl groups in the presence of water and strontium fluoride. 2. Strontium fluoride is present in an amount ranging from 7.5 to 50% by weight, based on the total weight of the polymer containing free carboxyl groups, the leachable multivalent ion source, and the strontium fluoride. A manufacturing method according to item 1. 3. The manufacturing method according to claim 1 or 2, wherein the leaching polyvalent metal ion source is acid-leaching glass. 4. Claim 3, characterized in that the acid-leaching glass is calcium aluminofluorosilicate glass.
Manufacturing method as described in section. 5. The manufacturing method according to any one of claims 1 to 4, wherein the polymer containing free carboxyl groups is a homopolymer or copolymer of acrylic acid. 6. The polymer containing free carboxyl groups has a molecular weight of 35
A method according to claim 5, characterized in that it is a homopolymer of acrylic acid having a molecular weight ranging from 1,000 to 70,000. 7. The manufacturing method according to any one of claims 1 to 6, wherein the glass has a particle size in the range of 0.5 to 60 μm. 8. A manufacturing method according to claim 1, which is essentially characterized by the method described in the Examples. 9. Forming the base, liner or subfiller according to the method described in any one of the preceding claims, and then forming one or more ethylenically unsaturated compounds, particulate fillers. and forming an overlaying filler over a secondary filler from a composite dental composition comprising a polymerization initiator for ethylenically unsaturated compounds. 10. Claim 9 comprising essentially the features described above.
Method according to section. 11. A dental restorative material comprising a polymeric matrix containing strontium fluoride. 12. The polymerization matrix is formed from a composite composition comprising one or more ethylenically unsaturated compounds, a particulate filler, and a polymerization initiator. dental restorative materials. 13. Dental restorative material according to claim 11, characterized in that the polymeric matrix is a polyacrylate dental cement. 14. A radiopaque resin structure containing strontium as a radiopaque agent. 15. The structure of claim 14, wherein strontium is the principal radiopaque agent. 16. The structure of claim 15, wherein strontium is virtually the only radiopaque agent. 17. Structure according to any one of claims 14 to 16, characterized in that the strontium is present as strontium fluoride. 18, per mm of structure, at least 1.
18. A structure according to any one of claims 14 to 17, characterized in that it has a radiopacity of 0 mm. 19. per mm of structure, at least 1.
19. Structure according to claim 18, characterized in that it has a radiopacity of 5 mm. 20, per mm of structure, at least 2.
20. A structure according to claim 19, characterized in that it has a radiopacity of 0 mm. 21. Structure according to any one of claims 14 to 20, characterized in that it is substantially translucent in nature.
JP62084922A 1986-04-08 1987-04-08 Dental restoration material Expired - Lifetime JP2572060B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8608546 1986-04-08
GB8608546A GB2190383B (en) 1986-04-08 1986-04-08 Glass/poly (carboxylic acid)cement compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8095279A Division JP2674982B2 (en) 1986-04-08 1996-04-17 Glass / poly (carboxylic acid) cement composition

Publications (2)

Publication Number Publication Date
JPS63170253A true JPS63170253A (en) 1988-07-14
JP2572060B2 JP2572060B2 (en) 1997-01-16

Family

ID=10595867

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62084922A Expired - Lifetime JP2572060B2 (en) 1986-04-08 1987-04-08 Dental restoration material
JP8095279A Expired - Lifetime JP2674982B2 (en) 1986-04-08 1996-04-17 Glass / poly (carboxylic acid) cement composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP8095279A Expired - Lifetime JP2674982B2 (en) 1986-04-08 1996-04-17 Glass / poly (carboxylic acid) cement composition

Country Status (10)

Country Link
US (2) US4797431A (en)
EP (1) EP0244959B1 (en)
JP (2) JP2572060B2 (en)
AT (1) ATE80789T1 (en)
AU (1) AU595871B2 (en)
BR (1) BR8701665A (en)
CA (1) CA1319774C (en)
DE (1) DE3781827T2 (en)
GB (1) GB2190383B (en)
ZA (1) ZA872448B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234305A (en) * 1990-07-31 1992-08-24 Thera G Fuer Patentverwert Mbh Processable material and use thereof as filler for root channel of tooth
JP2012127935A (en) * 2010-12-10 2012-07-05 Westinghouse Electric Co Llc Nuclear reactor cavity arrangements for ice capacitor type plants

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU618772B2 (en) * 1987-12-30 1992-01-09 Minnesota Mining And Manufacturing Company Photocurable ionomer cement systems
AU2773789A (en) * 1988-01-15 1989-07-20 Kerr Manufacturing Company Dual curing glass ionomer dental cement
DE3907663A1 (en) * 1989-03-09 1990-09-13 Espe Stiftung BONE REPLACEMENT FROM GLASIONOMIC CEMENT
US5084491A (en) * 1989-03-16 1992-01-28 The Ohio University Reinforcing glass ionomer dental filling material with stainless steel, or metals thereof
US5035615A (en) * 1990-05-31 1991-07-30 Franklin Din Dental filling band and method of use
US5525648A (en) * 1991-12-31 1996-06-11 Minnesota Mining And Manufacturing Company Method for adhering to hard tissue
US5338773A (en) * 1993-04-19 1994-08-16 Dentsply Research & Development Corp. Dental composition and method
US5710194A (en) 1993-04-19 1998-01-20 Dentsply Research & Development Corp. Dental compounds, compositions, products and methods
US6391940B1 (en) 1993-04-19 2002-05-21 Dentsply Research & Development Corp. Method and composition for adhering to metal dental structure
US6500879B1 (en) 1993-04-19 2002-12-31 Dentsply Research & Development Corp. Dental composition and method
DE19726103A1 (en) * 1997-06-19 1998-12-24 Muehlbauer Ernst Kg Aluminofluorosilicate glass
US5859089A (en) * 1997-07-01 1999-01-12 The Kerr Corporation Dental restorative compositions
DE19757647C2 (en) * 1997-12-15 2003-10-23 Ivoclar Vivadent Ag Ion-releasing composite material
DE19757645B4 (en) * 1997-12-15 2004-07-29 Ivoclar Vivadent Ag Polymerizable composite material and its use
US6353039B1 (en) 1997-12-15 2002-03-05 Ivoclar Ag Polymerizable composite material
US6133339A (en) * 1998-09-24 2000-10-17 Kerr Corporation Dental cement for a temporary dental prosthesis or appliance and method of use
JP4837183B2 (en) * 2001-03-30 2011-12-14 株式会社松風 Fluorine sustained release aesthetic dental composition
EP1811943B1 (en) * 2004-11-12 2017-03-08 Dentsply DeTrey GmbH Dental glass composition
BRPI1015155B1 (en) * 2009-04-01 2022-07-19 Difusion Technologies, Inc. BONE GRAFT SUBSTITUTE, IMPLANT AND INTRACORPORAL DEVICE, AS WELL AS METHODS FOR MODULATION OF BONE MINERALIZATION AND FORMATION, TO PROMOTE SPINAL FUSION AND TO SELECTIVELY OVERREGULATE THE EXPRESSION OF BONE MORPHOGENETIC PROTEINS
US9492584B2 (en) 2009-11-25 2016-11-15 Difusion Technologies, Inc. Post-charging of zeolite doped plastics with antimicrobial metal ions
BR112012016027B1 (en) 2009-12-11 2019-01-15 Difusion Technologies, Inc. production method of polyetheretherketone antimicrobial implants
RU2643915C2 (en) 2010-05-07 2018-02-06 Дифьюжн Текнолоджиз, Инк. Medical implants with higher hydrophility
WO2013067207A2 (en) * 2011-11-02 2013-05-10 Triodent Holdings Limited An improved dental material and method
WO2013163196A1 (en) * 2012-04-25 2013-10-31 Therametric Technologies, Inc. Fluoride varnish
US9107838B2 (en) 2012-04-25 2015-08-18 Therametrics Technologies, Inc. Fluoride varnish
WO2013167971A1 (en) 2012-05-07 2013-11-14 Mast-Jagermeister Se Chilled alcoholic beverage dispenser
WO2014016707A2 (en) 2012-05-09 2014-01-30 Ossdsign Ab Compositions comprising injectable biomaterial cement and radiopacity-improving agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428285A (en) * 1977-08-04 1979-03-02 Eastman Kodak Co Method of manufacturing luminescent screen
JPS5755059A (en) * 1980-09-18 1982-04-01 Tokyo Shibaura Electric Co Method of producing beam type bulb
JPS599500A (en) * 1982-07-09 1984-01-18 Hitachi Ltd Removing device for water remaining in tube
JPS59225400A (en) * 1983-06-07 1984-12-18 富士写真フイルム株式会社 Radiation sensitizing screen
JPS6039825A (en) * 1983-08-12 1985-03-01 Nec Corp Formation of semiconductor active layer

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32073A (en) * 1861-04-16 Improvement in plows
US3814717A (en) * 1970-12-04 1974-06-04 Dental Materials Section Labor Poly(carboxylic acid)-fluoroalumino-silicate glass surgical cement
US3986998A (en) * 1971-01-15 1976-10-19 Espe, Fabrik Pharmazeutischer Praparate Gmbh Mixing liquid for silicate cements
US4082722A (en) * 1971-01-15 1978-04-04 Werner Schmitt Pre-mixed dental composition for the preparation of a dental silicate cement
GB1422337A (en) * 1972-04-18 1976-01-28
US4209434A (en) * 1972-04-18 1980-06-24 National Research Development Corporation Dental cement containing poly(carboxylic acid), chelating agent and glass cement powder
GB1484454A (en) * 1973-08-21 1977-09-01 Nat Res Dev Poly-(carboxylate)cements
GB1483816A (en) * 1973-09-28 1977-08-24 Lee Pharmaceuticals X-ray opaque filler composition useful in dental and medical restorative compositions
US4032504A (en) * 1973-09-28 1977-06-28 Lee Pharmaceuticals X-ray opaque filler useful in dental and medical restorative compounds
US3971754A (en) * 1973-12-10 1976-07-27 Pennwalt Corporation X-ray opaque, enamel-matching dental filling composition
US4003368A (en) * 1974-06-27 1977-01-18 Armco Steel Corporation Article transparent to microwaves and process for making same
GB1532954A (en) * 1974-10-24 1978-11-22 Nat Res Dev Poly-(carboxylate)cements
JPS52101893A (en) * 1976-02-24 1977-08-26 Nippon Kayaku Kk Liquid hardener for dental glass ionomer cement
GB1587904A (en) * 1976-11-12 1981-04-15 Ici Ltd Surgical cement compositions
JPS5367290A (en) * 1976-11-16 1978-06-15 Sankin Ind Co Hydraulic cement for dental treatment
BR7708055A (en) * 1976-12-03 1978-09-05 Smith & Nephew Res PROCESS FOR THE PRODUCTION OF A CEMENT, CURING COMPOSITION, PROCESS FOR PREPARING CURING COMPOSITIONS, GLASS
US4217264A (en) * 1977-04-01 1980-08-12 American Dental Association Health Foundation Microporous glassy fillers for dental resin composites
GB2012773B (en) * 1978-01-17 1982-09-22 Crisp S Hardenable compositions
JPS55500040A (en) * 1978-01-17 1980-01-31
US4160758A (en) * 1978-01-30 1979-07-10 Exxon Research & Engineering Co. Method of manufacture of elastomer polyester molding compounds
US4288355A (en) * 1978-05-22 1981-09-08 Minnesota Mining And Manufacturing Company Surgical cement composition
WO1980000409A1 (en) * 1978-08-29 1980-03-20 I Sced Hardenable compositions
US4215033A (en) * 1978-09-08 1980-07-29 American Dental Association Health Foundation Composite dental material
GB2035290B (en) * 1978-11-24 1982-11-10 Standard Telephones Cables Ltd Glass compositions and cements incorporating such compositions
GB2039878B (en) * 1979-01-09 1983-05-11 Standard Telephones Cables Ltd Glass composition for water setting ion-polymer cements
DE2929121A1 (en) * 1979-07-18 1981-02-12 Espe Pharm Praep CALCIUM ALUMINUM FLUOROSILICATE GLASS POWDER AND ITS USE
DE2932823A1 (en) * 1979-08-13 1981-03-12 Espe Pharm Praep MIXING COMPONENT FOR GLASIONOMER CEMENTS
US4378248A (en) * 1980-07-02 1983-03-29 Griffith Jack R Bonding dental porcelain
USRE32073E (en) 1980-09-08 1986-01-28 Minnesota Mining And Manufacturing Company Dental filling composition utilizing zinc-containing inorganic filler
DE3039664C2 (en) * 1980-10-21 1986-07-17 Kulzer & Co Gmbh, 6380 Bad Homburg Radiopaque dental material with filler based on silicate
US4317681A (en) * 1980-11-07 1982-03-02 Johnson & Johnson Modifiers for ion-leachable cement compositions
US4401773A (en) * 1980-11-07 1983-08-30 Johnson And Johnson Highly reactive ion-leachable glass
US4492777A (en) * 1982-11-26 1985-01-08 Johnson & Johnson Dental Products Co. Heat treated barium or strontium glass
US4530766A (en) * 1983-04-15 1985-07-23 Rohm And Haas Company Method of inhibiting scaling in aqueous systems with low molecular weight copolymers
DE3609038A1 (en) * 1986-03-18 1987-09-24 Espe Stiftung ROENTGENOPAKE POLYMERIZABLE DENTAL MATERIALS
US4738722A (en) * 1986-09-15 1988-04-19 Den-Mat Corporation Dental compositions incorporating glass ionomers
JPH0656157A (en) * 1992-07-28 1994-03-01 Taisei Kako Kk Holder for wrapping film container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428285A (en) * 1977-08-04 1979-03-02 Eastman Kodak Co Method of manufacturing luminescent screen
JPS5755059A (en) * 1980-09-18 1982-04-01 Tokyo Shibaura Electric Co Method of producing beam type bulb
JPS599500A (en) * 1982-07-09 1984-01-18 Hitachi Ltd Removing device for water remaining in tube
JPS59225400A (en) * 1983-06-07 1984-12-18 富士写真フイルム株式会社 Radiation sensitizing screen
JPS6039825A (en) * 1983-08-12 1985-03-01 Nec Corp Formation of semiconductor active layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234305A (en) * 1990-07-31 1992-08-24 Thera G Fuer Patentverwert Mbh Processable material and use thereof as filler for root channel of tooth
JP2012127935A (en) * 2010-12-10 2012-07-05 Westinghouse Electric Co Llc Nuclear reactor cavity arrangements for ice capacitor type plants

Also Published As

Publication number Publication date
CA1319774C (en) 1993-06-29
JP2674982B2 (en) 1997-11-12
US4861808A (en) 1989-08-29
EP0244959A3 (en) 1988-04-20
JP2572060B2 (en) 1997-01-16
EP0244959A2 (en) 1987-11-11
ZA872448B (en) 1987-11-25
AU595871B2 (en) 1990-04-12
BR8701665A (en) 1988-01-05
DE3781827T2 (en) 1993-03-11
EP0244959B1 (en) 1992-09-23
GB2190383A (en) 1987-11-18
DE3781827D1 (en) 1992-10-29
GB2190383B (en) 1990-03-28
US4797431A (en) 1989-01-10
ATE80789T1 (en) 1992-10-15
GB8608546D0 (en) 1986-05-14
JPH0925153A (en) 1997-01-28
AU7111987A (en) 1987-10-15

Similar Documents

Publication Publication Date Title
JPS63170253A (en) Glass/poly(carboxylic acid) cement composition
US4814362A (en) Glasses and poly(carboxylic acid) cement compositions containing them
JP2869078B2 (en) Photocurable ionomer cement
US5871360A (en) Method for restoration of a cavity of a tooth using a resin reinforced type glass ionomer cement
EP1414388B1 (en) Glass ionomer cement
Smith Development of glass-ionomer cement systems
US5189077A (en) Reinforcing glass ionomer dental filling material with titanium stainless steel, or metals thereof
JP4828796B2 (en) Medical composition containing ionic salt
JPH0627047B2 (en) Dental glass ionomer cement composition
JP5670022B2 (en) Dental composition containing surface-modified filler
JPH11228327A (en) Pasty glass ionomer cement composition for dentistry
JPH09255515A (en) Dental cement composition
IL104203A (en) Water-based dental amalgam adhesive
NZ204975A (en) Polymerisable dental restorative compositions having improved mechanical properties and hydrolytic stability
JP6633750B2 (en) Dental polymerizable composition
WO1997036943A1 (en) Elastomeric state glass ionomer cement
AU768901B2 (en) Method for setting dental glass ionomer cement
EP0312526A1 (en) Preparation of novel dental composites incorporating fluorosilicate glass fillers
US20020082317A1 (en) Dental adhesive compositions with desensitizing agents
GB2322860A (en) Particulate material
JPH0948702A (en) Dental cement composition
JP2802100B2 (en) Dental cement material
JP3450059B2 (en) Glass powder for dental cement
JPH0627049B2 (en) Dental cement hardening liquid
JPH0667815B2 (en) Dental cement hardening liquid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11