JPS63169708A - Forced refrigerating superconducting winding - Google Patents

Forced refrigerating superconducting winding

Info

Publication number
JPS63169708A
JPS63169708A JP62001069A JP106987A JPS63169708A JP S63169708 A JPS63169708 A JP S63169708A JP 62001069 A JP62001069 A JP 62001069A JP 106987 A JP106987 A JP 106987A JP S63169708 A JPS63169708 A JP S63169708A
Authority
JP
Japan
Prior art keywords
distribution pipe
refrigerant
forced
superconducting
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62001069A
Other languages
Japanese (ja)
Inventor
Yasuhide Hattori
服部 泰秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62001069A priority Critical patent/JPS63169708A/en
Publication of JPS63169708A publication Critical patent/JPS63169708A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain a forced refrigerating superconducting wire, to which stable conduction is enabled, by connecting an equalizing distribution pipe equalizing the flow rates of a refrigerant flowing into each refrigerant path among forced refrigerating superconducting coils to a low-temperature distribution pipe. CONSTITUTION:An equalizing distribution pipe 6 is mounted on the upstream side of an upstream low-temperature distribution pipe 2 to that refrigerant passing distances between a distribution-pipe inflow port 4 and each pancake coil 1 are made uniform. Consequently, flow resistance up to respective pancake coil 1 from the distribution-pipe inflow port 4 is equalized. As a result, the flow rate of a refrigerant flowing through each refrigerant path of the pancake coils 1 is made uniform, and respective pancake coil 1 is cooled equally. Accordingly, each forced refrigerating superconducting coil has excellent excitation characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、強制冷凍超電導導線を巻回してなる強制冷
凍超電導コイル間の冷媒通路に、低温分配管からの冷媒
が流れ、この冷媒により強制冷凍超電導コイルが冷却さ
れる強制冷凍超電導コイル間するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is characterized in that a refrigerant from a low-temperature distribution pipe flows through a refrigerant passage between forced refrigerated superconducting coils formed by winding a forced refrigerated superconducting conductor wire, and this refrigerant The frozen superconducting coil is cooled between the forced frozen superconducting coils.

〔従来の技術〕[Conventional technology]

7“ 第2図は例えば[エンジニアリング ゾロIラムズ オ
ブ ファション リサーチ(EngineeringP
roblems of Fusion Re5earc
h ) Vol m 、 / /弘l−//!3頁、/
97?年//月13〜メロ日」に示されている強制冷凍
超電導巻線の冷媒回路図であり、図において、(1)は
強制冷凍超電導導線を巻回してなる強制冷凍超電導ノe
ンケーキコイル(以下、パンケーキコイルと略称する)
、(2)は冷媒(主に低温ヘリウムガス)が流入する上
流低温分配管、(3)は冷媒の流出側の下流低温分配管
、(りは上流低温分配管(コ)に取シ付けられた分配管
流入ポート、(りは上流低温分配管(コ)と/七ンケー
キコイル(1)との間を連絡する分配管流出ポートであ
る。
7" Figure 2 shows, for example, [Engineering Zoro I Rams of Fashion Research (EngineeringP
roblems of Fusion Re5earc
h) Vol m, / /Hiroshi-//! 3 pages, /
97? This is a refrigerant circuit diagram of the forced-refrigerated superconducting winding shown in ``2013//Month 13 to Melo Day''.
pancake coil (hereinafter abbreviated as pancake coil)
, (2) is the upstream low-temperature distribution pipe where the refrigerant (mainly low-temperature helium gas) flows in, (3) is the downstream low-temperature distribution pipe on the outflow side of the refrigerant; (1) is the distribution pipe inlet port, and (1) is the distribution pipe outflow port that communicates between the upstream low-temperature distribution pipe (k) and the /7 cake coil (1).

このように構成された強制冷凍超電導巻線においては、
分配管流入ポー) (II)からの冷媒は、上流低温分
配管(:t)、分配管流出ポート(j)を通じて各・ぞ
ンケーキコイル(1)間の冷媒通路に導入される。その
結果、各パンケーキコイルCt’)は一定の温度(例え
ば<<、3K)にまで冷却され、超電導状態になった後
1.Rンケーキコイル(1)には定格電流(例えば、?
 OKA)が通電される。なお、通電中にも上流低温分
配管(2)を通じて各冷媒通路には冷媒が流され続各す
る。
In the forced refrigerated superconducting winding constructed in this way,
The refrigerant from the distribution pipe inflow port (II) is introduced into the refrigerant passage between each of the tube cake coils (1) through the upstream low temperature distribution pipe (:t) and the distribution pipe outflow port (j). As a result, each pancake coil Ct') is cooled to a certain temperature (for example, <<, 3K) and enters a superconducting state. The R cake coil (1) has a rated current (for example, ?
OKA) is energized. Note that even during energization, the refrigerant continues to flow into each refrigerant passage through the upstream low-temperature distribution pipe (2).

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

従来の強制冷凍超電導巻線は以上のように構成されてい
るので、流路距離の違いにより上流低温分配管(コ)の
流入ポート(りに近い所に位置する分配管流出ポー) 
(y) (上流低温分配管(λ)の中央部)Kは多址の
冷媒が流れ、上流低温分配管(λ)の端部に位置した分
配管流出ポート(j)には少量の冷媒しか流れないため
、中央部のノソ/ケーキコイル(i)には安定した通電
が可能であるが、端部の・ぐンケーキコイル(1)は冷
却不良により信頼ある通電が得にくいという問題点があ
った。
Conventional forced refrigeration superconducting windings are configured as described above, and due to the difference in flow path distance, the inlet port of the upstream low-temperature distribution pipe (k) (the outflow port of the distribution pipe located near the pipe)
(y) A large amount of refrigerant flows through K (the center of the upstream low-temperature distribution pipe (λ)), and only a small amount of refrigerant flows through the distribution pipe outlet port (j) located at the end of the upstream low-temperature distribution pipe (λ). Since no current flows, it is possible to provide stable current to the center cake coil (i), but there is a problem in that it is difficult to obtain reliable current to the end cake coil (1) due to poor cooling. there were.

この発明は、上記のような問題点ケ解消するためになさ
れたもので、安定した通電が可能な強制冷凍超電導巻線
を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a forced refrigerated superconducting winding that can stably conduct electricity.

〔問題点を解決するための手段〕[Means for solving problems]

この発鳴に係る強制冷凍超電導巻線は、低温分配管に、
強制冷凍超電導コイル間の各冷媒通路に流入する冷媒の
流量を均一にする均一化分配管を連結したものである。
The forced refrigerated superconducting winding that causes this noise is connected to the low-temperature distribution pipe.
Equalization distribution piping is connected to equalize the flow rate of refrigerant flowing into each refrigerant passage between the forced refrigeration superconducting coils.

〔作用〕[Effect]

この発明においては、強制冷凍超電導コイル間の各冷媒
通路の冷媒の流量は均一化され、各強制冷凍超電導コイ
ルは均一に冷却される。
In this invention, the flow rate of the refrigerant in each refrigerant passage between the forced refrigeration superconducting coils is equalized, and each forced refrigeration superconducting coil is uniformly cooled.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す冷媒回路図であり、
第2図と同一または相当部分は同一符号を付し、その説
明は省略する。
FIG. 1 is a refrigerant circuit diagram showing an embodiment of the present invention.
The same or corresponding parts as in FIG. 2 are designated by the same reference numerals, and the explanation thereof will be omitted.

図において、(6)は上流低温分配管(2)に連結され
た均一化分配管で、分配管流入ポート(りと各パンクー
中コイル(1)との間の冷媒通過距離は等しくなってい
る。
In the figure, (6) is the equalization distribution pipe connected to the upstream low-temperature distribution pipe (2), and the refrigerant passage distance between the distribution pipe inlet port (port) and each pan-coil (1) is equal. .

上記のように構成された強制冷凍超電導巻線においては
、上#、低温分配管(,2)の上流側に分配管流入ポー
トCりと各パンケーキコイル(1)との間の冷媒通過距
離が等しくなるように均一化分配管(6)を設けたので
、分配管流入ポート(りから各パンケーキコイル(1)
との間の流れ抵抗が均一になる。その結果、パンケーキ
コイル(1)の各冷媒通路に流れる冷媒の流量は均一に
なシ、各パンケーキコイル(1)は均一に冷却される。
In the forced refrigeration superconducting winding configured as above, the refrigerant passage distance between the upper #, the distribution pipe inlet port C on the upstream side of the low temperature distribution pipe (, 2) and each pancake coil (1) is determined. Since the equalizing distribution pipe (6) was provided so that the
The flow resistance between the two becomes uniform. As a result, the flow rate of the refrigerant flowing through each refrigerant passage of the pancake coil (1) is uniform, and each pancake coil (1) is uniformly cooled.

なお、上記実施例では均一化分配管(6)を・ぐンケー
キコイル(1)に対して上流側にのみ設げたが、その下
流側にも均一化分配管を設けることにより、上記実施例
と同等またはそれ以上の効果が得られる。
In addition, in the above embodiment, the equalization distribution pipe (6) was provided only on the upstream side of the Guncake coil (1), but by providing the equalization distribution pipe on the downstream side as well, the above embodiment The same or better effect can be obtained.

また、上記実施例では上流低温分配管Cコ)に−個の均
一化分配管(6)を連結した場合について説明したが、
二個以上の均一化分配管(6)を上流低温分配管(2)
に連結してもよい。
Furthermore, in the above embodiment, a case was explained in which - equalization distribution pipes (6) were connected to the upstream low temperature distribution pipe C).
Two or more equalization distribution pipes (6) are connected to the upstream low temperature distribution pipe (2)
May be connected to

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明の強制冷凍超電導巻線は、低温分
配管に均一化分配管を連結したことにより各強制冷凍超
電導コイルには均一な流量の冷媒が流れ、各強制冷凍超
電導コイルは均一に冷却され、優れた励磁特性を有する
As described above, in the forced refrigeration superconducting winding of the present invention, by connecting the equalizing distribution pipe to the low temperature distribution pipe, a uniform flow rate of refrigerant flows through each forced refrigeration superconducting coil, and each forced refrigeration superconducting coil has a uniform flow rate. It is cooled and has excellent excitation characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第を図はこの発明の一実施例を示す冷媒回路図、第2図
は従来の強制冷凍超電導巻線の一例を示す冷媒回路図で
ある。 図において、(1)は強制冷凍超電導パンケーキコイル
、(コ)は上流低温分配管、(3)は下流低温分配管、
(りは分配管流入ポート、(5)は分配管流出ポート、
(6)は均一化分配管である。 なお、各図中、同一符号は同−又は相当部分を示す。 1   :   5m1%):4’lil!i享バzグ
ーキ2 : と災I氏急+配管 3  :  下mイa 2L*Tol”!4 ; 匁1
にIF浚入r−ト 5 : 分配管it t F −) 6  : 均一イ(#獣! 壓2図
1 is a refrigerant circuit diagram showing an embodiment of the present invention, and FIG. 2 is a refrigerant circuit diagram showing an example of a conventional forced refrigeration superconducting winding. In the figure, (1) is a forced refrigerated superconducting pancake coil, (c) is an upstream low-temperature distribution pipe, (3) is a downstream low-temperature distribution pipe,
((ri) is the distribution pipe inflow port, (5) is the distribution pipe outflow port,
(6) is a homogenizing distribution pipe. In each figure, the same reference numerals indicate the same or corresponding parts. 1: 5m1%): 4'lil! I Kyoba Z Gooki 2: To disaster Ishikyu + plumbing 3: Lower m a 2L*Tol"! 4; Momme 1
IF dredging r-to 5: Distribution pipe it t F-) 6: Uniform i (#beast! Figure 2)

Claims (1)

【特許請求の範囲】[Claims] 強制冷凍超電導導線を巻回してなる強制冷凍超電導コイ
ル間の冷媒通路に、低温分配管からの冷媒が流れ、この
冷媒により強制冷凍超電導コイルが冷却される強制冷凍
超電導巻線において、前記低温分配管に、各前記冷媒通
路に流入する前記冷媒の流量を均一にする均一化分配管
が連結されていることを特徴とする強制冷凍超電導巻線
A refrigerant from a low-temperature distribution pipe flows into a refrigerant passage between forced-refrigeration superconducting coils formed by winding a forced-refrigeration superconducting conductor wire, and the forced-refrigeration superconducting coil is cooled by this refrigerant. A forced refrigeration superconducting winding characterized in that an equalizing distribution pipe is connected to uniformize the flow rate of the refrigerant flowing into each of the refrigerant passages.
JP62001069A 1987-01-08 1987-01-08 Forced refrigerating superconducting winding Pending JPS63169708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001069A JPS63169708A (en) 1987-01-08 1987-01-08 Forced refrigerating superconducting winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001069A JPS63169708A (en) 1987-01-08 1987-01-08 Forced refrigerating superconducting winding

Publications (1)

Publication Number Publication Date
JPS63169708A true JPS63169708A (en) 1988-07-13

Family

ID=11491235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001069A Pending JPS63169708A (en) 1987-01-08 1987-01-08 Forced refrigerating superconducting winding

Country Status (1)

Country Link
JP (1) JPS63169708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136189A (en) * 2018-05-31 2020-12-25 三菱电机株式会社 Superconducting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136189A (en) * 2018-05-31 2020-12-25 三菱电机株式会社 Superconducting magnet
CN112136189B (en) * 2018-05-31 2022-04-29 三菱电机株式会社 Superconducting magnet

Similar Documents

Publication Publication Date Title
JP2004177041A (en) Heat exchanger
WO2020057405A1 (en) Low-temperature superconducting segment structure for 10 milliampere current lead
US11359866B2 (en) Multi-coil heat exchanger
JPS63169708A (en) Forced refrigerating superconducting winding
JPH02217764A (en) Expansion valve
CN113790623B (en) Regenerative heat exchanger structure with wide range of working power and control method
JP2008185297A (en) Heat exchanger for hot water supply
JPS6424806U (en)
JP2002303391A (en) Flow divider
JPS60190134A (en) Liquid-cooled stator winding
JPS6289305A (en) Superconducting magnet
JP7512120B2 (en) Cryogenic cooling system and superconducting magnet device
Greene et al. Stability of internally cooled superconductors
JPH0439909A (en) Superconducting magnet
CN104048445B (en) Low-temperature thermoacoustic refrigerator without inertia tube and gas reservoir
JPS62113408A (en) Forced circulation cooling superconductive magnet
JPS6152910B2 (en)
CN114705717A (en) Multifunctional parallel multi-channel fluid heating experimental device and working method
JP2000314573A (en) Heat exchanger for air conditioner
JPH07263247A (en) Gas insulated stationary electric machine
JP2000182841A (en) Cooler for electrical apparatus
JP6967903B2 (en) Heat exchange system
JPS59222906A (en) Current lead for superconductive coil
Zubko et al. Stability of fast-cycling dipole for the SIS300 ring
JPS6016872Y2 (en) refrigerant gas cooler