JP6967903B2 - Heat exchange system - Google Patents

Heat exchange system Download PDF

Info

Publication number
JP6967903B2
JP6967903B2 JP2017150624A JP2017150624A JP6967903B2 JP 6967903 B2 JP6967903 B2 JP 6967903B2 JP 2017150624 A JP2017150624 A JP 2017150624A JP 2017150624 A JP2017150624 A JP 2017150624A JP 6967903 B2 JP6967903 B2 JP 6967903B2
Authority
JP
Japan
Prior art keywords
flow rate
temperature
cold
hot water
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017150624A
Other languages
Japanese (ja)
Other versions
JP2019027750A (en
Inventor
邦昭 山田
政吾 神宮寺
淳 西澤
伸一 多川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2017150624A priority Critical patent/JP6967903B2/en
Publication of JP2019027750A publication Critical patent/JP2019027750A/en
Application granted granted Critical
Publication of JP6967903B2 publication Critical patent/JP6967903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Measuring Volume Flow (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は熱交換システムに関し、特に適切な熱交換を行う熱交換システムに関する。 The present invention relates to a heat exchange system, and particularly to a heat exchange system that performs appropriate heat exchange.

2つの流体間で熱交換を行わせる熱交換器は、さまざまな分野で用いられている。熱交換器の用途の一例として、空気調和技術分野における空気と冷温水(冷水又は温水)とで熱交換を行わせる冷温水コイルがある。冷温水コイルでは、流出する空気の温度を所望の温度にするために、流入する冷温水の流量を制御する。冷温水コイルに流入する冷温水を所望の流量とするために、従来は、冷温水の配管路に流量計と弁の両者を配置し、流量計によって計測された流量に基づいて弁の開度を制御するようにしていたが、このような方法では、冷温水コイルを流れる流量に対応した流量計と弁の両者を設置しなければならず、コストアップを招来していた。このような不都合を解消する流量算出手段として、管路内を流れる流体の流量を規制する弁体の弁開度と流量係数との関係を示す特性テーブルを記憶するメモリと、このメモリ内の特性テーブルより弁体の現在の弁開度に応ずる流量係数を求め、求めた流量係数と弁体の現在の上下流間の差圧とに基づいて管路内を流れる流体の流量を算出する流量算出手段とを備えたものがある(例えば、特許文献1参照。)。 Heat exchangers that exchange heat between two fluids are used in various fields. As an example of the use of the heat exchanger, there is a cold / hot water coil that exchanges heat between air and cold / hot water (cold water or hot water) in the field of air conditioning technology. In the cold / hot water coil, the flow rate of the inflowing cold / hot water is controlled in order to bring the temperature of the outflowing air to a desired temperature. Conventionally, in order to obtain the desired flow rate of the cold / hot water flowing into the cold / hot water coil, both the flow meter and the valve are arranged in the cold / hot water piping line, and the opening of the valve is based on the flow rate measured by the flow meter. However, in such a method, both a flow meter and a valve corresponding to the flow rate flowing through the hot / cold water coil had to be installed, which led to an increase in cost. As a flow rate calculating means for eliminating such inconvenience, a memory that stores a characteristic table showing the relationship between the valve opening of the valve body that regulates the flow rate of the fluid flowing in the pipeline and the flow coefficient, and the characteristics in this memory. Find the flow coefficient according to the current valve opening of the valve body from the table, and calculate the flow rate of the fluid flowing in the pipeline based on the obtained flow coefficient and the differential pressure between the current upstream and downstream of the valve body. Some are provided with means (see, for example, Patent Document 1).

特開2010−107419号公報Japanese Unexamined Patent Publication No. 2010-107419

しかしながら、特許文献1に記載された流量算出手段では、あくまでも弁開度と差圧との関係に基づく計算上で流量を推定しているに過ぎず、制御対象流体の温度や圧力の変化等の外部要因に起因して、算出した流量が実際の流量から許容範囲を超えて乖離している場合が生じ得ることとなり、適切な熱交換が阻害されるおそれがある。 However, the flow rate calculating means described in Patent Document 1 merely estimates the flow rate by calculation based on the relationship between the valve opening degree and the differential pressure, and changes in the temperature and pressure of the fluid to be controlled, etc. Due to an external factor, the calculated flow rate may deviate from the actual flow rate beyond the permissible range, which may hinder appropriate heat exchange.

本発明は上述の課題に鑑み、熱搬送液体の実際の流量からの乖離を抑制しつつ適切な熱交換を行うことができる熱交換システムを提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a heat exchange system capable of performing appropriate heat exchange while suppressing deviation from the actual flow rate of the heat transfer liquid.

上記目的を達成するために、本発明の第1の態様に係る熱交換システムは、例えば図1に示すように、熱搬送液体CHと温度調節対象物SAとで熱交換させる熱交換部15に出入りする熱搬送液体CHを流す主流路11と;主流路11eに対して並列に設けられた副流路21であって、主流路11eよりも流路断面積が小さい副流路21と;副流路21に設けられた流量計25と;流量計25で検出された流量に基づいて熱交換部15を流れる熱搬送液体CHの流量を求める制御装置50とを備える。 In order to achieve the above object, the heat exchange system according to the first aspect of the present invention has, for example, as shown in FIG. 1, a heat exchange unit 15 that exchanges heat between the heat transfer liquid CH and the temperature control object SA. A main flow path 11 through which a heat transport liquid CH entering and exiting flows; a sub-flow path 21 provided in parallel with the main flow path 11e and having a smaller flow path cross-sectional area than the main flow path 11e; A flow meter 25 provided in the flow path 21; and a control device 50 for obtaining the flow rate of the heat transport liquid CH flowing through the heat exchange unit 15 based on the flow rate detected by the flow meter 25.

このように構成すると、熱交換部を通過する流量よりも小さい流量を流量計で実際に計測した流量から熱交換部を流れる熱搬送液体の流量を求めるので、熱搬送液体の温度や圧力の変化等の外部要因にかかわらずに熱交換部を流れる熱搬送液体の流量を求めることができ、熱搬送液体と温度調節対象流体とで適切な熱交換を行うことができる。 With this configuration, the flow rate of the heat transfer liquid flowing through the heat exchange unit is obtained from the flow rate actually measured by the flow meter for the flow rate smaller than the flow rate passing through the heat exchange unit, so that the temperature and pressure of the heat transfer liquid change. Regardless of external factors such as, the flow rate of the heat transfer liquid flowing through the heat exchange unit can be obtained, and appropriate heat exchange can be performed between the heat transfer liquid and the temperature control target fluid.

また、本発明の第2の態様に係る熱交換システムは、例えば図1に示すように、上記本発明の第1の態様に係る熱交換システム1において、副流路21は、第1の抵抗値を有する第1の抵抗流路21fと;第1の抵抗値とは異なる第2の抵抗値を有する第2の抵抗流路21sと;熱搬送液体CHが第1の抵抗流路21fを流れるのと第2の抵抗流路21sを流れるのとを切り換える切換部29とを有する。 Further, in the heat exchange system according to the second aspect of the present invention, for example, as shown in FIG. 1, in the heat exchange system 1 according to the first aspect of the present invention, the auxiliary flow path 21 is a first resistance. A first resistance flow path 21f having a value; a second resistance flow path 21s having a second resistance value different from the first resistance value; a heat transfer liquid CH flows through the first resistance flow path 21f. It has a switching unit 29 for switching between the invention and the flow through the second resistance flow path 21s.

このように構成すると、流量計で計測される流量の正確性を担保する幅を広げることができる。 With such a configuration, it is possible to widen the range of ensuring the accuracy of the flow rate measured by the flow meter.

また、本発明の第3の態様に係る熱交換システムは、例えば図1に示すように、上記本発明の第1の態様又は第2の態様に係る熱交換システム1において、熱交換システム1内を流れる熱搬送液体CHの流量を調節する流量調節部18と;温度調節対象物SAの温度又は温度調節対象物SAの温度と相関を有する検出対象の温度を検出する温度検出器35とを備え;制御装置50は、流量計25で検出された流量に基づいて求められた熱交換部15を流れる熱搬送液体CHの流量が所定の流量の範囲内で、温度検出器35で検出された温度があらかじめ設定された温度となるように流量調節部18を制御する。典型的には、流量調節部18は、副流路21との分岐点11xよりも上流側の主流路11p又は副流路21との合流点11yよりも下流側の主流路11qに配設される。 Further, the heat exchange system according to the third aspect of the present invention is, for example, as shown in FIG. 1, in the heat exchange system 1 in the heat exchange system 1 according to the first aspect or the second aspect of the present invention. It is provided with a flow rate adjusting unit 18 for adjusting the flow rate of the heat transfer liquid CH flowing through the system; and a temperature detector 35 for detecting the temperature of the temperature control target SA or the temperature of the detection target having a correlation with the temperature of the temperature control target SA. The control device 50 has a temperature detected by the temperature detector 35 while the flow rate of the heat transport liquid CH flowing through the heat exchange unit 15 obtained based on the flow rate detected by the flow meter 25 is within a predetermined flow rate. Controls the flow rate adjusting unit 18 so that the temperature becomes a preset temperature. Typically, the flow rate adjusting unit 18 is arranged in the main flow path 11p on the upstream side of the branch point 11x with the sub flow path 21 or in the main flow path 11q on the downstream side of the confluence point 11y with the sub flow path 21. NS.

このように構成すると、熱量を効率よく得る範囲で熱搬送液体の流量調節を行うことが可能になる。 With this configuration, it is possible to adjust the flow rate of the heat transfer liquid within the range in which the amount of heat can be efficiently obtained.

また、本発明の第4の態様に係る熱交換システムは、例えば図1を参照して示すと、上記本発明の第3の態様に係る熱交換システム1において、制御装置50は、温度検出器35で検出された温度とあらかじめ設定された温度との乖離が大きいほど流量調節部18の出力範囲を大きくするように構成されている。 Further, as shown in the heat exchange system according to the fourth aspect of the present invention, for example, with reference to FIG. 1, in the heat exchange system 1 according to the third aspect of the present invention, the control device 50 is a temperature detector. The output range of the flow rate adjusting unit 18 is configured to be larger as the deviation between the temperature detected in 35 and the preset temperature is larger.

このように構成すると、応答速度を速めながらハンチングを防ぐことができる。 With this configuration, hunting can be prevented while increasing the response speed.

本発明によれば、熱交換部を通過する流量よりも小さい流量を流量計で実際に計測した流量から熱交換部を流れる熱搬送液体の流量を求めるので、熱搬送液体の温度や圧力の変化等の外部要因にかかわらずに熱交換部を流れる熱搬送液体の流量を求めることができ、熱搬送液体と温度調節対象流体とで適切な熱交換を行うことができる。 According to the present invention, since the flow rate of the heat transfer liquid flowing through the heat exchange unit is obtained from the flow rate actually measured by the flow meter for the flow rate smaller than the flow rate passing through the heat exchange unit, the temperature and pressure of the heat transfer liquid change. Regardless of external factors such as, the flow rate of the heat transfer liquid flowing through the heat exchange unit can be obtained, and appropriate heat exchange can be performed between the heat transfer liquid and the temperature control target fluid.

本発明の実施の形態に係る熱交換システムの模式的系統図である。It is a schematic system diagram of the heat exchange system which concerns on embodiment of this invention. コイル内を流れる冷温水の流量と冷温水−空気間の交換熱量との関係を示すグラフである。It is a graph which shows the relationship between the flow rate of cold / hot water flowing in a coil, and the amount of exchange heat between cold / hot water-air. 二方弁の操作の状態を示すタイミング図である。It is a timing diagram which shows the operation state of a two-way valve. 本発明の実施の形態の変形例に係る熱交換システムの模式的系統図である。It is a schematic system diagram of the heat exchange system which concerns on the modification of embodiment of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一又は相当する部材には同一あるいは類似の符号を付し、重複した説明は省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, members that are the same as or correspond to each other are designated by the same or similar reference numerals, and duplicated description will be omitted.

まず図1を参照して、本発明の実施の形態に係る熱交換システム1を説明する。図1は、熱交換システム1の模式的系統図である。熱交換システム1は、本実施の形態では、コイル15において冷温水CHと空気SAとの熱交換を行わせるシステムである。空気SAは、冷房又は暖房(以下「冷暖房」という。)が行われる対象(典型的には冷暖房対象室)に供給される流体である。冷温水CHは、冷水又は温水の総称で、典型的には対象の冷房が行われるときは冷水となり、暖房が行われるときは温水となる液体である。冷温水CHは、空気SAに熱を搬送する液体であり、熱搬送液体に相当する。空気SAは、コイル15において冷温水CHによって温度が調節される対象であり、温度調節対象物に相当する。熱交換システム1は、上述のコイル15の他、主流路を構成する主管11と、二方弁18と、副流路を構成する副管21と、流量計25と、制御装置50とを備えている。 First, the heat exchange system 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram of the heat exchange system 1. In the present embodiment, the heat exchange system 1 is a system in which the coil 15 exchanges heat between the hot and cold water CH and the air SA. The air SA is a fluid supplied to a target (typically, a heating / cooling target room) to be cooled or heated (hereinafter referred to as “cooling / heating”). The cold / hot water CH is a general term for cold water or hot water, and is typically a liquid that becomes cold water when the target is cooled and becomes hot water when heating is performed. The cold / hot water CH is a liquid that transfers heat to the air SA, and corresponds to a heat transfer liquid. The air SA is a target whose temperature is regulated by the hot / cold water CH in the coil 15, and corresponds to a temperature control target. In addition to the coil 15 described above, the heat exchange system 1 includes a main pipe 11 constituting the main flow path, a two-way valve 18, a sub pipe 21 constituting the sub flow path, a flow meter 25, and a control device 50. ing.

コイル15は、上述のように冷温水CHと空気SAとで熱交換を行わせるものであり、熱交換部に相当する。コイル15は、細長いチューブが多数配列され、これらのチューブ内を冷温水CHが複数パスで流れるように、各チューブの上流端及び下流端のそれぞれにヘッダが設けられている。各チューブの外表面には複数のフィンが取り付けられている。コイル15では、各チューブ内を冷温水CHが流れ、各チューブの外側を空気SAが流れることにより、冷温水CHと空気SAとで熱交換が行われるように構成されている。コイル15は、本実施の形態では、最大で概ね1000L/minの冷温水CHを流すことができる大きさに構成されている。コイル15は、チューブ内を流れる冷温水CHの流量を変化させることにより、空気SAに伝達する熱量を調節することができるようになっている。 As described above, the coil 15 exchanges heat between the hot and cold water CH and the air SA, and corresponds to a heat exchange unit. A large number of elongated tubes are arranged in the coil 15, and headers are provided at the upstream end and the downstream end of each tube so that the cold / hot water CH flows in these tubes in a plurality of passes. Multiple fins are attached to the outer surface of each tube. In the coil 15, the cold / hot water CH flows inside each tube, and the air SA flows outside each tube, so that heat exchange is performed between the cold / hot water CH and the air SA. In the present embodiment, the coil 15 is configured to have a size capable of flowing a cold / hot water CH of about 1000 L / min at the maximum. The coil 15 can adjust the amount of heat transferred to the air SA by changing the flow rate of the cold / hot water CH flowing in the tube.

図2は、コイル15内を流れる冷温水CHの流量と、冷温水CHと空気SAとの交換熱量と、の関係を示すグラフである。図2に示すグラフは、横軸に冷温水CHの流量を、縦軸に冷温水CHと空気SAとの交換熱量をとっている。冷温水CHと空気SAとの交換熱量は冷温水CHの流量に対して図2に示すような関係で比例しており、冷温水CHの流量が比較的少ないときは冷温水CHの流量の増加分に対する冷温水CHと空気SAとの交換熱量が増加する割合が大きいが、冷温水CHの流量が比較的多くなると冷温水CHの流量の増加分に対する冷温水CHと空気SAとの交換熱量が増加する割合が小さくなる。冷温水CHの流量が増加すると、抵抗が増加し、冷温水CHの搬送動力も増加することとなるため、効率を向上させる観点から、コイル15に導入する冷温水CHの定格流量(本実施の形態では、最大で概ね1000L/min)を、図2に示す流量Fc(以下「所定の流量Fc」という。)近辺にすることが好ましい。所定の流量Fcは、典型的には、冷温水CHの流量の増加分に対する冷温水CHと空気SAとの交換熱量の増加分の傾きが許容できる最低限となるときの冷温水CHの流量である。 FIG. 2 is a graph showing the relationship between the flow rate of the cold / hot water CH flowing in the coil 15 and the amount of heat exchanged between the cold / hot water CH and the air SA. In the graph shown in FIG. 2, the horizontal axis represents the flow rate of the cold / hot water CH, and the vertical axis represents the amount of heat exchanged between the cold / hot water CH and the air SA. The amount of heat exchanged between the cold / hot water CH and the air SA is proportional to the flow rate of the cold / hot water CH in the relationship shown in FIG. 2, and when the flow rate of the cold / hot water CH is relatively small, the flow rate of the cold / hot water CH increases. The rate of increase in the amount of heat exchanged between the cold / hot water CH and the air SA is large with respect to the minute, but when the flow rate of the cold / hot water CH becomes relatively large, the amount of heat exchanged between the cold / hot water CH and the air SA with respect to the increase in the flow rate of the cold / hot water CH increases. The rate of increase becomes smaller. When the flow rate of the cold / hot water CH increases, the resistance increases and the transport power of the cold / hot water CH also increases. Therefore, from the viewpoint of improving efficiency, the rated flow rate of the cold / hot water CH to be introduced into the coil 15 (in this implementation). In the embodiment, it is preferable that the maximum flow rate Fc (up to approximately 1000 L / min) is in the vicinity of the flow rate Fc shown in FIG. 2 (hereinafter referred to as “predetermined flow rate Fc”). The predetermined flow rate Fc is typically the flow rate of the cold / hot water CH when the inclination of the increase in the amount of heat exchanged between the cold / hot water CH and the air SA with respect to the increase in the flow rate of the cold / hot water CH becomes an acceptable minimum. be.

再び図1に戻って熱交換システム1の構成の説明を続ける。主管11は、主としてコイル15に流す冷温水CHを搬送する管である。主管11は、コイル15に供給される最大流量の冷温水CH(例えば概ね1000L/min)を流すことができる口径を有している。主管11には、コイル15が配設されている。また、主管11には、副管21が、コイル15に対して並列になるように配置されて接続されている。つまり、副管21は、一端がコイル15よりも上流側の主管11に接続され、他端がコイル15よりも下流側の主管11に接続されている。以下、説明の便宜上、コイル15よりも上流側における主管11と副管21との接続点を「分岐点11x」といい、コイル15よりも下流側における主管11と副管21との接続点を「合流点11y」という場合もある。また、説明の便宜上、分岐点11xよりも上流側の主管11を分岐前主管11pとし、分岐点11xと合流点11yとの間の主管11をコイル主管11eとし、合流点11yよりも下流側の主管11を合流後主管11qとして区別する場合もある。 Returning to FIG. 1 again, the description of the configuration of the heat exchange system 1 will be continued. The main pipe 11 is a pipe that mainly conveys the cold / hot water CH flowing through the coil 15. The main pipe 11 has a diameter capable of flowing the maximum flow rate of cold / hot water CH (for example, approximately 1000 L / min) supplied to the coil 15. A coil 15 is arranged on the main pipe 11. Further, the sub pipe 21 is arranged and connected to the main pipe 11 so as to be in parallel with the coil 15. That is, one end of the sub pipe 21 is connected to the main pipe 11 on the upstream side of the coil 15, and the other end is connected to the main pipe 11 on the downstream side of the coil 15. Hereinafter, for convenience of explanation, the connection point between the main pipe 11 and the sub pipe 21 on the upstream side of the coil 15 is referred to as a “branch point 11x”, and the connection point between the main pipe 11 and the sub pipe 21 on the downstream side of the coil 15 is referred to as a “branch point 11x”. It may be called "confluence point 11y". Further, for convenience of explanation, the main pipe 11 on the upstream side of the branch point 11x is the pre-branch main pipe 11p, the main pipe 11 between the branch point 11x and the confluence point 11y is the coil main pipe 11e, and the main pipe 11 on the downstream side of the confluence point 11y. In some cases, the main pipe 11 is distinguished as the main pipe 11q after merging.

二方弁18は、主管11を流れる冷温水CHの流量を調節するものであり、流量調節部に相当する。二方弁18は、本実施の形態では合流後主管11qに配設されているが、分岐前主管11pに配設されていてもよい。二方弁18は、典型的には、電動アクチュエーターを有するグローブバルブ又はバタフライバルブであり、電力を入力しているときに開度を変化させ、電力の入力を停止したときにその時点の開度で保持する、フローティング動作を行う弁である。 The two-way valve 18 adjusts the flow rate of the cold / hot water CH flowing through the main pipe 11, and corresponds to the flow rate adjusting unit. Although the two-way valve 18 is arranged in the main pipe 11q after merging in the present embodiment, it may be arranged in the main pipe 11p before branching. The two-way valve 18 is typically a globe valve or butterfly valve having an electric actuator, which changes the opening degree when power is being input and is open at that time when power input is stopped. It is a valve that performs a floating operation and is held by.

副管21は、本実施の形態では、前述のように、両端がそれぞれ分岐点11x及び合流点11yに接続され、コイル15に対して並列に配置されている。副管21は、コイル主管11eよりも小さい口径(流路断面積)を有する管であり、本実施の形態では概ね3L/min程度の冷温水CHを流すのに適切な口径を有している。本実施の形態では、副管21の一部区間が第1副管21fと第2副管21sとに分かれている。第1副管21fと第2副管21sとは、並列に接続されている。第1副管21fには、第1抵抗28fと、第1仕切弁29fとが配設されている。第1抵抗28fは、副管21全体を流れる冷温水CHの流量が、コイル主管11eを流れる冷温水CHの流量の変化に応じて変化するように設けられた抵抗である。つまり、第1副管21fを流れる冷温水CHの流量は、コイル主管11eを流れる冷温水CHの流量に対して所定の比率となるように構成されている。第2副管21sには、第2抵抗28sと、第2仕切弁29sとが配設されている。第2抵抗28sは、第1抵抗28fよりも抵抗値が小さい抵抗であり、コイル主管11eを流れる冷温水CHの流量が比較的少ないときに、副管21全体を流れる冷温水CHの流量が、コイル主管11eを流れる冷温水CHの流量に対して所定の比率となるようにするものである。第1仕切弁29f及び第2仕切弁29sは、一方を開にして他方を閉にすることにより、冷温水CHが第1副管21fを流れるのと第2副管21sを流れるのとを切り換えることができ、切換部を構成する。また、第1抵抗28fが配設された第1副管21fは第1の抵抗流路に相当し、第2抵抗28sが配設された第2副管21sは第2の抵抗流路に相当する。第1副管21fと第2副管21sとに分流していない副管21には、流量計25が配設されている。 In the present embodiment, as described above, both ends of the auxiliary pipe 21 are connected to the branch point 11x and the confluence point 11y, respectively, and are arranged in parallel with the coil 15. The auxiliary pipe 21 is a pipe having a diameter (flow path cross-sectional area) smaller than that of the coil main pipe 11e, and in the present embodiment, it has an appropriate diameter for flowing cold / hot water CH of about 3 L / min. .. In the present embodiment, a part of the sub pipe 21 is divided into a first sub pipe 21f and a second sub pipe 21s. The first sub-tube 21f and the second sub-tube 21s are connected in parallel. The first auxiliary pipe 21f is provided with a first resistor 28f and a first sluice valve 29f. The first resistor 28f is a resistor provided so that the flow rate of the cold / hot water CH flowing through the entire auxiliary pipe 21 changes according to the change in the flow rate of the cold / hot water CH flowing through the coil main pipe 11e. That is, the flow rate of the cold / hot water CH flowing through the first auxiliary pipe 21f is configured to be a predetermined ratio with the flow rate of the cold / hot water CH flowing through the coil main pipe 11e. A second resistor 28s and a second sluice valve 29s are arranged in the second auxiliary pipe 21s. The second resistance 28s is a resistor having a smaller resistance value than the first resistance 28f, and when the flow rate of the cold / hot water CH flowing through the coil main pipe 11e is relatively small, the flow rate of the cold / hot water CH flowing through the entire auxiliary pipe 21 is increased. The ratio is set to a predetermined ratio with respect to the flow rate of the cold / hot water CH flowing through the coil main pipe 11e. The first sluice valve 29f and the second sluice valve 29s switch between the cold / hot water CH flowing through the first auxiliary pipe 21f and the second auxiliary pipe 21s by opening one and closing the other. It can form a switching unit. Further, the first sub-tube 21f in which the first resistance 28f is arranged corresponds to the first resistance flow path, and the second sub-tube 21s in which the second resistance 28s is arranged corresponds to the second resistance flow path. do. A flow meter 25 is arranged in the auxiliary pipe 21 which is not divided into the first auxiliary pipe 21f and the second auxiliary pipe 21s.

流量計25は、副管21全体を流れる冷温水CHの流量を計測するものである。したがって、流量計25は、コイル主管11eを流れる冷温水CHの流量を計測するような大規模なものを必要とせず、副管21を流れる程度の小流量を計測可能なもので足りる。したがって、コイル主管11eを流れる冷温水CHの流量を計測するものに比べて大幅なコンパクト化を図ることができ、コストダウンにも寄与する。なお、仮に極めて小流量を計測する流量計を採用した場合は、繊細複雑な構造のものとなり、かえってコストアップを招来するおそれがあるため、入手しやすい流量計25を選定し、選定した流量計25に適した流量の冷温水CHが副管21を流れるように、副管21の口径を決定するとよい。前述のように、副管21を流れる冷温水CHの流量は、コイル主管11eを流れる冷温水CHの流量に対して所定の比率となるので、副管21を流れる冷温水CHの実流量を流量計25で計測することで、冷温水CHの温度や圧力等が変化した場合であっても、コイル主管11eを流れる冷温水CHの流量を比較的正確に把握することができる。流量計25は、本実施の形態ではパルスを出力可能なパドル式流量計(羽根車式流量計)が用いられているが、パドル式流量計以外の流量計が用いられてもよい。 The flow meter 25 measures the flow rate of the cold / hot water CH flowing through the entire auxiliary pipe 21. Therefore, the flow meter 25 does not require a large-scale flow meter such as measuring the flow rate of the cold / hot water CH flowing through the coil main pipe 11e, and can measure a small flow rate such as flowing through the auxiliary pipe 21. Therefore, the size can be significantly reduced as compared with the one that measures the flow rate of the cold / hot water CH flowing through the coil main pipe 11e, which also contributes to cost reduction. If a flow meter that measures extremely small flow rates is adopted, it will have a delicate and complicated structure, which may lead to cost increase. Therefore, select an easily available flow meter 25 and select the flow meter. It is advisable to determine the diameter of the sub-pipe 21 so that the cold / hot water CH having a flow rate suitable for 25 flows through the sub-pipe 21. As described above, the flow rate of the cold / hot water CH flowing through the auxiliary pipe 21 is a predetermined ratio to the flow rate of the cold / hot water CH flowing through the coil main pipe 11e, so that the actual flow rate of the cold / hot water CH flowing through the auxiliary pipe 21 is used. By measuring with a total of 25, even if the temperature, pressure, or the like of the cold / hot water CH changes, the flow rate of the cold / hot water CH flowing through the coil main pipe 11e can be grasped relatively accurately. As the flow meter 25, a paddle type flow meter (impeller type flow meter) capable of outputting a pulse is used in the present embodiment, but a flow meter other than the paddle type flow meter may be used.

熱交換システム1は、上述の構成のほか、コイル15から流出した空気SAの温度を検出する温度計35が設けられている。温度計35は、温度調節対象物である空気SAの温度を検出するものであり、温度検出器に相当する。 In addition to the above configuration, the heat exchange system 1 is provided with a thermometer 35 that detects the temperature of the air SA flowing out of the coil 15. The thermometer 35 detects the temperature of the air SA, which is the object of temperature control, and corresponds to a temperature detector.

制御装置50は、熱交換システム1の動作を制御する装置である。制御装置50は、二方弁18と有線又は無線で電気的に接続されており、二方弁18の開度を調節することができるように構成されている。また、制御装置50は、流量計25と有線又は無線で電気的に接続されており、流量計25で計測した流量を信号として受信することができるように構成されている。また、制御装置50は、流量計25で計測した流量に基づいてコイル主管11eを流れる冷温水CHの流量を求めることができるように構成されている。典型的には、コイル主管11e及び副管21のそれぞれを流れる冷温水CHの流量の関係がテーブルに記憶され、流量計25で検出された流量を記憶されているテーブルに照らしてコイル主管11eを流れる冷温水CHの流量を求めることができるように構成されているが、テーブルで表された関係が計算式として記憶されていて流量計25で検出された流量を当該計算式に当てはめることでコイル主管11eを流れる冷温水CHの流量を求めることとしてもよい。また、制御装置50は、第1仕切弁29f及び第2仕切弁29sのそれぞれと有線又は無線で電気的に接続されており、各弁29f、29sの開閉を切り換えることができるように構成されている。また、制御装置50は、温度計35と有線又は無線で電気的に接続されており、温度計35で検出した温度を信号として受信することができるように構成されている。また、制御装置50は、図2に示すコイル15における冷温水CHの流量と冷温水CH−空気SA間の交換熱量との関係が記憶されており、所定の流量Fcを把握することができるように構成されている。 The control device 50 is a device that controls the operation of the heat exchange system 1. The control device 50 is electrically connected to the two-way valve 18 by wire or wirelessly, and is configured to be able to adjust the opening degree of the two-way valve 18. Further, the control device 50 is electrically connected to the flow meter 25 by wire or wirelessly, and is configured to be able to receive the flow rate measured by the flow meter 25 as a signal. Further, the control device 50 is configured to be able to obtain the flow rate of the cold / hot water CH flowing through the coil main pipe 11e based on the flow rate measured by the flow meter 25. Typically, the relationship between the flow rates of the hot and cold water channels flowing through the coil main pipe 11e and the sub pipe 21 is stored in a table, and the flow rate detected by the flow meter 25 is stored in the table to store the coil main pipe 11e. It is configured so that the flow rate of the flowing cold / hot water CH can be obtained, but the relationship expressed in the table is stored as a calculation formula, and the flow rate detected by the flow meter 25 is applied to the calculation formula to coil. The flow rate of the cold / hot water CH flowing through the main pipe 11e may be obtained. Further, the control device 50 is electrically connected to each of the first sluice valve 29f and the second sluice valve 29s by wire or wirelessly, and is configured to be able to switch between opening and closing of the respective valves 29f and 29s. There is. Further, the control device 50 is electrically connected to the thermometer 35 by wire or wirelessly, and is configured to be able to receive the temperature detected by the thermometer 35 as a signal. Further, the control device 50 stores the relationship between the flow rate of the cold / hot water CH in the coil 15 shown in FIG. 2 and the exchange heat amount between the cold / hot water CH and the air SA, so that the predetermined flow rate Fc can be grasped. It is configured in.

上述の、熱交換システム1を構成する各要素は、1つの筐体に収容されていてもよく(例えばエアハンドリングユニット内に組み込まれている)、例えば制御装置50が筐体の外に設けられるように一部が筐体の外側に設けられていてもよく、ユニット化されずにすべてが露出して組み立てられていてもよい。 Each element constituting the heat exchange system 1 described above may be housed in one housing (for example, incorporated in an air handling unit), for example, a control device 50 is provided outside the housing. A part of the housing may be provided on the outside of the housing, or the whole may be exposed and assembled without being unitized.

引き続き図1を参照して、熱交換システム1の作用を説明する。熱交換システム1が起動すると、ファン(不図示)によって空気SAが圧送され、コイル15を通過するように空気SAが流れる。他方、冷温水CHが、熱源機(不図示)で温度が調節された後に冷温水ポンプ(不図示)によって圧送され、分岐前主管11pを流れてくる。分岐前主管11pを流れてきた冷温水CHは、コイル主管11eと副管21とに分流し、それぞれの流路を流れる。コイル主管11eを流れる冷温水CHは、コイル15を流れる際に空気SAと熱交換が行われる。コイル15において、冷温水CHと空気SAとの間で熱交換が行われることにより、空気SAの温度は冷温水CHの温度に近づき、冷温水CHの温度は空気SAの温度に近づく。コイル15を通過した冷温水CHは、コイル主管11eを流れて合流点11yに至る。 Subsequently, with reference to FIG. 1, the operation of the heat exchange system 1 will be described. When the heat exchange system 1 is activated, the air SA is pumped by a fan (not shown), and the air SA flows so as to pass through the coil 15. On the other hand, the cold / hot water CH is pumped by a cold / hot water pump (not shown) after the temperature is adjusted by a heat source machine (not shown), and flows through the main pipe 11p before branching. The cold / hot water CH that has flowed through the main pipe 11p before branching is divided into the coil main pipe 11e and the sub pipe 21 and flows through the respective flow paths. The cold / hot water CH flowing through the coil main pipe 11e exchanges heat with the air SA when flowing through the coil 15. In the coil 15, heat exchange is performed between the cold / hot water CH and the air SA, so that the temperature of the air SA approaches the temperature of the cold / hot water CH, and the temperature of the cold / hot water CH approaches the temperature of the air SA. The cold / hot water CH that has passed through the coil 15 flows through the coil main pipe 11e and reaches the confluence point 11y.

副管21では、通常、第1仕切弁29fが開かつ第2仕切弁29sが閉となっている。したがって、通常、副管21に流入した冷温水CHは、第1抵抗28fを通過し、流量計25を通過する。流量計25は、冷温水CHが通過した際に計測した流量を信号として制御装置50に送信する。第1抵抗28f及び流量計25を通過した冷温水CHは、副管21を流れて合流点11yに至る。合流点11yでは、コイル主管11eを流れてきた冷温水CHと副管21を流れてきた冷温水CHとが合流する。合流点11yで合流した冷温水CHは、合流後主管11qを流れて熱源機(不図示)に導かれ、熱源機(不図示)で温度が調節された後に再び分岐前主管11pに供給される。 In the auxiliary pipe 21, the first sluice valve 29f is normally open and the second sluice valve 29s is closed. Therefore, normally, the cold / hot water CH that has flowed into the auxiliary pipe 21 passes through the first resistor 28f and passes through the flow meter 25. The flow meter 25 transmits the flow rate measured when the cold / hot water CH passes to the control device 50 as a signal. The cold / hot water CH that has passed through the first resistor 28f and the flow meter 25 flows through the auxiliary pipe 21 and reaches the confluence point 11y. At the confluence point 11y, the cold / hot water CH flowing through the coil main pipe 11e and the cold / hot water CH flowing through the sub pipe 21 merge. The cold / hot water CH merged at the merging point 11y flows through the main pipe 11q after merging and is guided to a heat source machine (not shown), and after the temperature is adjusted by the heat source machine (not shown), it is supplied to the main pipe 11p before branching again. ..

他方、コイル15を通過した空気SAは、温度計35で温度が検出される。温度計35は、検出した温度を信号として制御装置50に送信する。制御装置50は、温度計35が検出した温度があらかじめ設定された温度となるように、二方弁18の開度を調節する。ここで、あらかじめ設定された温度は、典型的には冷暖房対象室に供給される空気SAの温度として適した温度である。二方弁18の開度を調節するのに際し、冷温水CHの流量を過剰に流すと、図2に示されるように空気SAと冷温水CHとの熱交換効率が低下することとなり、これに加えて搬送動力も増加するので、冷温水CHの流量が所定の流量Fc以下となる範囲で二方弁18の開度を調節することが好ましい。本実施の形態では、制御装置50は、流量計25で計測された流量を、あらかじめ記憶されている流量計25での計測値とコイル主管11eを流れる流量との関係に照らし、コイル主管11eを流れる冷温水CHの流量を求めている。このとき求められるコイル主管11eを流れる冷温水CHの流量は、流量計25で計測された実際の流量に基づいているため、冷温水CHの温度変化や背圧の変化等の外部要因にかかわらず誤差が小さい比較的正確な流量となる。そして、制御装置50は、求めたコイル主管11eを流れる冷温水CHの流量が所定の流量Fc以下となる範囲で二方弁18の開度を調節することとして、実際に冷温水CHが過剰に流れることを防いでいる。 On the other hand, the temperature of the air SA that has passed through the coil 15 is detected by the thermometer 35. The thermometer 35 transmits the detected temperature as a signal to the control device 50. The control device 50 adjusts the opening degree of the two-way valve 18 so that the temperature detected by the thermometer 35 becomes a preset temperature. Here, the preset temperature is typically a temperature suitable as the temperature of the air SA supplied to the heating / cooling target room. If the flow rate of the cold / hot water CH is excessively flowed when adjusting the opening degree of the two-way valve 18, the heat exchange efficiency between the air SA and the cold / hot water CH decreases as shown in FIG. In addition, since the transport power also increases, it is preferable to adjust the opening degree of the two-way valve 18 within a range in which the flow rate of the cold / hot water CH is equal to or less than the predetermined flow rate Fc. In the present embodiment, the control device 50 compares the flow rate measured by the flow meter 25 with the relationship between the measured value of the flow meter 25 stored in advance and the flow rate flowing through the coil main pipe 11e, and sets the coil main pipe 11e. The flow rate of the flowing cold / hot water CH is obtained. Since the flow rate of the cold / hot water CH flowing through the coil main pipe 11e obtained at this time is based on the actual flow rate measured by the flow meter 25, regardless of external factors such as temperature change and back pressure change of the cold / hot water CH. The flow rate is relatively accurate with a small error. Then, the control device 50 adjusts the opening degree of the two-way valve 18 within a range in which the flow rate of the cold / hot water CH flowing through the obtained coil main pipe 11e is equal to or less than the predetermined flow rate Fc, so that the cold / hot water CH actually becomes excessive. It prevents it from flowing.

制御装置50は、上述の制御中、コイル主管11eを流れる流量が所定の流量Fcを超えそうな場合は、温度計35で検出すべきあらかじめ設定された温度から離れる方向に、すなわち冷温水CHの温度とあらかじめ設定された温度との差が大きくなる方向に、熱源機(不図示)において冷温水CHの温度を調節してもよい。冷温水CHの温度とあらかじめ設定された温度との差が大きくなると、冷温水CHの単位流量あたりの空気SAとの交換熱量が増大するため、冷温水CHの流量を少なくすることができる。また、制御装置50は、温度計35が検出した温度とあらかじめ設定された温度との差に応じて、二方弁18の制御を以下のように変化させるとよい。 During the above control, when the flow rate flowing through the coil main pipe 11e is likely to exceed a predetermined flow rate Fc, the control device 50 moves away from the preset temperature to be detected by the thermometer 35, that is, the cold / hot water CH. The temperature of the cold / hot water CH may be adjusted in a heat source machine (not shown) in a direction in which the difference between the temperature and the preset temperature becomes large. When the difference between the temperature of the cold / hot water CH and the preset temperature becomes large, the amount of heat exchanged with the air SA per unit flow rate of the cold / hot water CH increases, so that the flow rate of the cold / hot water CH can be reduced. Further, the control device 50 may change the control of the two-way valve 18 as follows according to the difference between the temperature detected by the thermometer 35 and the preset temperature.

図3は、時間経過に沿った二方弁18の操作の状態を示すタイミング図である。図3(A)に示すように、二方弁18は、標準状態において、操作と停止とを決められた周期Yで繰り返している。ここで、「操作」は、二方弁18の開度を調節可能な状態であり、必要に応じて開度調節用のモータに電力を供給することができる状態である。実際に二方弁18の開度が変更されるか否かは、温度計35で検出された温度とあらかじめ設定された温度との差の有無により、差がない場合は開度が変更されず、差がある場合は差の大きさに応じて開度が変更される(典型的には比例制御が行われる)。他方、図3(A)に示す二方弁18の状態の「停止」は、二方弁18に電力の供給が行われず、開度の調節が行われることがない状態である。「停止」の状態を設けているのは、「操作」において行われた二方弁18の開度調節の効果が、温度計35で検出された温度に現れるまでに時間を要することを考慮したものである。したがって、二方弁18を停止状態にする時間(以下「停止時間Ys」という。)は、二方弁18の開度調節を行ってからその効果が温度計35で検出された温度に現れるまでの時間に基づいて決定するとよい。二方弁18の開度調節は、二方弁18を操作状態にする時間(以下「操作時間Ym」という。)と停止時間Ysとの合計を1つの周期Yとして、これを繰り返すことで行われている。ここで、操作時間Ymを決定するにあたり、操作時間Ymを長くすると二方弁18の開度調節が行き過ぎてハンチングが生じるおそれがあり、操作時間Ymを短くすると温度計35で検出された温度とあらかじめ設定された温度との差が大きい場合に温度計35で検出された温度が設定温度になるまでに相当の時間を要することになる。そこで、本実施の形態では、図3(B)に示すように、温度計35で検出された温度とあらかじめ設定された温度との差が大きい場合は周期Y1のように長めの操作時間Ym1を取り、差が小さい場合は周期Y3のように短めの操作時間Ym3を取り、差が両者の間の場合は周期Y2のように中間長さの操作時間Ym2を取ることとしている。このような制御とすることで、温度計35で検出された温度とあらかじめ設定された温度との差が大きい場合は二方弁18の出力範囲(本実施の形態では操作時間Ym)を大きくして空気SAの温度を迅速に設定温度に近づけ、差が小さい場合は二方弁18の出力範囲を小さくしてハンチングを防ぐことができる。なお、二方弁18の出力範囲は、操作時間Ymの他、開度を変更するモータの回転速度等であってもよい。 FIG. 3 is a timing diagram showing a state of operation of the two-way valve 18 over time. As shown in FIG. 3A, the two-way valve 18 repeats operation and stop in a predetermined period Y in a standard state. Here, the "operation" is a state in which the opening degree of the two-way valve 18 can be adjusted, and power can be supplied to the motor for adjusting the opening degree as needed. Whether or not the opening degree of the two-way valve 18 is actually changed depends on whether or not there is a difference between the temperature detected by the thermometer 35 and the preset temperature. If there is no difference, the opening degree is not changed. If there is a difference, the opening is changed according to the magnitude of the difference (typically, proportional control is performed). On the other hand, the "stop" state of the two-way valve 18 shown in FIG. 3A is a state in which electric power is not supplied to the two-way valve 18 and the opening degree is not adjusted. The "stop" state is provided in consideration of the fact that it takes time for the effect of the opening adjustment of the two-way valve 18 performed in the "operation" to appear at the temperature detected by the thermometer 35. It is a thing. Therefore, the time for stopping the two-way valve 18 (hereinafter referred to as “stop time Ys”) is from the time when the opening degree of the two-way valve 18 is adjusted until the effect appears at the temperature detected by the thermometer 35. It should be decided based on the time of. The opening degree of the two-way valve 18 is adjusted by repeating this with the total of the time for operating the two-way valve 18 (hereinafter referred to as "operation time Ym") and the stop time Ys as one cycle Y. It has been. Here, in determining the operation time Ym, if the operation time Ym is lengthened, the opening degree of the two-way valve 18 may be adjusted excessively and hunting may occur. When the difference from the preset temperature is large, it takes a considerable amount of time for the temperature detected by the thermometer 35 to reach the set temperature. Therefore, in the present embodiment, as shown in FIG. 3B, when the difference between the temperature detected by the thermometer 35 and the preset temperature is large, a longer operation time Ym1 such as a cycle Y1 is set. If the difference is small, a short operation time Ym3 is taken as in the cycle Y3, and if the difference is between the two, an intermediate length operation time Ym2 is taken as in the cycle Y2. With such control, if the difference between the temperature detected by the thermometer 35 and the preset temperature is large, the output range of the two-way valve 18 (operation time Ym in this embodiment) is increased. The temperature of the air SA can be quickly brought close to the set temperature, and if the difference is small, the output range of the two-way valve 18 can be reduced to prevent hunting. The output range of the two-way valve 18 may be the operation time Ym, the rotation speed of the motor for changing the opening degree, or the like.

再び図1に戻って熱交換システム1の作用の説明を続ける。熱交換システム1の運転中で、温度計35が検出した温度があらかじめ設定された温度となるように二方弁18の開度を調節している最中に、求めたコイル主管11eを流れる冷温水CHの流量があらかじめ決められた流量よりも少なくなると、第1副管21fを流れる冷温水CHの特性に変化が生じ、コイル主管11eを流れる冷温水CHの流量と副管21を流れる冷温水CHの流量との比率が所定の比率からずれるおそれがある。制御装置50は、コイル主管11eを流れる冷温水CHの流量があらかじめ決められた流量よりも少なくなった場合、第2仕切弁29sを開かつ第1仕切弁29fを閉にするように切り換える。すると、分岐点11xから副管21に流入した冷温水CHは、第2抵抗28sを通過し、流量計25を通過して、合流点11yに至るようになる。第2抵抗28sは、冷温水CHの流量が小流量のときに、コイル主管11eを流れる冷温水CHの流量と副管21を流れる冷温水CHの流量との比率が所定の比率となるように選定されているので、流量計25で計測された実流量に基づいて求めたコイル主管11eを流れる冷温水CHの流量の、実際の流量との誤差が小さくなる。このように、冷温水CHの流量に応じて、副管21に流入した冷温水CHが第1抵抗28fを流れるのと第2抵抗28sを流れるのとを切り換えることで、対応できる冷温水CHの最大流量と最小流量との差を拡大することができ、レンジアビリティを広げることができる。制御装置50は、コイル主管11eを流れる冷温水CHの流量が、あらかじめ決められた流量以上になると第1仕切弁29fを開かつ第2仕切弁29sを閉にし、あらかじめ決められた流量よりも少なくなると第2仕切弁29sを開かつ第1仕切弁29fを閉にするように、第1仕切弁29f及び第2仕切弁29sの開閉を適宜切り換える。このようにして、冷暖房対象室に、適切に温度が調節された空気SAが供給される。 Returning to FIG. 1 again, the description of the operation of the heat exchange system 1 will be continued. During the operation of the heat exchange system 1, while adjusting the opening degree of the two-way valve 18 so that the temperature detected by the thermometer 35 becomes a preset temperature, the cold temperature flowing through the obtained coil main pipe 11e When the flow rate of the water CH becomes smaller than the predetermined flow rate, the characteristics of the cold / hot water CH flowing through the first auxiliary pipe 21f change, and the flow rate of the cold / hot water CH flowing through the coil main pipe 11e and the cold / hot water flowing through the auxiliary pipe 21 The ratio with the flow rate of CH may deviate from the predetermined ratio. When the flow rate of the cold / hot water CH flowing through the coil main pipe 11e becomes smaller than the predetermined flow rate, the control device 50 switches to open the second sluice valve 29s and close the first sluice valve 29f. Then, the cold / hot water CH flowing into the auxiliary pipe 21 from the branch point 11x passes through the second resistor 28s, passes through the flow meter 25, and reaches the confluence point 11y. The second resistance 28s has a predetermined ratio between the flow rate of the cold / hot water CH flowing through the coil main pipe 11e and the flow rate of the cold / hot water CH flowing through the auxiliary pipe 21 when the flow rate of the cold / hot water CH is small. Since it is selected, the error between the flow rate of the cold / hot water CH flowing through the coil main pipe 11e obtained based on the actual flow rate measured by the flow meter 25 and the actual flow rate becomes small. In this way, the cold / hot water CH that has flowed into the auxiliary pipe 21 can be switched between flowing through the first resistance 28f and flowing through the second resistance 28s according to the flow rate of the cold / hot water CH. The difference between the maximum flow rate and the minimum flow rate can be widened, and the rangeability can be expanded. When the flow rate of the cold / hot water CH flowing through the coil main pipe 11e becomes equal to or higher than the predetermined flow rate, the control device 50 opens the first sluice valve 29f and closes the second sluice valve 29s, and the flow rate is less than the predetermined flow rate. Then, the opening and closing of the first sluice valve 29f and the second sluice valve 29s are appropriately switched so as to open the second sluice valve 29s and close the first sluice valve 29f. In this way, the air SA whose temperature is appropriately adjusted is supplied to the heating / cooling target room.

以上で説明したように、本実施の形態に係る熱交換システム1によれば、コイル主管11eよりも口径の小さい副管21をコイル主管11eに対して並列に設け、副管21に配置した流量計25で実測した流量に基づいてコイル主管11eを流れる冷温水CHの流量を求め、求めた冷温水CHの流量に照らして効率の低下が許容される範囲内で二方弁18の開度を調節しているので、二方弁18の流量係数(Cv値)や種類(グローブバルブやバタフライバルブ等)を意識することなく、冷温水CHの温度や圧力等の変化の外部要因にかかわらず、適切に空気SAの温度を設定値に制御することができる。また、冷温水CHの流量変化に応じて、副管21の抵抗を切り換えるので、レンジアビリティを広げることができる。また、温度計35で検出された温度とあらかじめ設定された温度との差に応じて二方弁18の出力範囲を変化させるので、空気SAの温度を迅速に設定温度に近づけつつハンチングを防ぐことができる。 As described above, according to the heat exchange system 1 according to the present embodiment, the auxiliary pipe 21 having a diameter smaller than that of the coil main pipe 11e is provided in parallel with the coil main pipe 11e, and the flow rate is arranged in the auxiliary pipe 21. The flow rate of the cold / hot water CH flowing through the coil main pipe 11e is obtained based on the flow rate actually measured by the total 25, and the opening degree of the two-way valve 18 is adjusted within the range where the decrease in efficiency is allowed in light of the obtained flow rate of the cold / hot water CH. Since it is adjusted, regardless of external factors such as changes in the temperature and pressure of the hot and cold water CH, without being aware of the flow coefficient (Cv value) and type (glove valve, butterfly valve, etc.) of the two-way valve 18. The temperature of the air SA can be appropriately controlled to the set value. Further, since the resistance of the auxiliary pipe 21 is switched according to the change in the flow rate of the cold / hot water CH, the rangeability can be expanded. Further, since the output range of the two-way valve 18 is changed according to the difference between the temperature detected by the thermometer 35 and the preset temperature, hunting is prevented while the temperature of the air SA is quickly brought close to the set temperature. Can be done.

以上の説明では、熱搬送液体が冷温水CHであるとしたが、不凍液等の冷温水CH以外の液体であってもよい。また、温度調節対象物が空気SAであるとしたが、空気SA以外のガスや液体等、用途に応じて適宜変更することができる。 In the above description, the heat transfer liquid is the cold / hot water CH, but it may be a liquid other than the cold / hot water CH such as antifreeze. Further, although it is assumed that the object to be temperature controlled is air SA, it can be appropriately changed depending on the application such as gas or liquid other than air SA.

以上の説明では、副管21の一部が第1副管21fと第2副管21sとに分流してそれぞれに異なる抵抗値の抵抗28f、28sが配設されているとしたが、分流させずに単一の流路に1つの抵抗を配設してもよい。しかしながら、それぞれに異なる抵抗値の抵抗28f、28sが配設された第1副管21fと第2副管21sとに分流して、冷温水CHの流量に応じて通過させる副管21f、21sを選択することとすると、レンジアビリティを広げることができて好ましい。なお、副管21の一部の冷温水CHの流路を第1副管21fと第2副管21sとで切り換える場合は、2つの仕切弁29f、29sに代えて、第1副管21fと第2副管21sとの分岐部又は合流部に三方弁を設けてもよい。あるいは、図1に示すように、第1副管21fに第1仕切弁29f弁を、第2副管21sに第2仕切弁29sをそれぞれ配置した場合に、冷温水CHが第1副管21fと第2副管21sとを選択的に流れるようにする他に、第1副管21f及び第2副管21sの両方を流れるように3段階の選択を可能にして、さらにレンジアビリティを広げることとしてもよい。 In the above description, it is assumed that a part of the auxiliary pipe 21 is divided into the first auxiliary pipe 21f and the second auxiliary pipe 21s, and the resistors 28f and 28s having different resistance values are arranged in the respective auxiliary pipes 21s. Instead, one resistor may be arranged in a single flow path. However, the auxiliary pipes 21f and 21s which are divided into the first auxiliary pipe 21f and the second auxiliary pipe 21s in which the resistors 28f and 28s having different resistance values are arranged and passed according to the flow rate of the hot and cold water CH are passed. It is preferable to select it because it can expand the rangeability. When switching the flow path of a part of the cold / hot water CH of the auxiliary pipe 21 between the first auxiliary pipe 21f and the second auxiliary pipe 21s, the first auxiliary pipe 21f is used instead of the two sluice valves 29f and 29s. A three-way valve may be provided at the branching portion or the merging portion with the second auxiliary pipe 21s. Alternatively, as shown in FIG. 1, when the first sluice valve 29f valve is arranged in the first sub-pipe 21f and the second sluice valve 29s is arranged in the second sub-pipe 21s, the cold / hot water CH becomes the first sub-pipe 21f. In addition to selectively flowing the first sub-tube and the second sub-tube 21s, it is possible to select three stages so that both the first sub-tube 21f and the second sub-tube 21s flow, further expanding the rangeability. May be.

以上の説明では、温度検出器が、コイル15通過後の空気SAの温度を検出する温度計35であるとしたが、空気SAの温度と相関を有するものの温度を検出するものであってもよい。空気SAの温度と相関を有するものとして、例えば、空気SAが供給される冷暖房対象室の内部温度や、冷温水CHのコイル15出口の温度あるいはコイル15出入口の温度差等を挙げることができる。 In the above description, the temperature detector is a thermometer 35 that detects the temperature of the air SA after passing through the coil 15, but it may be one that detects the temperature of the one that has a correlation with the temperature of the air SA. .. Examples of those having a correlation with the temperature of the air SA include the internal temperature of the heating / cooling target room to which the air SA is supplied, the temperature of the coil 15 outlet of the cold / hot water CH, the temperature difference of the coil 15 inlet / outlet, and the like.

以上の説明では、副管21がコイル15に対して並列に配置されていることとしたが、図4に示すようにコイル15が配置されていない主管11の部分に対して副管21が並列に配置されていてもよい。この場合、副管21に配設された流量計25を冷温水CHが通過するのに必要な差圧を、副管21に対して並列となる主管11の部分に生じさせるために、当該主管11の部分に流量計25の抵抗に相当する抵抗を設けることとなるため、主管11全体としてみるとコイル15に加えて抵抗が増えることとなる。この抵抗の増加に伴うエネルギーの浪費を削減する観点からは、図1に示すように副管21がコイル15に対して並列に配置されていることが好ましい。 In the above description, it is assumed that the sub pipe 21 is arranged in parallel with the coil 15, but as shown in FIG. 4, the sub pipe 21 is in parallel with the portion of the main pipe 11 in which the coil 15 is not arranged. It may be arranged in. In this case, in order to generate the differential pressure required for the cold / hot water CH to pass through the flow meter 25 arranged in the sub pipe 21 in the portion of the main pipe 11 parallel to the sub pipe 21, the main pipe is concerned. Since a resistor corresponding to the resistance of the flow meter 25 is provided in the portion of 11, the resistance of the main pipe 11 as a whole increases in addition to the coil 15. From the viewpoint of reducing the waste of energy due to the increase in resistance, it is preferable that the auxiliary pipe 21 is arranged in parallel with the coil 15 as shown in FIG.

1 熱交換システム
11 主管
11e コイル主管
11p 分岐前主管
11q 合流後主管
11y 合流点
11x 分岐点
15 コイル
18 二方弁
21 副管
21f 第1副管
21s 第2副管
25 流量計
29 切換部
35 温度計
50 制御装置
CH 冷温水
SA 空気
1 Heat exchange system 11 Main pipe 11e Coil main pipe 11p Before branching Main pipe 11q After merging Main pipe 11y Confluence point 11x Branching point 15 Coil 18 Two-way valve 21 Sub pipe 21f First sub pipe 21s Second sub pipe 25 Flow meter 29 Switching unit 35 Temperature Total 50 Control device CH Cold / hot water SA Air

Claims (3)

熱交換システムであって;
熱搬送液体と温度調節対象物とで熱交換させる熱交換部に出入りする前記熱搬送液体を流す主流路と;
前記主流路に対して並列に設けられた副流路であって、前記主流路よりも流路断面積が小さい副流路と;
前記副流路に設けられた流量計と;
前記流量計で検出された流量に基づいて前記熱交換部を流れる前記熱搬送液体の流量を求める制御装置と;
前記熱交換システム内を流れる前記熱搬送液体の流量を調節する流量調節部と;
前記温度調節対象物の温度又は前記温度調節対象物の温度と相関を有する検出対象の温度を検出する温度検出器とを備え;
前記制御装置は、前記流量調節部における前記熱搬送液体の流量の調節が可能な操作状態の時間である操作時間と、前記流量調節部における前記熱搬送液体の流量の調節が行われることがない停止状態の時間である停止時間と、を1つの周期として、前記周期を繰り返すように前記流量調節部を制御しながら、前記温度検出器で検出された温度とあらかじめ設定された温度との乖離が大きいほど前記操作時間を長くするように構成された;
熱交換システム。
It is a heat exchange system;
With the main flow path through which the heat transfer liquid that enters and exits the heat exchange section that exchanges heat between the heat transfer liquid and the temperature control object;
A sub-flow path provided in parallel with the main flow path and having a smaller flow path cross-sectional area than the main flow path;
With the flow meter provided in the sub-flow path;
With a control device that obtains the flow rate of the heat transfer liquid flowing through the heat exchange unit based on the flow rate detected by the flow meter ;
With a flow rate adjusting unit that adjusts the flow rate of the heat transfer liquid flowing in the heat exchange system;
It is equipped with a temperature detector that detects the temperature of the temperature-controlled object or the temperature of the detection target that has a correlation with the temperature of the temperature-controlled object;
The control device does not adjust the operation time, which is the operating state time in which the flow rate of the heat transfer liquid can be adjusted in the flow rate adjusting unit, and the flow rate of the heat transfer liquid in the flow rate adjusting unit. The difference between the temperature detected by the temperature detector and the preset temperature is generated while controlling the flow rate adjusting unit so as to repeat the cycle with the stop time, which is the time of the stop state, as one cycle. The larger it is, the longer the operation time is configured;
Heat exchange system.
前記副流路は、
第1の抵抗値を有する第1の抵抗流路と;
前記第1の抵抗値とは異なる第2の抵抗値を有する第2の抵抗流路と;
前記熱搬送液体が前記第1の抵抗流路を流れるのと前記第2の抵抗流路を流れるのとを切り換える切換部とを有する;
請求項1に記載の熱交換システム。
The sub-channel is
With a first resistance channel having a first resistance value;
With a second resistance flow path having a second resistance value different from the first resistance value;
It has a switching unit for switching between flowing the heat transport liquid through the first resistance flow path and flowing through the second resistance flow path;
The heat exchange system according to claim 1.
前記制御装置は、前記流量計で検出された流量に基づいて求められた前記熱交換部を流れる前記熱搬送液体の流量が所定の流量の範囲内で、前記温度検出器で検出された温度が前記あらかじめ設定された温度となるように前記流量調節部を制御する;
請求項1又は請求項2に記載の熱交換システム。
In the control device, the temperature detected by the temperature detector is such that the flow rate of the heat transport liquid flowing through the heat exchange unit obtained based on the flow rate detected by the flow meter is within a predetermined flow rate. The flow rate adjusting unit is controlled so as to have the preset temperature;
The heat exchange system according to claim 1 or 2.
JP2017150624A 2017-08-03 2017-08-03 Heat exchange system Active JP6967903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150624A JP6967903B2 (en) 2017-08-03 2017-08-03 Heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150624A JP6967903B2 (en) 2017-08-03 2017-08-03 Heat exchange system

Publications (2)

Publication Number Publication Date
JP2019027750A JP2019027750A (en) 2019-02-21
JP6967903B2 true JP6967903B2 (en) 2021-11-17

Family

ID=65475949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150624A Active JP6967903B2 (en) 2017-08-03 2017-08-03 Heat exchange system

Country Status (1)

Country Link
JP (1) JP6967903B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2726478B2 (en) * 1989-02-21 1998-03-11 大阪瓦斯株式会社 Cooling or heating equipment
JPH09287798A (en) * 1996-04-23 1997-11-04 Chugoku Furoo Controls:Kk Air conditioning unit and air conditioning system incorporating air conditioning unit
JPH10221131A (en) * 1997-02-12 1998-08-21 Osaka Gas Co Ltd Flowmeter
JP4829818B2 (en) * 2007-03-15 2011-12-07 新日本空調株式会社 Operation control method for 1 pump heat source equipment
US8746032B1 (en) * 2013-03-01 2014-06-10 Onicon, Inc. Flow metering system

Also Published As

Publication number Publication date
JP2019027750A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP4910163B2 (en) Constant temperature liquid circulation device and temperature control method in the device
DK2726792T3 (en) Method and device for balancing a group of consumers in a fluidtransportsystem
CN101067464B (en) Triple duty valve
JP2017040668A (en) Thermal mass flow meter, thermal mass flow controller, and method of preventing thermal siphoning in mass flow controller
JP6252685B2 (en) Hot water heating system
US11187426B2 (en) Method and device for controlling the flow of fluid in an air-conditioning and/or heating system and system using such a device and/or control method
JP6967903B2 (en) Heat exchange system
JP6685602B2 (en) Air conditioning system
JP6341718B2 (en) Circulating water heater
JP5898506B2 (en) Heat pump equipment
CN110017595B (en) Gas stove
TWI718985B (en) Multi-stage heat pump performance test system
JP2008185297A (en) Heat exchanger for hot water supply
JP6303469B2 (en) Heat exchanger
KR101832440B1 (en) Central heating system and method including heat supplementary unit of return line pipe
CN206420135U (en) Gas heater
JP3465587B2 (en) Hot water heating system
JP2015170021A (en) Flow controller and flow controlling method
Tamkhade et al. Thermal analysis and performance evaluation of triple concentric tube heat exchanger
JP3852384B2 (en) Gas combustion equipment
JP2015152264A (en) heat exchanger
JP6421513B2 (en) Heat exchanger and heat exchanger control method
WO2016146995A1 (en) System to enable balancing of a central heating system
JP2021056074A (en) Flow rate measuring device
JPH09287798A (en) Air conditioning unit and air conditioning system incorporating air conditioning unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211026

R150 Certificate of patent or registration of utility model

Ref document number: 6967903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150