JPS63168944A - X-ray generator - Google Patents
X-ray generatorInfo
- Publication number
- JPS63168944A JPS63168944A JP62000227A JP22787A JPS63168944A JP S63168944 A JPS63168944 A JP S63168944A JP 62000227 A JP62000227 A JP 62000227A JP 22787 A JP22787 A JP 22787A JP S63168944 A JPS63168944 A JP S63168944A
- Authority
- JP
- Japan
- Prior art keywords
- capillary
- plasma
- dielectric
- dielectric substance
- insulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003989 dielectric material Substances 0.000 claims description 7
- 239000012212 insulator Substances 0.000 abstract description 18
- 238000010894 electron beam technology Methods 0.000 abstract description 6
- 239000003990 capacitor Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract 7
- 239000004698 Polyethylene Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、高精度かつ高効率のパルスX線を発生させる
X線発生装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray generator that generates highly accurate and highly efficient pulsed X-rays.
[従来技術]
近時、半導体ウェハやマスク等の試料に微細なパターン
を形成するための装置として、X線を利用したX線露光
装置の開発が進められている。このX線露光装置に用い
られるX線発生装置としては、ターゲットに高速電子ビ
ームを衝突させてターゲットからX線を発生させる方式
が一般的である。しかし、この方式によると、X線発生
効率は0.1%程度と低い上に、ターゲットに衝突させ
る電子ビームの強度を上げるとターゲットが溶解するの
で、高出力のX線を得るには限界があった。[Prior Art] Recently, development of an X-ray exposure apparatus using X-rays has been progressing as an apparatus for forming fine patterns on samples such as semiconductor wafers and masks. The X-ray generating device used in this X-ray exposure apparatus generally uses a method in which a high-speed electron beam collides with a target to generate X-rays from the target. However, according to this method, the X-ray generation efficiency is as low as about 0.1%, and the target dissolves when the intensity of the electron beam collided with the target is increased, so there is a limit to obtaining high-power X-rays. there were.
そこで、高出力のX線を得るものとして、沿面放電を利
用したX線発生装置が考案されている。Therefore, an X-ray generator using creeping discharge has been devised to obtain high-output X-rays.
このX線発生装置(細管型プラズマX線源)の一般的な
構造を第3図に示す。The general structure of this X-ray generator (capillary plasma X-ray source) is shown in FIG.
すなわち、円筒型のポリエチレンからなる碍子1にその
中央部を貫通するキャピラリ(細管状の空間)2が形成
され、また、碍子1の両側には電極3,4が設けられて
いる。Ra、Rbは抵抗、Cb、Cdはコンデンサであ
り、抵抗Raの一端には直流高電圧−HVが印加される
。That is, a cylindrical insulator 1 made of polyethylene has a capillary (tubular space) 2 passing through its center, and electrodes 3 and 4 are provided on both sides of the insulator 1. Ra and Rb are resistors, Cb and Cd are capacitors, and a DC high voltage -HV is applied to one end of the resistor Ra.
このような構造でコンデンサCdが充電され、碍子1に
充分大きな電圧が印加されると、碍子1を構成するポリ
エチレンがキャピラリ2の沿面放電により蒸発し、プラ
ズマ5が発生する。この時カソード6から電子ビームを
プラズマ5に照射すると、プラズマ5の温度が上昇し、
かつプラズマ密度が高まり、X線7が発生する。When the capacitor Cd is charged with this structure and a sufficiently large voltage is applied to the insulator 1, the polyethylene constituting the insulator 1 is evaporated by creeping discharge of the capillary 2, and plasma 5 is generated. At this time, when the plasma 5 is irradiated with an electron beam from the cathode 6, the temperature of the plasma 5 increases,
In addition, the plasma density increases and X-rays 7 are generated.
[発明が解決しようとする問題点コ
しかしながら、このような従来の方法では碍子1を構成
するポリエチレンが消費されるので、キャピラリ2の直
径が大きくなる。例えば、50KV程度の電圧を印加し
て300回程度の放電を行なうと、はじめは1mmであ
ったキャピラリの直径が3mmとなる。キャピラリの直
径が大きくなると、プラズマ密度が低下し、発生するX
線の強度が低下するので、従来の方法ではX線発生装置
の寿命が短いという欠点があった。[Problems to be Solved by the Invention] However, in such a conventional method, the polyethylene constituting the insulator 1 is consumed, so the diameter of the capillary 2 becomes large. For example, when a voltage of about 50 KV is applied and discharge is performed about 300 times, the diameter of the capillary, which was initially 1 mm, becomes 3 mm. As the capillary diameter increases, the plasma density decreases and the generated
Since the intensity of the rays is reduced, the conventional method has the disadvantage that the life of the X-ray generator is short.
本発明の目的は、上述従来例の欠点に鑑み、高出力なX
線の発生能力を長期に維持できる細管型のX線発生装置
を提供することにある。In view of the drawbacks of the above-mentioned conventional examples, an object of the present invention is to provide a high-output
It is an object of the present invention to provide a capillary type X-ray generating device that can maintain the ability to generate rays for a long period of time.
[問題点を解決するための手段および作用コ木発明のX
線発生装置は、キャピラリ内に沿面放電によって高密度
のプラズマをつくり、これに高速の電子ビームを打ち込
んでX線を発生させる細管型プラズマX線源において、
上記キャピラリを複数に分割された誘電体の壁によって
構成し、さらには該誘電体を繰出可能としたものである
。[Means and actions for solving the problem
The ray generator is a capillary plasma X-ray source that generates X-rays by creating high-density plasma in a capillary by creeping discharge and injecting a high-speed electron beam into the plasma.
The capillary is constituted by a dielectric wall divided into a plurality of parts, and the dielectric can be drawn out.
したがって、誘電体のプラズマ化による消費を誘電体を
繰り出すことで補うことができる。Therefore, the consumption of the dielectric material due to plasma formation can be compensated for by feeding out the dielectric material.
[実施例]
以下、図面を用いて本発明の詳細な説明する。なお、第
3図の従来例と共通または対応する部分についてば同一
の符号で表わす。[Example] Hereinafter, the present invention will be explained in detail using the drawings. Note that parts common or corresponding to those of the conventional example shown in FIG. 3 are denoted by the same reference numerals.
第1図は、本発明の一実施例に係るX線発生装置の構成
を示す。同図において、Ra、Rhは抵抗、Cb、Cd
はコンデンサ、2はキャピラリ、3.4は電極、5は発
生したプラズマ、6はカソード、7はX線、8は碍子、
9は誘電体である。FIG. 1 shows the configuration of an X-ray generator according to an embodiment of the present invention. In the same figure, Ra and Rh are resistances, Cb and Cd
is a capacitor, 2 is a capillary, 3.4 is an electrode, 5 is a generated plasma, 6 is a cathode, 7 is an X-ray, 8 is an insulator,
9 is a dielectric material.
同図かられかるように、キャピラリ2は4個の四角柱の
碍子8と、碍子に接する誘電体9で構成される。そして
、キャピラリ2は誘電体9で囲まれている。誘電体9は
所定の波長域のX線を放射すべき元素を含有する電気的
絶縁性の物質(例えば炭素のX線が必要な場合、ポリエ
チレン等)である。碍子8は誘電体9と同質の材料でも
よいが、絶縁物であれば誘電体9と異なる材質(例えば
アルミナAIL203)のものでもよい。電i3,4、
カソード6、碍子8および誘電体9は真空容器に収めら
れている。As can be seen from the figure, the capillary 2 is composed of four square prism insulators 8 and a dielectric 9 in contact with the insulators. The capillary 2 is surrounded by a dielectric 9. The dielectric 9 is an electrically insulating material containing an element that should emit X-rays in a predetermined wavelength range (for example, polyethylene or the like if carbon X-rays are required). The insulator 8 may be made of the same material as the dielectric 9, but may be made of a different material from the dielectric 9 (for example, alumina AIL203) as long as it is an insulator. Electric i3, 4,
The cathode 6, insulator 8, and dielectric 9 are housed in a vacuum container.
次に、第1図の装置の動作を説明する。Next, the operation of the apparatus shown in FIG. 1 will be explained.
コンデンサCdが充電され、碍子8に十分大きな電圧が
印加されるとキャピラリ2に面する誘電体9がキャピラ
リ2の沿面放電により蒸発しプラズマ5が発生する。こ
のとき、カソード6から電子ビームをプラズマ5に照射
すると、プラズマ5の温度が上昇し、かつプラズマ密度
が高まる。そして、X線7が発生する。ここまでは従来
形と同様である。ただし、キャピラリ2に面している誘
電体9の表面の一部は沿面放電によりプラズマ化される
のでその発話電体は減少する。そこで、プラズマ化され
た量だけキャピラリ2の中心に向って、誘電体9を移動
させる。When the capacitor Cd is charged and a sufficiently large voltage is applied to the insulator 8, the dielectric 9 facing the capillary 2 is evaporated by the creeping discharge of the capillary 2, and plasma 5 is generated. At this time, when the plasma 5 is irradiated with an electron beam from the cathode 6, the temperature of the plasma 5 increases and the plasma density increases. Then, X-rays 7 are generated. The process up to this point is the same as the conventional type. However, since a part of the surface of the dielectric 9 facing the capillary 2 is turned into plasma by the creeping discharge, the number of speaking bodies is reduced. Therefore, the dielectric 9 is moved toward the center of the capillary 2 by the amount that has been turned into plasma.
この様子を第2図に示す。ただし、同図では、キャピラ
リ2を構成する碍子8と誘電体9のみを図示してあり、
電極等は省略した。同図に示す如く、誘電体9の移動は
矢印の示す方向に行なう。This situation is shown in FIG. However, in the figure, only the insulator 8 and dielectric 9 that constitute the capillary 2 are shown.
Electrodes etc. were omitted. As shown in the figure, the dielectric 9 is moved in the direction indicated by the arrow.
この誘電体9の移動は、1回の放電ごとあるいは数回〜
数十回ごとの適当な回数の放電をさせた後に行なっても
よいし、誘電体の減少度を測定し適当な時期に行なって
もよい。測定方法は種々あるが、例えば、対向する2個
の誘電体をキャピラリの中心へ向ってお互いに接触する
まで移動させ、その移動距離から、減少度を決定できる
。また、誘電体の移動の際に、碍子8間の距離を増せば
誘電体9の移動を容易に行なうことができる。This movement of the dielectric 9 may occur every single discharge or several times.
This may be carried out after an appropriate number of discharges every several tens of times, or may be carried out at an appropriate time by measuring the degree of reduction in the dielectric. There are various measurement methods, but for example, the degree of reduction can be determined by moving two opposing dielectrics toward the center of the capillary until they come into contact with each other, and from the distance traveled. Furthermore, when moving the dielectric, increasing the distance between the insulators 8 makes it easier to move the dielectric 9.
[実施例の変形例]
前述の実施例で説明したような細管型プラズマX線源で
用いるプラズマ発生用の電気回路として多くのものが考
案されている。本発明は、このような細管型プラズマX
線源用の電気回路のいずれによっても構成でき、該電気
回路に制限されることはない。例えば第4図は、第1図
の装置の変形例を示すが、本発明はこのような回路をも
つ細管型プラズマX線源としても構成できる。[Modifications of Embodiments] Many electrical circuits have been devised for plasma generation used in the capillary plasma X-ray source as described in the above embodiments. The present invention provides such a capillary plasma
It can be configured by any electric circuit for a radiation source, and is not limited to this electric circuit. For example, FIG. 4 shows a modification of the apparatus shown in FIG. 1, but the present invention can also be configured as a capillary plasma X-ray source having such a circuit.
また、キャピラリ2を構成する碍子8と誘電体9につい
ては、例えば、第5〜6図に示したように、多くの変形
が考えられる。第5図はキャピラリの中央における断面
図で、第1図の断面A−Aに相当する。第6図は、誘電
体9をキャピラリ2に垂直な方向にも3分割したX線源
の例を示し、第6−2図にこの誘電体9と碍子8を示し
た。Furthermore, many modifications can be made to the insulator 8 and dielectric 9 constituting the capillary 2, as shown in FIGS. 5 and 6, for example. FIG. 5 is a sectional view at the center of the capillary, and corresponds to the section AA in FIG. FIG. 6 shows an example of an X-ray source in which the dielectric 9 is also divided into three in the direction perpendicular to the capillary 2, and this dielectric 9 and the insulator 8 are shown in FIG. 6-2.
第6図のように、キャピラリに垂直な方向に対しても誘
電体9を分割すると、局所的に誘電体が減少してもこれ
を補うことが可能である。If the dielectric 9 is divided also in the direction perpendicular to the capillary as shown in FIG. 6, even if the dielectric decreases locally, it can be compensated for.
[発明の効果]
以上説明したように本発明によれば、細管型のX線発生
装置において、誘電体によりキャピラリの壁面を形成し
、該壁面の消耗に応じて該壁面を繰り出すようにしたた
め、従来形のようなキャピラリの直径の拡大によるX線
の出力低下が起こらず高出力のX線発生能力を維持する
ことができ、X線発生装置としての寿命を長くすること
ができる。[Effects of the Invention] As explained above, according to the present invention, in a thin tube type X-ray generator, the wall surface of the capillary is formed of a dielectric material, and the wall surface is drawn out as the wall surface wears out. Unlike the conventional type, the output of X-rays does not decrease due to an increase in the diameter of the capillary, and high-output X-ray generation capability can be maintained, and the life of the X-ray generator can be extended.
第1図は、本発明の一実施例に係るX線発生装置の構成
を示す構造図、
第2図は、第1図の装置において誘電体9を移動させる
ときの様子を示す斜視図、
第3図は、従来の細管型プラズマX線源、第4〜6図は
、本発明の変形例である。
1:誘電体、2:キャピラリ、
3.4:電極、5:プラズマ、
6:カソード、7:X線、8:碍子、
9:誘電体、
特許出願人 キャノン株式会社
代理人 弁理士 伊 東 辰 雄
代理人 弁理士 伊 東 哲 也
b
第2図
b
第3図
第4図
第5図
Cb
第6−1図
第6−2図FIG. 1 is a structural diagram showing the configuration of an X-ray generator according to an embodiment of the present invention; FIG. 2 is a perspective view showing how the dielectric 9 is moved in the device shown in FIG. 1; FIG. 3 shows a conventional capillary plasma X-ray source, and FIGS. 4 to 6 show modified examples of the present invention. 1: Dielectric, 2: Capillary, 3.4: Electrode, 5: Plasma, 6: Cathode, 7: X-ray, 8: Insulator, 9: Dielectric, Patent Applicant Canon Co., Ltd. Agent Patent Attorney Tatsu Ito Male agent Patent attorney Tetsuya Ito b Figure 2 b Figure 3 Figure 4 Figure 5 Cb Figure 6-1 Figure 6-2
Claims (1)
細管状の空間と、該細管状空間の壁に沿って沿面放電さ
せ該細管状の空間内にプラズマを発生させる手段と、該
プラズマに電子を入射する手段とを具備することを特徴
とするX線発生装置。 2、前記誘電体が、それぞれ前記細管状空間の中心に向
って移動可能な特許請求の範囲第1項記載のX線発生装
置。[Claims] 1. A capillary space formed by surrounding it with a plurality of bulk dielectrics, and a means for generating plasma in the capillary space by causing a creeping discharge along the wall of the capillary space. and means for injecting electrons into the plasma. 2. The X-ray generating device according to claim 1, wherein each of the dielectrics is movable toward the center of the tubular space.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62000227A JPS63168944A (en) | 1987-01-06 | 1987-01-06 | X-ray generator |
DE19873712049 DE3712049A1 (en) | 1986-04-10 | 1987-04-09 | X-RAY EXPOSURE DEVICE |
US07/309,918 US4935947A (en) | 1986-04-10 | 1989-02-07 | X-ray exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62000227A JPS63168944A (en) | 1987-01-06 | 1987-01-06 | X-ray generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63168944A true JPS63168944A (en) | 1988-07-12 |
Family
ID=11468073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62000227A Pending JPS63168944A (en) | 1986-04-10 | 1987-01-06 | X-ray generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63168944A (en) |
-
1987
- 1987-01-06 JP JP62000227A patent/JPS63168944A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4201921A (en) | Electron beam-capillary plasma flash x-ray device | |
US7115887B1 (en) | Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography | |
US20030053588A1 (en) | Radiation-generating devices utilizing multiple plasma-discharge sources and microlithography apparatus and methods utilizing the same | |
US5014289A (en) | Long life electrodes for large-area x-ray generators | |
JP2509488B2 (en) | Fast atom beam source | |
KR20050028028A (en) | Aerosol particle charging equipment | |
WO2001011737A1 (en) | High electric field, high pressure light source | |
US4841556A (en) | Plasma X-ray source | |
JPS63168944A (en) | X-ray generator | |
US3821580A (en) | Flash x ray tube | |
JPS635852B2 (en) | ||
JPS62246238A (en) | X-ray generating device | |
JP2988764B2 (en) | Accelerator tube of DC voltage accelerator | |
JPH046431A (en) | Vacuum gage | |
Stetter et al. | Development of a plasma lens as a fine focusing lens for heavy-ion beams | |
RU2145748C1 (en) | Flash tube | |
JPH04233148A (en) | Discharge method of sample and device | |
US5208844A (en) | Electronic devices using discrete, contained charged particle bundles and sources of same | |
JPS63239755A (en) | X-ray generator and x-ray exposer applied therewith | |
JPS63239943A (en) | X-ray exposure apparatus | |
JP3103181B2 (en) | Fast atom beam source | |
JPH0471332B2 (en) | ||
JP6834536B2 (en) | Plasma light source | |
JP6822057B2 (en) | Plasma light source | |
JPH0344429B2 (en) |