JPS63168943A - X-ray generator - Google Patents

X-ray generator

Info

Publication number
JPS63168943A
JPS63168943A JP62000226A JP22687A JPS63168943A JP S63168943 A JPS63168943 A JP S63168943A JP 62000226 A JP62000226 A JP 62000226A JP 22687 A JP22687 A JP 22687A JP S63168943 A JPS63168943 A JP S63168943A
Authority
JP
Japan
Prior art keywords
dielectric sheet
capillary
rays
plasma
insulators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62000226A
Other languages
Japanese (ja)
Inventor
Mitsuaki Amamiya
光陽 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62000226A priority Critical patent/JPS63168943A/en
Priority to DE19873712049 priority patent/DE3712049A1/en
Publication of JPS63168943A publication Critical patent/JPS63168943A/en
Priority to US07/309,918 priority patent/US4935947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To extend the life and easily generate X-rays having the desired wavelength by forming the wall faces of a capillary with a dielectric sheet and renewing the wall faces in response to the consumption of the wall faces. CONSTITUTION:A capillary 2 is constituted of six triangle pole-shaped insulators 8 and a dielectric sheet 9 covering the insulators so that the dielectric sheet 9 can be renewed. When a capacitor Cd is charged and the sufficiently large voltage is applied to the insulators 8, the dielectric sheet 9 covering the insulators 8 and a material 10 are evaporated by the creeping discharge of the capillary 2 to generate plasma 8. In this case, when an electron beam is radiated from a cathode 6 to the plasma 5, x-rays 7 in the wavelength area corresponding to the material 10 are generated. However, part of the surface of the dielectric sheet 9 facing the capillary 2 generates plasma by the creeping discharge, thus the sheet is made thin after X-rays are generated. Therefore, the dielectric sheet 9 is moved so that new faces not generating plasma encircle the capillary 2.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、高精度かつ高効率のパルスX線を発生させる
X線発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray generator that generates highly accurate and highly efficient pulsed X-rays.

[従来技術] 近時、半導体ウェハやマスク等の試料に微細なパターン
を形成するための装置として、X線を利用したX線露光
装置の開発が進められている。このX線露光装置に用い
られるX線発生装置としては、ターゲットに高速電子ビ
ームを衝突させてターゲットからX線を発生させる方式
が一般的である。しかし、この方式によると、X線発生
効率は0.1%程度と低い上に、ターゲットに衝突させ
る電子ビームの強度を上げるとターゲットが溶解するの
で、高出力のX線を得るには限界があった。
[Prior Art] Recently, development of an X-ray exposure apparatus using X-rays has been progressing as an apparatus for forming fine patterns on samples such as semiconductor wafers and masks. The X-ray generating device used in this X-ray exposure apparatus generally uses a method in which a high-speed electron beam collides with a target to generate X-rays from the target. However, according to this method, the X-ray generation efficiency is as low as about 0.1%, and the target dissolves when the intensity of the electron beam collided with the target is increased, so there is a limit to obtaining high-power X-rays. there were.

そこで、高出力のX線を得るものとして、沿面放電を利
用したX線発生装置が考案されている。
Therefore, an X-ray generator using creeping discharge has been devised to obtain high-output X-rays.

このX線発生装置(細管型プラズマX線源)の一般的な
構造を第3図に示す。
The general structure of this X-ray generator (capillary plasma X-ray source) is shown in FIG.

すなわち、円筒型のポリエチレンからなる碍子1にその
中央部を貫通するキャピラリ(細管状の空間)2が形成
され、また、碍子1の両側には電極3.4が設けられて
いる。Ra、Rhは抵抗、Cb、Cdはコンデンサであ
り、抵抗Raの一端には直流高電圧−HVが印加される
That is, a cylindrical insulator 1 made of polyethylene is provided with a capillary (tubular space) 2 passing through its center, and electrodes 3.4 are provided on both sides of the insulator 1. Ra and Rh are resistors, Cb and Cd are capacitors, and a high DC voltage -HV is applied to one end of the resistor Ra.

このような構造でコンデンサCdが充電され、碍子1に
充分大きな電圧が印加されると、碍子1を構成するポリ
エチレンがキャピラリ2の沿面放電により蒸発し、プラ
ズマ5が発生する。この時カソード6から電子ビームを
プラズマ5に照射すると、プラズマ5の温度が上昇し、
かつプラズマ密度が高まり、X線7が発生する。
When the capacitor Cd is charged with this structure and a sufficiently large voltage is applied to the insulator 1, the polyethylene constituting the insulator 1 is evaporated by creeping discharge of the capillary 2, and plasma 5 is generated. At this time, when the plasma 5 is irradiated with an electron beam from the cathode 6, the temperature of the plasma 5 increases,
In addition, the plasma density increases and X-rays 7 are generated.

[発明が解決しようとする問題点] しかしながら、このような従来の方法では碍子1を構成
するポリエチレンが消費されるので、キャピラリ2の直
径が大きくなる。例えば、50KV程度の電圧を印加し
て300回程度の放電を行なうと、はじめは1mmであ
ったキャピラリの直径が3mmとなる。キャピラリの直
径が大きくなると、プラズマ密度が低下し、発生するX
線の強度が低下するので、従来の方法ではX線発生装置
の寿命が短いという欠点があった。
[Problems to be Solved by the Invention] However, in such a conventional method, the polyethylene constituting the insulator 1 is consumed, so the diameter of the capillary 2 becomes large. For example, when a voltage of about 50 KV is applied and discharge is performed about 300 times, the diameter of the capillary, which was initially 1 mm, becomes 3 mm. As the capillary diameter increases, the plasma density decreases and the generated
Since the intensity of the rays is reduced, the conventional method has the disadvantage that the life of the X-ray generator is short.

さらに、発生するX線の波長は碍子の構成元素によって
制限を受け、主として、炭素のにα線などの長波長X線
がほとんどであり、10Å以下の短波長X線は発生させ
にくかった。
Furthermore, the wavelength of the generated X-rays is limited by the constituent elements of the insulator, and most of the X-rays are long-wavelength X-rays such as alpha rays from carbon, and short-wavelength X-rays of 10 Å or less are difficult to generate.

本発明の目的は、上述従来例の欠点に鑑み、高出力なX
線の発生能力を長期に維持でき、かつ10Å以下の短波
長X線を発生させることもできる細管型のX線発生装置
を提供することにある。
In view of the drawbacks of the above-mentioned conventional examples, an object of the present invention is to provide a high-output
It is an object of the present invention to provide a capillary type X-ray generating device that can maintain the ability to generate X-rays for a long period of time and can also generate short wavelength X-rays of 10 Å or less.

[問題点を解決するための手段および作用コ上記問題点
を解決するため本発明のX線発生装置は、キャピラリ内
に沿面放電によって高密度のプラズマをつくり、これに
高速の電子ビームを打ち込んでX線を発生させる細管型
プラズマX線源において、上記キャピラリを、誘電体シ
ートによって覆われた絶縁物の壁によって構成して該誘
電体シートを更新可能なものとし、かつ、該誘電体シー
トのキャピラリに面した側には蒸着等によってつけられ
た金属等の物質を有している。
[Means and operations for solving the problems] In order to solve the above problems, the X-ray generator of the present invention creates a high-density plasma in a capillary by creeping discharge, and injects a high-speed electron beam into this. In a capillary type plasma X-ray source that generates X-rays, the capillary is constituted by an insulating wall covered with a dielectric sheet so that the dielectric sheet is renewable, and the dielectric sheet is The side facing the capillary has a substance such as metal applied by vapor deposition or the like.

したがって、キャピラリに面する誘電体シートのプラズ
マ化による消費を該誘電体シートの更新により補うこと
ができると同時に、上記金属等の物質として所定の波長
域のX線を放射すべき元素を含有する物質を用いること
により所望の波長のX線を得ることができる。
Therefore, the consumption of the dielectric sheet facing the capillary due to plasma conversion can be compensated for by renewing the dielectric sheet, and at the same time, the metal or other substance contains an element that should emit X-rays in a predetermined wavelength range. X-rays of a desired wavelength can be obtained by using a substance.

[実施例] 以下、図面を用いて本発明の詳細な説明する。なお、第
3図の従来例と共通または対応する部分については同一
の符号で表わす。
[Example] Hereinafter, the present invention will be explained in detail using the drawings. Note that parts common or corresponding to those of the conventional example shown in FIG. 3 are denoted by the same reference numerals.

第1図は、本発明の一実施例に係るX線発生装置の構成
を示す。同図において、Ra、Rhは抵抗、Cb、Cd
はコンデンサ、2はキャピラリ、3.4は電極、5は発
生したプラズマ、6はカソード、7はX線、8は碍子、
9は誘電体のシートである。同図かられかるように、キ
ャピラリ2は6個の三角柱状の碍子8と、碍子を覆う誘
電体シート9で構成される。そして、キャピラリ2は誘
電体シート9で囲まれている。誘電体シート9の厚さは
1〜100μm程度である。碍子8は誘電体シート9と
同質の材料でもよいが、絶縁物であれば誘電体シート9
と異なる材質(例えばアルミナ八β203)のものでも
よい。電極3,4、カソード6、碍子8および誘電体シ
ート9は真空容器に収められている。
FIG. 1 shows the configuration of an X-ray generator according to an embodiment of the present invention. In the same figure, Ra and Rh are resistances, Cb and Cd
is a capacitor, 2 is a capillary, 3.4 is an electrode, 5 is a generated plasma, 6 is a cathode, 7 is an X-ray, 8 is an insulator,
9 is a dielectric sheet. As can be seen from the figure, the capillary 2 is composed of six triangular prism-shaped insulators 8 and a dielectric sheet 9 covering the insulators. The capillary 2 is surrounded by a dielectric sheet 9. The thickness of the dielectric sheet 9 is approximately 1 to 100 μm. The insulator 8 may be made of the same material as the dielectric sheet 9, but if it is an insulator, the dielectric sheet 9
It may be made of a different material (for example, alumina 8β203). The electrodes 3, 4, cathode 6, insulator 8, and dielectric sheet 9 are housed in a vacuum container.

第2図は、第1図の装置のキャピラリ2を構成する碍子
8と誘電体シート9の斜視図である。同図の断面A−A
に示す如く、誘電体シート9の内側(キャピラリ側)に
は所定のX線を放射すべき元素を含有する物質10がつ
けられている。物質10は金属や合金、絶縁物などで構
成されている。例えば、波長4.4人のX線を所望する
場合、Pdなとの金属を蒸着すればよい。
FIG. 2 is a perspective view of the insulator 8 and dielectric sheet 9 that constitute the capillary 2 of the device shown in FIG. Cross section A-A in the same figure
As shown in FIG. 2, a substance 10 containing an element to emit a predetermined X-ray is attached to the inside (capillary side) of the dielectric sheet 9. The substance 10 is made of metal, alloy, insulator, or the like. For example, if X-rays with a wavelength of 4.4 are desired, a metal such as Pd may be deposited.

次に、第1図の装置の動作を説明する。Next, the operation of the apparatus shown in FIG. 1 will be explained.

コンデンサCdが充電され、碍子8に十分大きな電圧が
印加されると、碍子8を覆う誘電体シート9及び物質1
0がキャピラリ2の沿面放電により蒸発しプラズマ5が
発生する。このとき、カソード6から電子ビームをプラ
ズマ5に照射すると、プラズマ5の温度が上昇し、かつ
プラズマ密度が高まる。そして、物質10に対応した波
長域のX線7が発生する。ただし、キャピラリ2に面し
ている誘電体シート9の表面の一部は沿面放電によりプ
ラズマ化されるのでX線発生後シートは薄くなっている
。そこでプラズマ化されていない新しい面がキャピラリ
2を囲むように、誘電体シート9を移動させる。
When the capacitor Cd is charged and a sufficiently large voltage is applied to the insulator 8, the dielectric sheet 9 and the substance 1 covering the insulator 8
0 is evaporated by the creeping discharge of the capillary 2, and plasma 5 is generated. At this time, when the plasma 5 is irradiated with an electron beam from the cathode 6, the temperature of the plasma 5 increases and the plasma density increases. Then, X-rays 7 having a wavelength range corresponding to the substance 10 are generated. However, since a part of the surface of the dielectric sheet 9 facing the capillary 2 is turned into plasma by creeping discharge, the sheet becomes thinner after the generation of X-rays. Then, the dielectric sheet 9 is moved so that the new surface that has not been turned into plasma surrounds the capillary 2.

この移動は1回または複数回の放電ごとに行なう。さら
に、発生するX線や光の強度をモニタし、これを参照し
ながら移動を行なってもよい。
This movement is performed every time one or more discharges occur. Furthermore, the intensity of the generated X-rays or light may be monitored and movement may be performed while referring to this.

[実施例の変形例コ なお、前述の実施例で説明したような細管型プラズマX
線源で用いるプラズマ発生用の電気回路として多くのも
のが考案されている。本発明は、このような細管型プラ
ズマX線源用の電気回路のいずれによっても構成でき、
該電気回路に制限されることはない。例えば第4図は、
第1図の装置の変形例を示すが、本発明はこのような回
路をもつ細管型プラズマX線源としても構成できる。
[Modified example of the embodiment] In addition, the capillary plasma X as explained in the above embodiment
Many electrical circuits have been devised for plasma generation used in radiation sources. The present invention can be constructed by any of such electric circuits for a capillary plasma X-ray source,
It is not limited to this electrical circuit. For example, in Figure 4,
Although a modification of the apparatus shown in FIG. 1 is shown, the present invention can also be configured as a capillary plasma X-ray source having such a circuit.

また、物質10を誘電体シート9上につける際のパター
ンとしてはいろいろ変形が考えられる。例えば第5図に
示したようなパターンであってもよい。同図は第2図の
断面A−Aに相当する。また、キャピラリを構成する複
数枚の誘電体シート9の内1枚あるいは数枚のシートの
みに物質10をつけてもよい。また誘電体シートごとに
蒸着する物質を変えてもよい。
Furthermore, various variations can be considered as a pattern for applying the substance 10 onto the dielectric sheet 9. For example, a pattern as shown in FIG. 5 may be used. This figure corresponds to the cross section AA in FIG. 2. Further, the substance 10 may be applied to only one or several of the plurality of dielectric sheets 9 constituting the capillary. Further, the material to be deposited may be changed for each dielectric sheet.

さらに、物質10を誘電体シート9へつける方法は、蒸
着やメッキの他、誘電体シート内へ浸透させるなどの方
法も考えられる。
Furthermore, as a method for attaching the substance 10 to the dielectric sheet 9, in addition to vapor deposition or plating, methods such as allowing the substance 10 to penetrate into the dielectric sheet may also be considered.

[発明の効果] 以上のように本発明によると、細管型のX線発生装置に
おいて、誘電体シートによりキャピラリの壁面を形成し
該壁面の消耗に応じて該壁面を更新できるようにしたた
め、従来形のようなキャピラリの直径の拡大によるX線
の出力低下が起こらず高出力のX線発生能力を維持する
ことができX線発生装置としての寿命が長くなると同時
に、金属等の物質を誘電体シートにつけプラズマ化を行
なうようにしたため、所望の、例えば10Å以下の波長
のX線を容易に発生させることができる。
[Effects of the Invention] As described above, according to the present invention, in a capillary type X-ray generator, the wall surface of the capillary is formed by a dielectric sheet, and the wall surface can be renewed as the wall surface wears out. The X-ray output does not decrease due to an increase in the diameter of the capillary due to the shape of the capillary, and high-output X-ray generation capability can be maintained, increasing the lifespan of the X-ray generator. Since the sheet is immersed in plasma, it is possible to easily generate X-rays having a desired wavelength of, for example, 10 Å or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係るX線発生装置の構成
を示す構造図、 第2図は、第1図の装置のキャピラリを構成する碍子と
誘電体シートの斜視図、 第3図は、従来の細管型プラズマX線源、第4〜5図は
、本発明の変形例である。 1:誘電体、2:キャピラリ、 3.4=電極、5:プラズマ、 6:カソード、7:X線、8:碍子、 9:誘電体シート、 lO:所定の波長のX線を放射すべき元素を含有した物
質。 b &−面A−A #r葡A−A
1 is a structural diagram showing the configuration of an X-ray generator according to an embodiment of the present invention; FIG. 2 is a perspective view of an insulator and a dielectric sheet that constitute the capillary of the device shown in FIG. 1; The figure shows a conventional capillary type plasma X-ray source, and FIGS. 4 and 5 show modified examples of the present invention. 1: Dielectric, 2: Capillary, 3.4 = Electrode, 5: Plasma, 6: Cathode, 7: X-ray, 8: Insulator, 9: Dielectric sheet, lO: Should emit X-rays of a predetermined wavelength A substance containing elements. b &-side A-A #r Grape A-A

Claims (1)

【特許請求の範囲】 1、細管状の空間を形成する複数の絶縁物と、所望の波
長域のX線を放射すべき元素を含有する物質が付着また
は含有され該細管状空間に面する面上に該物質を露出し
て該細管状空間に面する上記絶縁物の面を覆う誘電体シ
ートと、上記細管状空間に面する該誘電体シートの面に
沿つて沿面放電させる手段とを具備し、上記細管状の空
間内にプラズマを発生させることによりX線を発生させ
ることを特徴とするX線発生装置。 2、前記絶縁物が複数の柱状形絶縁物からなり、前記誘
電体シートを上記複数の絶縁物がそれぞれ互いに接する
接面または接線の間隙を通して移動させることにより前
記細管状空間に面する誘電体シートの面を更新すること
ができる特許請求の範囲第1項記載のX線発生装置。 3、前記絶縁物が、複数の円柱状の絶縁物からなり、そ
の円柱を回転軸として回転可能なものである特許請求の
範囲第1または2項記載のX線発生装置。
[Claims] 1. A plurality of insulators forming a tubular space and a surface facing the tubular space to which a substance containing an element that should emit X-rays in a desired wavelength range is attached or contained. A dielectric sheet exposing the substance thereon and covering a surface of the insulator facing the capillary space, and means for causing creeping discharge along the surface of the dielectric sheet facing the capillary space. An X-ray generator, characterized in that X-rays are generated by generating plasma within the tubular space. 2. The dielectric sheet is made of a plurality of columnar insulators, and the dielectric sheet faces the tubular space by moving the dielectric sheet through the tangential surfaces or tangential gaps where the plurality of insulators are in contact with each other. 2. The X-ray generator according to claim 1, wherein the X-ray generator is capable of updating the surface of the X-ray generator. 3. The X-ray generator according to claim 1 or 2, wherein the insulator is made of a plurality of cylindrical insulators and is rotatable about the cylinders as a rotation axis.
JP62000226A 1986-04-10 1987-01-06 X-ray generator Pending JPS63168943A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62000226A JPS63168943A (en) 1987-01-06 1987-01-06 X-ray generator
DE19873712049 DE3712049A1 (en) 1986-04-10 1987-04-09 X-RAY EXPOSURE DEVICE
US07/309,918 US4935947A (en) 1986-04-10 1989-02-07 X-ray exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000226A JPS63168943A (en) 1987-01-06 1987-01-06 X-ray generator

Publications (1)

Publication Number Publication Date
JPS63168943A true JPS63168943A (en) 1988-07-12

Family

ID=11468044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000226A Pending JPS63168943A (en) 1986-04-10 1987-01-06 X-ray generator

Country Status (1)

Country Link
JP (1) JPS63168943A (en)

Similar Documents

Publication Publication Date Title
EP1665907B1 (en) Method and apparatus for producing extreme ultraviolett radiation or soft x-ray radiation
US4184188A (en) Substrate clamping technique in IC fabrication processes
JPS6020440A (en) Ion beam machining device
US20030053588A1 (en) Radiation-generating devices utilizing multiple plasma-discharge sources and microlithography apparatus and methods utilizing the same
US4954717A (en) Photoelectron mask and photo cathode image projection method using the same
US5031200A (en) Cathode for an X-ray tube and a tube including such a cathode
US4371806A (en) Luminescent screen with grid structure for X-ray image intensifier
JP2989279B2 (en) Plasma CVD equipment
JPS63168943A (en) X-ray generator
GB2073943A (en) Electron pulse generator for use in annealing surfaces of solids
JPS63239755A (en) X-ray generator and x-ray exposer applied therewith
US7446329B2 (en) Erosion resistance of EUV source electrodes
JPS63168944A (en) X-ray generator
JPS62246238A (en) X-ray generating device
RU2145748C1 (en) Flash tube
JPS63239943A (en) X-ray exposure apparatus
JPH0344429B2 (en)
JPH01246104A (en) Discharge body for generating ozone
EP4120802A2 (en) Extreme-ultraviolet light source device using electron beams
JPS58154200A (en) X-ray exposure apparatus
KR20050090518A (en) Method for forming external electrode of excimer fluorescent lamp
JPS5949149A (en) Plasma cathode electron beam generator and generating method
JPH0529313B2 (en)
RU2050626C1 (en) Multilayer emitter for secondary-emission radio-isotope current supply
JPH0760649B2 (en) X-ray generator