JPS63168263A - Method for detecting variating molten surface level in mold - Google Patents
Method for detecting variating molten surface level in moldInfo
- Publication number
- JPS63168263A JPS63168263A JP88987A JP88987A JPS63168263A JP S63168263 A JPS63168263 A JP S63168263A JP 88987 A JP88987 A JP 88987A JP 88987 A JP88987 A JP 88987A JP S63168263 A JPS63168263 A JP S63168263A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- molten surface
- variation
- hot water
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000005266 casting Methods 0.000 claims abstract description 35
- 230000008859 change Effects 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 18
- 238000009749 continuous casting Methods 0.000 claims description 8
- 230000005499 meniscus Effects 0.000 abstract description 15
- 239000004020 conductor Substances 0.000 abstract description 2
- 239000000314 lubricant Substances 0.000 description 25
- 230000007547 defect Effects 0.000 description 24
- 229910000831 Steel Inorganic materials 0.000 description 20
- 239000010959 steel Substances 0.000 description 20
- 239000013307 optical fiber Substances 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 8
- 239000000155 melt Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/20—Controlling or regulating processes or operations for removing cast stock
- B22D11/201—Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、連続鋳造中において鋳型内の湯面変動量を正
確に検出する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for accurately detecting the amount of variation in the level of molten metal in a mold during continuous casting.
〔従来の技術]
周知のように連続鋳造用の鋳型は長辺と短辺を組合せて
構成されており、この鋳型内に溶鋼を注入し、鋳型内面
に接する表面に所定厚みの凝固殻を生成せしめた後、そ
の下方より連続的に引き出し鋳片の製造が行われている
。従って溶鋼は鋳型内において最初の凝固、つまり初期
凝固を開始する。この初期凝固の状態は鋳片の表面欠陥
の発注やその他の品質に重大な影響を与える。而して鋳
型にはその内面と凝固殻との間にパウダー等の潤滑剤を
効率良く流入させ、かつ凝固殻と鋳型内面との焼付を防
止するために鋳造方向に往復運動する振動が付与されて
いる。[Prior Art] As is well known, a mold for continuous casting is composed of a combination of long sides and short sides, and molten steel is injected into this mold to form a solidified shell of a predetermined thickness on the surface in contact with the inner surface of the mold. After this, the slab is continuously pulled out from below to produce slabs. Therefore, the molten steel begins its initial solidification within the mold. This initial solidification state has a significant impact on the appearance of surface defects and other quality of the slab. In order to efficiently flow lubricant such as powder between the inner surface of the mold and the solidified shell, and to prevent seizure between the solidified shell and the inner surface of the mold, vibration is applied to the mold to reciprocate in the casting direction. ing.
ところで前述した潤滑剤の供給状態や振動条件が適切に
制御されていないと凝固殻が鋳型内面に焼付き、各種の
鋳造欠陥の原因となり、拘束性や割れ性のブレークアウ
トを誘発して操業不能となる。又鋳片表面に形成される
オシレーションマークの深さや形態にも異常をきたし、
製造された鋳片にヘゲ、スリパー疵、割れ等の欠陥(!
−なって現れる。特に近年、鋳造速度の高速化や連続鋳
造と圧延工程の直結化(以下、直送圧延と言う)が積極
的に進められていることから前述したような欠陥の発生
は、それらを実施する上で大きな障害となる。By the way, if the lubricant supply conditions and vibration conditions mentioned above are not properly controlled, the solidified shell will seize on the inner surface of the mold, causing various casting defects, inducing breakout of binding and cracking, and making it impossible to operate. becomes. Also, the depth and shape of the oscillation marks formed on the surface of the slab become abnormal.
Defects such as bald spots, slipper scratches, and cracks on manufactured slabs (!
- appears. Particularly in recent years, the increase in casting speed and the direct connection of continuous casting and rolling processes (hereinafter referred to as direct rolling) have been actively promoted. It becomes a big obstacle.
ところが従来鋳型内における潤滑剤種別やその供給状態
、又は鋳型の振動数及び振幅等の振動条件が当該鋳造中
に適切に制御されているか否がを直接的に検出する方法
はなく、例えば製造された後の鋳片の表面性状を観察し
、その結果より過去の鋳造状況の適否を判断することが
一般的であった。However, conventionally, there is no way to directly detect whether the type of lubricant in the mold, its supply status, or vibration conditions such as the frequency and amplitude of the mold are properly controlled during casting. It was common practice to observe the surface properties of cast slabs after casting and use the results to judge the suitability of past casting conditions.
一方、凝固殻の焼付やそれに起因する割れ等の鋳造欠陥
を予知する方法としては、例えば特開昭57−1159
60号公報に示されるように鋳型の壁面の鋳造方向に複
数の温度検出端を埋設し、この温度検出端による測温値
を相互比較したり、基準値と比較するなどして鋳造欠陥
の発生を推定する方法、或いは特開昭61−20045
3号公報に示されるように鋳造方向複数の温度検出端に
よる測温値をフーリエ変換して鋳型内の温度変化をパタ
ーン認識し、これから鋳造欠陥の種別や発生位置を推定
する方法がそれぞれ提案され、一部で実用化されている
。On the other hand, as a method for predicting casting defects such as seizure of the solidified shell and cracks caused by it, for example, Japanese Patent Application Laid-Open No. 57-1159
As shown in Publication No. 60, a plurality of temperature detection points are embedded in the wall surface of the mold in the casting direction, and the temperature values measured by these temperature detection points are compared with each other or with a reference value to prevent the occurrence of casting defects. A method for estimating
As shown in Publication No. 3, a method has been proposed in which the temperature values measured by multiple temperature detection terminals in the casting direction are Fourier-transformed to recognize patterns of temperature changes within the mold, and from this the type and location of casting defects can be estimated. , has been put into practical use in some areas.
前述したように、従来法においては鋳型内の状況、特に
メニスカス近傍の湯面の変動状況を直接的に検出する方
法は全(なく、製造された鋳片から遡って過去の鋳造状
態を推定し、判定することが普通であった。このため鋳
造中に例えば湯面レベルの変動や湯面自体に波動が生じ
、潤滑剤の供給不足、不均一流入等が発生してもオンラ
インでそれらを直接的に検出することはできなかった。As mentioned above, in the conventional method, there is no way to directly detect the situation inside the mold, especially the fluctuation of the melt level near the meniscus. For this reason, even if, for example, fluctuations in the level of the molten metal, waves in the molten metal surface itself, insufficient supply of lubricant, uneven inflow, etc. occur during casting, these can be directly detected online. could not be detected.
従ってそれらに対応した適切な制御を実施することはで
きず、あくまでも過去の操業実績を踏まえた経験的な操
業に顛ることが実態であった。Therefore, it has not been possible to implement appropriate controls corresponding to these, and the reality has been to rely on empirical operations based on past operational results.
又、鋳型内における各種の鋳造欠陥の検出は多くの提案
により可なりの精度でその発生を予知できるようになっ
てきた。しかしながら前述したような従来方法はいずれ
も鋳型壁面に埋設された温度検出端で当該埋設部位の温
度を測定し、その測温値から鋳片の表面欠陥を推定する
といった間接的な方法であった。このため欠陥が発生し
ていないにもかかわらず、表面欠陥発生と誤認識するこ
とが多々発生し、鋳造欠陥を見落とす事態も皆無とはな
っていなかった。このような誤認識や鋳造欠陥の見落と
しは直送圧延に多大な影響を与え、その効率的な実施が
できなくなるという大きな問題があった。In addition, many proposals have been made to detect various casting defects within a mold, and it has become possible to predict their occurrence with considerable accuracy. However, all of the conventional methods described above are indirect methods in which the temperature of the buried part is measured with a temperature detection end buried in the wall of the mold, and surface defects in the slab are estimated from the measured temperature value. . For this reason, even though no defects have occurred, it has often been mistakenly recognized as a surface defect, and there have been cases in which casting defects have been overlooked. Such erroneous recognition and oversight of casting defects have a great effect on direct rolling, and there is a major problem in that it cannot be carried out efficiently.
本発明は前記問題点の抜本的な解決を図るものである。The present invention aims to fundamentally solve the above-mentioned problems.
前記問題点を解決するための本発明は、連続鋳造鋳型を
構成する長辺もしくは短辺のメニスカス相当部に穿設さ
れた貫通孔に画像処理装置に連接された光導体を装着し
、この光導体で鋳造中における湯面を直接観察すると共
に該観察画像を設定基準輝度もしくは波長で2値化処理
して湯面レベル境界線を求め、この境界線の経時変化よ
り単位時間当たりの変動量を算出することにより湯面変
動量を検出するご七を特徴とする鋳型内湯面変動量検出
方法である。In order to solve the above-mentioned problems, the present invention attaches a light guide connected to an image processing device to a through hole drilled in a portion corresponding to a meniscus on a long side or a short side of a continuous casting mold. Directly observe the hot water level during casting with a conductor, and then binarize the observed image using a set standard brightness or wavelength to determine the hot water level boundary line, and calculate the amount of fluctuation per unit time from the change in this boundary line over time. This is a method for detecting the amount of variation in the level of molten metal in a mold, which is characterized by detecting the amount of variation in the molten metal level by calculation.
〔作 用]
第1図は本発明の基本的な構成を説明するための鋳型近
傍の断面構造図であり、第2図は鋳型の斜視図である。[Function] FIG. 1 is a cross-sectional structural diagram of the vicinity of a mold for explaining the basic configuration of the present invention, and FIG. 2 is a perspective view of the mold.
図において1は鋳型であり、長辺2と短辺3とから構成
されている。本例では長辺2のメニスカス相当部4にそ
の内側まで貫通する貫通孔5が穿設されている。この貫
通孔5は例えば第3図の鋳型部分断面図に示すように水
冷構造の鋳型本体100に銅板等からなる鋳型内壁10
1を取付ける締結具102を利用して設けることも可能
である。即ちメニスカス相当部4に配設されている締結
具102に代わって中空状の棒状103を装着すると共
にそれに対応する内壁101に内側まで貫通する孔10
4を穿設し、棒体103の中空孔103aと孔104と
で貫通孔5を構成すればよい。棒体103は孔104に
刻設された捻子部104aとナツト105で固定すれば
よい。 。In the figure, 1 is a mold, which is composed of a long side 2 and a short side 3. In this example, a through hole 5 penetrating to the inside of the meniscus portion 4 of the long side 2 is bored. For example, as shown in the partial cross-sectional view of the mold in FIG.
It is also possible to provide it using a fastener 102 for attaching 1. That is, a hollow rod-shaped rod 103 is attached in place of the fastener 102 provided in the meniscus-corresponding portion 4, and a hole 10 that penetrates inside the corresponding inner wall 101 is installed.
4, and the hollow hole 103a of the rod 103 and the hole 104 constitute the through hole 5. The rod 103 may be fixed with a screw portion 104a formed in the hole 104 and a nut 105. .
貫通孔5には光導体6が耐熱ガラス7を介して装着され
ている。光導体6は鋳型内の光の輝度及びもしくは波長
を検出できる例えば光ファイバー、あるいは分光器とフ
ォトマルを組合せたもの、フィルター、レンズを組合せ
たCCD素子、あるいはMO3型素子、又はITVカメ
ラ等を用いることが可能である。しかしながら本発明者
らの経験では貫通孔5の径を小さくでき、しかも観察視
野も大きくできる光ファイバーが本発明の機能を効果的
に発揮させる上で最も優れていた。耐熱ガラス7は例え
ば第3図及び第4図に示すように透過性と耐熱性を兼ね
備えたシリコンガラス、石英ガラスなどを固定リング7
aで保持し、この固定リング7aを介して鋳型内壁10
1に緊密に嵌着される。尚7bは固定リング7aを鋳型
内壁101に固定する止め捻子を示す。而して耐熱ガラ
スは溶鋼12の鋳型外へ漏出を防止すると共に溶@12
の高熱から光導体6を保護する。光導体6は後述する機
能を有する画像処理装置21に連接されている。A light guide 6 is attached to the through hole 5 with a heat-resistant glass 7 interposed therebetween. The light guide 6 uses, for example, an optical fiber, a combination of a spectrometer and a photomultiplier, a CCD element combined with a filter and a lens, an MO3 type element, an ITV camera, etc. that can detect the brightness and/or wavelength of light within the mold. Is possible. However, in the experience of the present inventors, an optical fiber that allows the diameter of the through hole 5 to be reduced and the observation field to be enlarged is the most excellent for effectively demonstrating the functions of the present invention. For example, the heat-resistant glass 7 is made of silicon glass, quartz glass, etc., which have both transparency and heat resistance, as shown in FIGS.
a, and the mold inner wall 10 is held via this fixing ring 7a.
1 is tightly fitted. Note that 7b indicates a set screw for fixing the fixing ring 7a to the inner wall 101 of the mold. Therefore, the heat-resistant glass prevents the molten steel 12 from leaking out of the mold, and also prevents the molten steel 12 from leaking out of the mold.
protects the light guide 6 from high heat. The light guide 6 is connected to an image processing device 21 whose functions will be described below.
尚、第1図において9は鋳型1に振動を付与する振動発
生装置、10は振動発生装置9の振動数、振幅等を制御
する振動制御装置である。又11は鋳型1内に溶fiA
12を注入するノズルであり、13は鋳片、14は鋳片
13の表層部に形成された凝固殻を示す。In FIG. 1, numeral 9 denotes a vibration generator that applies vibration to the mold 1, and numeral 10 denotes a vibration control device that controls the frequency, amplitude, etc. of the vibration generator 9. In addition, 11 is a molten fiA in the mold 1.
12 is a nozzle for injecting a slab, 13 is a slab, and 14 is a solidified shell formed on the surface layer of the slab 13.
而して本発明においては鋳型1内のメニスカス近傍が光
導体6による観察画像によって直接観察することができ
る。この光導体6による観察画像は画像処理装置21に
よって予め設定された輝度もしくは波長(以下設定基準
輝度、もしくは設定基準波長と言う)を基準として2値
化処理され、これによって第5図に示すように設定基準
輝度より明るい部分と暗い部分、あるいは設定基準波長
より長い部分と短い部分の境界tilA15.15aが
求められる。従って設定基準輝度、あるいは設定基準波
長を溶鋼温度の発する輝度もしくは波長に設定しておく
と境界線15が湯面レベル、即ち本発明で称する湯面レ
ベル境界線(以下単に湯面レベル15と言う)となる。According to the present invention, the vicinity of the meniscus within the mold 1 can be directly observed using the observation image provided by the light guide 6. The image observed by the light guide 6 is binarized by the image processing device 21 based on a preset brightness or wavelength (hereinafter referred to as set reference brightness or set reference wavelength), and as a result, as shown in FIG. The boundary tilA15.15a between a portion brighter and darker than the set reference luminance, or between a portion longer and shorter than the set reference wavelength is determined. Therefore, if the set reference brightness or set reference wavelength is set to the brightness or wavelength emitted by the molten steel temperature, the boundary line 15 will be the hot water level, that is, the hot water level boundary line referred to in the present invention (hereinafter simply referred to as hot water level 15). ).
この湯面レベル15は光導体6による観察画像が連続的
に得られることから連続的に、あるいは任意の周期で求
められ、その経時変化を求めることが可能となる。この
経時変化が求められると観察視野Y中の所定部位、例え
ば鋳型内面1aから設定距離!離れた部位での前回の湯
面レベル15と次回の湯面レベル15aの差を算出する
ことにより当該部位における単位時間当たりの湯面変動
量を検出することができる。This hot water level 15 can be determined continuously or at an arbitrary period since images observed by the light guide 6 are continuously obtained, and its change over time can be determined. When this change over time is determined, the distance from a predetermined part in the observation field Y, for example, the mold inner surface 1a, is determined! By calculating the difference between the previous hot water level 15 and the next hot water level 15a at a distant site, it is possible to detect the amount of fluctuation in the hot water level per unit time at that site.
さて、鋳型の振動条件は小振幅、高振動数にするとオシ
レーションマークの深さが低減し、その形態も良くなっ
て鋳片の表面性状が良好となることが過去の操業実績よ
り経験されている。ところがこのことは従来、以下の理
由によるものであろうと考えられていた。即ち、鋳型1
が第6図に示すように正弦波状に振動している場合を例
にとって説明すると、この振動の振幅をA、振動数をr
、鋳造速度をVc、時間をtとすれば鋳型1の変位Xは
下記の(1)式で与えられる。It has been learned from past operational experience that when the vibration conditions of the mold are set to a small amplitude and a high frequency, the depth of the oscillation mark is reduced, its shape improves, and the surface quality of the slab improves. There is. However, it was conventionally thought that this was due to the following reasons. That is, mold 1
Taking as an example the case where the oscillation is sinusoidal as shown in Fig. 6, the amplitude of this oscillation is A, and the frequency is r.
, the casting speed is Vc, and the time is t, then the displacement X of the mold 1 is given by the following equation (1).
x=Asin (2πft) ”・・” (1)鋳型
1の速度Vmは(1)式を時間tで微分してVm=dx
/dt = 2 xf Acos (2πft) ”・
”(2)となる。ここで鋳型1の下降速度Vmが鋳造速
度Vcより大きい場合、鋳片は鋳型1から下向きに押し
込まれることになる。この鋳型lが下降するときに押し
込まれる時間(一般にネガティブストリップ時間と称さ
れる。以下Ts待時間言う)が小さい程、鋳片の表面及
び表層品質は良好であると言われている。この78時間
は下記(3)式で求められ、振幅Aが小さく、振動数f
が大きい程、78時間は小さくなることが判る。x=Asin (2πft) ”...” (1) The velocity Vm of mold 1 is obtained by differentiating equation (1) with respect to time t, and Vm=dx
/dt = 2 xf Acos (2πft) ”・
``(2).Here, if the descending speed Vm of the mold 1 is greater than the casting speed Vc, the slab will be pushed downward from the mold 1.The time during which the mold 1 is pushed downward (generally It is said that the smaller the negative strip time (hereinafter referred to as Ts waiting time), the better the surface and surface layer quality of the slab. is small and the frequency f
It can be seen that the larger the value, the smaller the 78 hours.
TN = (1/πf) ・cos−’ (Vc/2π
fA) =−・”(3)二〇TN時間を小さくするため
に前記正弦波状でなく、非正弦波状振動を採用する場合
のあることも公知である。TN = (1/πf) ・cos-' (Vc/2π
fA)=-・"(3) 20 It is also known that in order to reduce the TN time, non-sinusoidal vibration may be used instead of the sinusoidal vibration.
しかしながらこのような理由づけは前記湯面(本発明に
おいては第5図に示す鋳型内面1aと溶鋼12との接触
部をメニスカスエ6と言い、鋳型内設定部位での溶鋼表
面を湯面と言う。又この湯面の連続した表面が境界線、
つまり湯面レベルであり、以下湯面レベル15と言う)
が絶対座標に対して静止している、即ち鋳型が振動して
も鋳型内の湯面が変動していないことが前提である。従
来鋳型内では潤滑剤の作用で鋳型内面と溶鋼とは完全に
滑りを生じ、鋳型が上下動しても湯面は常に一定である
との考えが当業者には常識であり、このような基本認識
に基づいて前記理由づけがなされていたわけである。However, such reasoning is based on the above-mentioned molten metal surface (in the present invention, the contact area between the inner surface of the mold 1a and the molten steel 12 shown in FIG. 5 is called the meniscus 6, and the molten steel surface at the set position in the mold is called the molten metal surface. Also, this continuous surface of the hot water is the boundary line,
In other words, it is the hot water surface level, hereinafter referred to as hot water surface level 15)
It is assumed that is stationary with respect to the absolute coordinates, that is, the molten metal level within the mold does not change even if the mold vibrates. It is common knowledge among those skilled in the art that in conventional molds, the inner surface of the mold and molten steel completely slip due to the action of lubricants, and that the molten steel level remains constant even when the mold moves up and down. The above reasoning was based on basic understanding.
ところが本発明者らは実際操業の連続鋳造中に目視で鋳
型の上方より鋳型内をつぶさに観察して、湯面レベルは
安定しているにもかかわらず湯面にさざ波が生じている
ことを見出した。このことより従来からの基本認識に疑
問を抱き、実際の操業中におけるメニスカス近傍の湯面
の変動状況を検出する方法について種々実験研究を重ね
た。この結果、第1図に示すごとき装置を用いることに
より湯面変動状況を直接的に検出することに成功したも
のである。つまり長辺2、もしくは短辺3のメニスカス
相当部4にその内面まで貫通する如く穿設された貫通孔
5に光導体6を装着することによって鋳型内のメニスカ
ス近傍の状況を直接観察できるようにした。このように
して光導体6により湯面変動状況を繰り返し観察した結
果、従来の基本認識とは全く異なり、湯面は静止してお
らず、鋳型の振動と同期していると言う新知見が得られ
た。However, the inventors of the present invention closely observed the inside of the mold from above the mold during actual continuous casting operations, and found that ripples were occurring on the surface of the mold even though the level was stable. Ta. This led us to question the conventional basic understanding and conducted various experimental studies on methods for detecting fluctuations in the level of hot water near the meniscus during actual operation. As a result, by using the device shown in FIG. 1, we succeeded in directly detecting the fluctuation of the hot water level. In other words, by attaching the light guide 6 to the through hole 5 drilled in the meniscus-equivalent part 4 of the long side 2 or the short side 3 so as to penetrate to the inner surface, the situation near the meniscus in the mold can be directly observed. did. As a result of repeatedly observing the fluctuations in the molten metal level using the light guide 6 in this way, we obtained new knowledge that the molten metal level is not static, but synchronized with the vibrations of the mold, which is completely different from the conventional basic understanding. It was done.
本発明はこの知見に基づいて鋳造中における湯面の変動
状況を連続的に、かつ定量的に検出することによって鋳
造中に前述したような潤滑剤の不均一流入や凝固殻の焼
付等の鋳造異常が生じた際に迅速にしかも的確な操業ア
クションをとることを可能としたものである。Based on this knowledge, the present invention continuously and quantitatively detects fluctuations in the molten metal level during casting, thereby preventing uneven inflow of lubricant and seizure of solidified shells during casting. This makes it possible to take prompt and accurate operational action when an abnormality occurs.
さて、画像処理装置21における処理機構の一例を第1
図に基づいて更に詳述する。光導体6として例えば光フ
ァイバー6aを用いると、この光ファイバー6aで検出
された観察画像はRGB処理装置21aに入力される。Now, an example of the processing mechanism in the image processing device 21 will be explained as follows.
This will be explained in further detail based on the figures. For example, if an optical fiber 6a is used as the light guide 6, the observed image detected by the optical fiber 6a is input to the RGB processing device 21a.
本例における光ファイバー6aの画素数は3万本であり
1、RGB処理装置21aに入力された個々の画素によ
る検出信号はそれぞれRGB処理装置21aに続く2値
化処理装置21bで予め設定された輝度もしくは波長の
基準値とした設定基準輝度もしくは波長(この輝度と波
長の信号処理は基本的には同じであるため以下、輝度を
代表例として説明する)で2値化処理される。設定基準
輝度は前述したように溶鋼温度の発する輝度を周知のル
クス等で表し、設定することができる。即ち、鋳型内に
供給された潤滑剤17は第7図に示すように、溶鋼12
の表面を覆い、それが溶融するに伴って溶鋼12と鋳型
内面1aとの間に流入して前述した潤滑機能を発揮する
。この溶融した潤滑剤17の温度は約1400°Cであ
り、溶鋼12より若干低い程度である。しかしながら潤
滑剤17はその主成分がCaO及びSingであり、硝
子と同様に透過性を有していることから光ファイバー6
aで観察した場合、溶鋼12に比してその輝度は低くな
る。従って溶鋼12の輝度を基準として前記観察画像の
信号を2値化処理すると、例えば溶鋼12の輝度以上の
部分を白くし、逆に溶鋼12の輝度以下の部分を黒く表
示して判別することができる。In this example, the number of pixels of the optical fiber 6a is 30,000, and the detection signal from each pixel input to the RGB processing device 21a is determined by the brightness set in advance by the binarization processing device 21b following the RGB processing device 21a. Alternatively, binarization processing is performed using a set reference luminance or wavelength (signal processing for luminance and wavelength is basically the same, so luminance will be explained below as a representative example) as a reference value of wavelength. As described above, the setting reference brightness can be set by expressing the brightness emitted by the temperature of the molten steel in the well-known lux or the like. That is, as shown in FIG. 7, the lubricant 17 supplied into the mold is
As it melts, it flows between the molten steel 12 and the mold inner surface 1a and exerts the aforementioned lubricating function. The temperature of this molten lubricant 17 is approximately 1400°C, which is slightly lower than that of the molten steel 12. However, the main components of the lubricant 17 are CaO and Sing, and since it has transparency like glass, the optical fiber 6
When observed at point a, the brightness is lower than that of the molten steel 12. Therefore, when the signal of the observed image is binarized using the brightness of the molten steel 12 as a reference, for example, parts with a brightness higher than the brightness of the molten steel 12 can be displayed white, and conversely, parts with a brightness lower than the brightness of the molten steel 12 can be displayed black for discrimination. can.
一方、前記潤滑剤17の厚みは薄く、実質上は前記潤滑
剤17表面を湯面レベルとしても実害のない場合がある
。溶融した潤滑剤17と未溶解の潤滑剤17aとの間に
は著しい輝度差がある。従ってこのような場合は前記潤
滑剤17の輝度を設定基準輝度として用いることでもよ
い。又、人力された観察画像を任意数のブロック分けし
、各々のブロック間で画像の縦方向微分、横方向微分演
算等を行い、その演算結果が例えば潤滑剤と溶鋼の輝度
差を基準としてそれ以上か、未満か、つまり輝度差を設
定基準輝度として2値化処理する方法、あるいは溶鋼と
潤滑剤の境界部に相当する輝度を設定基準輝度として2
値化処理する方法等を採用することが可能である。2値
化処理装置21bにおける処理とは係る方法を総称して
言うものである。このように2値化処理装置21bで処
理された信号は境界線演算装置21cで溶鋼12と潤滑
剤17との境界線が演算され、湯面レベル15が求めら
れる。この境界線演算装置21cで演算された湯面レベ
ル15は例えば周知のフィルターでスムージング処理し
、滑らかなレベル表示としてモニター28に表示させる
ことも可能であり、この湯面レベル15の変動状況を監
視することによっても鋳型内湯面のマクロ的な状況を把
握することが可能で、ある。On the other hand, the thickness of the lubricant 17 is thin, and there are cases in which there is no actual harm even if the surface of the lubricant 17 is at the level of the hot water level. There is a significant brightness difference between the molten lubricant 17 and the undissolved lubricant 17a. Therefore, in such a case, the brightness of the lubricant 17 may be used as the setting reference brightness. In addition, the human observed image is divided into any number of blocks, and vertical and horizontal differential calculations are performed on the image between each block. Is it more than or less than 2? In other words, there is a method of binarizing the brightness difference as the set standard brightness, or a method of binarizing the brightness difference as the set standard brightness, or a method of binarizing the brightness difference as the set standard brightness.
It is possible to adopt a method of converting the data into values. The processing in the binarization processing device 21b is a general term for such methods. The signal processed by the binarization processing device 21b is used to calculate the boundary line between the molten steel 12 and the lubricant 17 by the boundary line calculation device 21c, and the molten metal level 15 is determined. The hot water surface level 15 calculated by the boundary line calculation device 21c can be smoothed using a well-known filter, for example, and displayed on the monitor 28 as a smooth level display, and the fluctuation status of the hot water surface level 15 can be monitored. By doing so, it is possible to grasp the macroscopic situation of the molten metal level in the mold.
しかしながら本発明においてはより正確に、かつ定量的
な湯面の変動状況を把握するために湯面レベル15から
更に湯面変動量を算出せしめる。光ファイバー6aの観
察視野Y内における湯面レベル15が連続的にあるいは
任意の周期で求められたら、この湯面レベル15の予め
設定された部位での変化量を逐次算出することによって
その部位における湯面の変動量が検出できる。第8図は
その具体的な算出方法の一例を示すもので、鋳型内壁面
1aから所定間隔、あるいは設定部位迄の距離lを横座
標とし、湯面レベル15を縦座標りとして表す。所定の
横座標(設定部位)に対して成る時間のhで表される湯
面レベル15から単位時間経過後の湯面レベル15aの
差Δhを算出することによって単位時間当たりの湯面変
動量が求められる。第1図において22がこの湯面変動
量を求める湯面変動量算出装置である。湯面変動量算出
装置22では前述したような演算を、例えば鋳型内壁面
より1〜3IINIn間隔で、又は鋳型内壁面より3f
fIIl、10mmの部位等で行わせることによってメ
ニスカス近傍の湯面の変動状況を定量的に検出すること
が可能となる。However, in the present invention, in order to grasp the fluctuation situation of the hot water level more accurately and quantitatively, the amount of fluctuation in the hot water level is further calculated from the hot water level 15. Once the hot water level 15 within the observation field Y of the optical fiber 6a is determined continuously or at an arbitrary period, the amount of change in the hot water level 15 at a preset location is calculated sequentially to determine the hot water level at that location. The amount of surface variation can be detected. FIG. 8 shows an example of a specific calculation method, where the abscissa represents the distance l from the mold inner wall surface 1a to a predetermined interval or a set point, and the molten metal level 15 is represented as the ordinate. By calculating the difference Δh between the hot water level 15 and the hot water level 15a after a unit time has elapsed, which is expressed by the time h for a predetermined abscissa (setting part), the amount of hot water level fluctuation per unit time can be calculated. Desired. In FIG. 1, reference numeral 22 denotes a hot water level fluctuation amount calculation device for calculating this hot water level fluctuation amount. The liquid level fluctuation calculation device 22 performs the above-mentioned calculations, for example, at intervals of 1 to 3 IINIn from the inner wall surface of the mold, or at intervals of 3 f from the inner wall surface of the mold.
By performing this at a 10 mm distance, it becomes possible to quantitatively detect the fluctuation state of the hot water level near the meniscus.
湯面変動量算出に当たっての単位時間の取り方は任意で
あり、当該操業条件に応じて最適の値に決定すればよい
。又、この単位時間を鋳型周期の例えば1/4に取れば
鋳型変位の最大値、最小値に対応した湯面の変動量を検
出することもできる。The unit time for calculating the amount of fluctuation in the hot water level is arbitrary, and may be determined to be an optimal value depending on the operating conditions. Furthermore, if this unit time is set to, for example, 1/4 of the mold period, it is also possible to detect the amount of fluctuation in the molten metal level corresponding to the maximum value and minimum value of mold displacement.
この湯面変動量は、例えば相対変動量として表すことは
勿論、相対変動量から鋳型の振動量を差し引いた絶対変
動量として表すことも可能である。The amount of variation in the level of the hot water can, for example, be expressed not only as a relative amount of variation, but also as an amount of absolute variation obtained by subtracting the amount of vibration of the mold from the amount of relative variation.
以上のように鋳造中における湯面変動状況をオンライン
で、定量的に検出できるようになったことから鋳型内の
初期凝固状態も的確に把握できるようになった。従って
その状況に応じて当該操業に最適の潤滑剤を選定するこ
とや、その供給不足、不均一流入等が生じた場合に的確
な処置を講じることが可能となった0例えばメニスカス
部の湯面変動量が大きくなると凝固殻14にピンホール
や介在物の巻込みが生じ、製造された鋳片の表面欠陥と
して表れる。つまり前述した湯面変動量が大きいという
ことができる。逆に湯面変動量が小さいということは初
期凝固が安定しているということができる。従って湯面
変動量が小さくなるように制御することによって安定し
た初期凝固を行わしめることが可能となる。As described above, it has become possible to quantitatively detect the fluctuations in the melt level during casting online, making it possible to accurately grasp the initial solidification state inside the mold. Therefore, it is now possible to select the most suitable lubricant for the operation according to the situation, and to take appropriate measures in the event of insufficient supply, uneven inflow, etc. When the amount of variation becomes large, pinholes and inclusions are generated in the solidified shell 14, which appear as surface defects in the manufactured slab. In other words, it can be said that the above-mentioned amount of fluctuation in the hot water level is large. On the other hand, the fact that the amount of fluctuation in the melt level is small means that the initial solidification is stable. Therefore, stable initial solidification can be achieved by controlling the amount of fluctuation in the level of the melt to be small.
初期凝固に重要な影響を及ぼすものに潤滑剤が当該操業
に適しているか、否かの問題がある。係る問題も前述し
た湯面変動量の検出によって効果的に解決できる。その
結果の一例を以下に述べる。One of the important influences on initial solidification is whether the lubricant is suitable for the operation in question. This problem can also be effectively solved by detecting the amount of fluctuation in the hot water level described above. An example of the results will be described below.
第9図は第1図に示す装置を用い、粘度がそれぞれ1
poiseの潤滑剤17 (1)、2poiseの潤滑
剤17 (2)、3 potseの潤滑剤17 (3)
を用いて湯面変動量を調査した結果を示す図である。本
例は鋳造速度1.6m/min %鋳型振動数126c
pm、鋳型振幅±6mm、で低度アルミキルド鋼を鋳造
した時の一例であり、第9図の縦軸は、鋳型内面より3
mの部位の湯面変動量を前述した絶対湯面変動量の平均
値を指数化して潤滑剤の種別に表したものである。湯面
変動量指数は大きくなる程湯面変動が大きくなることを
意味しており、同一鋳造条件下では潤滑剤の種別、特に
その粘性によって湯面変動量も大きく異なることが判る
。又、第10図はその条件下で製造された鋳片に発生し
た表面欠陥の発生状況の、第11図は同じく当該操業時
のブレークアウトの発生率の調査結果の一例を示すもの
である。表面欠陥の発生状況は鋳片1m当たりのピンホ
ール、介在物巻込み等の表面欠陥の発生数量(欠陥個数
/m)を指数として表し、又、ブレークアウトの発生率
は1月光たりのブレークアウト発生回数を指数として表
したものである。これらの結果より鋳造中の湯面変動量
が検出でき、それが過去の安定した操業時に比して大き
くなるような傾向、もしくは現象が生じたら、それを小
さくするような潤滑剤を選定使用することによって初期
凝固状態を安定させ、表面欠陥や、ブレークアウト等を
減少させることが可能である。Figure 9 shows the viscosity of 1 using the apparatus shown in Figure 1.
poise lubricant 17 (1), 2 poise lubricant 17 (2), 3 potse lubricant 17 (3)
FIG. 3 is a diagram showing the results of investigating the amount of fluctuation in the hot water level using the method. In this example, the casting speed is 1.6m/min and the mold vibration frequency is 126c.
This is an example of casting low-grade aluminum killed steel with pm and mold amplitude of ±6 mm, and the vertical axis in Figure 9 is 3.
The amount of fluctuation in the hot water level at the location m is expressed by the type of lubricant by converting the above-mentioned average value of the absolute amount of fluctuation in the hot water level into an index. The larger the hot water level fluctuation index means the larger the hot water level fluctuation, and it can be seen that under the same casting conditions, the hot water level fluctuation varies greatly depending on the type of lubricant, especially its viscosity. Further, FIG. 10 shows the occurrence of surface defects in slabs manufactured under the conditions, and FIG. 11 shows an example of the investigation results of the incidence of breakouts during the same operation. The occurrence of surface defects is expressed as an index of the number of surface defects such as pinholes and inclusions per meter of slab (number of defects/m), and the breakout occurrence rate is expressed as the number of surface defects such as pinholes and inclusions per meter of slab. The number of occurrences is expressed as an index. From these results, it is possible to detect the amount of liquid level fluctuation during casting, and if there is a tendency or phenomenon that the fluctuation becomes larger than during stable operation in the past, select and use a lubricant that will reduce the fluctuation. This makes it possible to stabilize the initial solidification state and reduce surface defects, breakouts, etc.
月産16万屯の湾曲型連鋳機において本発明を実施した
。The present invention was carried out in a curved continuous casting machine with a monthly production capacity of 160,000 tons.
第1表
本実施例における鋳造条件は第1表に示す通りであり、
第1図に示す装置を用い、鋳型長辺の短辺と接合する部
分のメニスカス相当部(鋳片表面欠陥の発生し易い各コ
ーナ一部に4箇所)に13nnの貫通孔を穿設した。こ
の貫通孔に画素数5万本、径12mmの光ファイバーを
装着し、光ファイバーの観察視野は50’とした。貫通
孔の鋳型内面側には厚み10IrlI11のシリコンガ
ラスを嵌め込み、溶鋼の漏出を防止すると共に光ファイ
バーの保護を図った。この装置において連続鋳造中に5
0分間の連続観察を実施し、この間鋳型の振動数を意識
的に変化させてその時の湯面変動状況を検出した。第1
2図は鋳造速度が0.53m1m:n 、鋳型の振動数
は68.6 cps、振幅は±6mn+の例であり、第
12図(a)は鋳型の変動量、第12図(b)は湯面の
相対変動量、第12図(C)は湯面の絶対変動量を示す
。この操業時に鋳型上方より目視でも湯面の状況を観察
し、さざ波も殆どない滑らかなものであることを確認し
た。Table 1 The casting conditions in this example are as shown in Table 1.
Using the apparatus shown in FIG. 1, through holes of 13 nn were drilled in the meniscus-equivalent portions of the parts that join the short sides of the long sides of the mold (4 locations at each corner where surface defects are likely to occur). An optical fiber with 50,000 pixels and a diameter of 12 mm was attached to this through hole, and the observation field of the optical fiber was set to 50'. Silicon glass with a thickness of 10IrI11 was fitted onto the inner surface of the mold in the through hole to prevent leakage of molten steel and to protect the optical fiber. 5 during continuous casting in this equipment.
Continuous observation was carried out for 0 minutes, and during this period the vibration frequency of the mold was consciously changed to detect the fluctuation of the melt level at that time. 1st
Figure 2 shows an example where the casting speed is 0.53m1m:n, the mold frequency is 68.6 cps, and the amplitude is ±6mn+. Figure 12 (a) shows the variation of the mold, and Figure 12 (b) shows Figure 12 (C) shows the relative fluctuation amount of the hot water level, and the absolute fluctuation amount of the hot water level. During this operation, the condition of the molten metal surface was visually observed from above the mold, and it was confirmed that it was smooth with almost no ripples.
而して本発明法によって検出された湯面変動量を時間経
過で連続的に表した第12図(b)及び第12図(C)
の波形は滑らかなものであった。FIG. 12(b) and FIG. 12(C) continuously represent the amount of fluctuation in the hot water level detected by the method of the present invention over time.
The waveform was smooth.
次に第13図は鋳造速度が1.6m/min、鋳型の振
動数は126.4cpm、振幅は±6鵬の例であり、目
視による鋳型的観察結果ではさざ波が生じていた。この
ように第12図の実施例に比し高振動であるに係わらず
さざ波が発生していると、実際に検出された湯面変動量
も第13図(b)、(C)の時間経過で連続的に表した
湯面変動量の波形で示すように大きく乱れ、しかも右上
がり、つまり変動量が大きくなる傾向にあることが確認
できた。この結果、第12図の実施例で製造された鋳片
に対して第13図の実施例で製造された鋳片では表面欠
陥の発生が多く、品質の悪いものであった。Next, FIG. 13 shows an example in which the casting speed was 1.6 m/min, the vibration frequency of the mold was 126.4 cpm, and the amplitude was ±6 degrees, and as a result of visual observation of the mold, ripples were generated. In this way, if ripples are generated even though the vibration is higher than in the example shown in Fig. 12, the actual detected amount of water level fluctuation will also change over time as shown in Figs. 13 (b) and (C). As shown in the waveform of the amount of fluctuation in the hot water level continuously expressed in , it was confirmed that there was a large disturbance, and that the amount of fluctuation tended to rise to the right. As a result, the slab produced in the embodiment shown in FIG. 13 had more surface defects and was of poor quality compared to the slab produced in the embodiment shown in FIG.
以上より鋳型内における湯面の挙動について以下の知見
が実操業で確認され、これに基づいて鋳造異常や、表面
欠陥の予知が的確にできるようになった。即ち、
(1)湯面は静止しておらず、時間と共に=変動してお
り、又この湯面変動は、鋳型内への溶鋼の注入量と鋳片
引き抜きとのバランスによるものだけではなく鋳型の振
動による湯面波動も存在する、(2)湯面の鋳型に対す
る相対運動(鋳型に装着された光導体6で得られた湯面
の動きを言う)は第5図に示すように同周期、逆位相で
ある、(3)湯面の鋳型に対する絶対運動(前記相対運
動から鋳型振動を相殺し、地球を絶対基準として見た湯
面の動きを言う)は第6図に示すように同周期、同位相
であり、湯面の振幅は鋳型振幅の7〜8割である。From the above, the following knowledge regarding the behavior of the molten metal surface inside the mold was confirmed in actual operation, and based on this knowledge, it has become possible to accurately predict casting abnormalities and surface defects. That is, (1) The hot water level is not static, but fluctuates over time, and this level fluctuation is not only due to the balance between the amount of molten steel injected into the mold and the withdrawal of slabs, but also due to the change in the mold temperature. (2) The relative motion of the melt surface to the mold (referring to the movement of the melt surface obtained by the light guide 6 attached to the mold) has the same period as shown in Figure 5. (3) The absolute motion of the hot water surface relative to the mold (meaning the movement of the hot water surface with the earth as an absolute reference, canceling mold vibration from the relative motion) is the same as shown in Figure 6. The period and phase are the same, and the amplitude of the molten metal surface is 70 to 80% of the mold amplitude.
本発明の実施により鋳型内の特にメニスカス近傍の湯面
変動量がオンラインで、正確に、かつ定量的に検出でき
るようになる。この結果、鋳造中における種々の鋳造異
常や鋳片の表面欠陥の発生等の予知が迅速、かつ的確に
行なえるようになり、それに応じた操業アクションも適
切に実施できるようになる。By carrying out the present invention, it becomes possible to accurately and quantitatively detect the amount of fluctuation in the level of the molten metal in the mold, especially in the vicinity of the meniscus, on-line. As a result, it becomes possible to quickly and accurately predict various casting abnormalities during casting, the occurrence of surface defects in slabs, etc., and appropriate operational actions can be taken accordingly.
以上のように本発明の実用的効果は非常に大である。As described above, the practical effects of the present invention are very large.
各図は本発明に基づ〈実施例であって、第1図は本発明
の基本的な構成を説明するための鋳型近傍の断面構造図
、
第2図は鋳型の斜視図、
第3図は鋳型に穿設される貫通孔の一例を示す鋳型の部
分断面図、
第4図は第3図の耐熱ガラスの側面図、第5図は光ファ
イバーの観察視野内の湯面レベルの表示例を示す図、
第6図は鋳型の変位状況の一例を説明する図、第7図は
メニスカス近傍の部分断面図、第8図は湯面変動量の具
体的な算出方法の一例を示す図、
第9図は同一操業条件下における潤滑剤の種別とそれに
対する湯面変動量の関係を調査した結果を示す図、
第10図は第9図の実施例で製造された鋳片に発生した
表面欠陥の発生状況の調査結果の一例を示す図、
第11図は同じく第9図の実施例におけるプレークアウ
I・の発生率の調査結果の一例を示す図、第12図及び
第13図は本発明に基づく湯面変動量をそれぞれ鋳造速
度、鋳型の振動数、振幅を変化させた状態で検出した結
果の一例を示す図である。
1・・・鋳型、1a・・・鋳型内面、2・・・長辺、3
・・・短辺、4・・・メニスカス相当部、5・・・貫通
孔、6・・・光導体、6a・・・光ファイバー、7・・
・耐熱ガラス、9・・・振動発生装置、10・・・振動
制御装置、11・・・ノズル、12・・・溶鋼、13・
・・鋳片、14・・・凝固殻、15.15a・・・湯面
レベル、16・・・メニスカス、17.17a・・・潤
滑剤、21・・・画像処理装置、21a・・・RGB処
理装置、21b・・・2値化処理装置、21c・・・境
界線演算装置、22・・・湯面変動量算出装置、23・
・・比較器、24・・・プロセス制御装置、25・・・
データ採取装置、26・・・記録装置、27・・・警報
装置、28・・・モニター、100・・・鋳型本体、1
01・・・鋳型内壁、102・・・締結具、103・・
・棒体、104・・・孔、105・・・ナツト。
代理人 弁理士 秋 沢 政 光
他1名
21″6図
π9図
5&l滑液/7(+) ρrv /宅)遁シNu
/7(+) /7(2) /7(3)濶滑歌/
7ω n(z)/7(3)
オlど図
vT間(Sec)
弁13図
k M <sec>Each figure is an example based on the present invention, in which Figure 1 is a cross-sectional structural diagram near the mold to explain the basic configuration of the present invention, Figure 2 is a perspective view of the mold, and Figure 3 Figure 4 is a side view of the heat-resistant glass shown in Figure 3, and Figure 5 is an example of the display of the molten metal level within the observation field of the optical fiber. Figure 6 is a diagram illustrating an example of the displacement situation of the mold, Figure 7 is a partial sectional view near the meniscus, Figure 8 is a diagram illustrating an example of a specific method for calculating the amount of fluid level fluctuation, Figure 9 shows the results of investigating the relationship between the type of lubricant and the amount of variation in the metal level under the same operating conditions. Figure 10 shows the surface defects that occurred in the slab produced in the example shown in Figure 9. FIG. 11 is a diagram showing an example of the investigation results of the occurrence rate of Pleikuau I in the example of FIG. 9, and FIGS. FIG. 3 is a diagram illustrating an example of the results of detecting the amount of fluid level fluctuation based on the casting speed, mold frequency, and amplitude while changing the casting speed, mold frequency, and amplitude, respectively. 1... Mold, 1a... Mold inner surface, 2... Long side, 3
... short side, 4 ... meniscus equivalent part, 5 ... through hole, 6 ... light guide, 6a ... optical fiber, 7 ...
・Heat-resistant glass, 9... Vibration generator, 10... Vibration control device, 11... Nozzle, 12... Molten steel, 13.
... Slab, 14... Solidified shell, 15.15a... Molten metal level, 16... Meniscus, 17.17a... Lubricant, 21... Image processing device, 21a... RGB Processing device, 21b... Binarization processing device, 21c... Boundary line calculation device, 22... Hot water level fluctuation amount calculation device, 23.
... Comparator, 24... Process control device, 25...
Data collection device, 26...Recording device, 27...Alarm device, 28...Monitor, 100...Mold body, 1
01... Mold inner wall, 102... Fastener, 103...
- Rod body, 104...hole, 105...nut. Agent: Patent Attorney Masamitsu Aki Sawa and 1 other person 21″ 6 Figure π 9 Figure 5 & l Synovial fluid / 7 (+) ρrv / home) Tonshi Nu
/7(+) /7(2) /7(3) Anthem/
7ω n(z)/7(3) Ord figure vT interval (Sec) Valve 13 figure k M <sec>
Claims (1)
スカス相当部に穿設された貫通孔に画像処理装置に連接
された光導体を装着し、この光導体で鋳造中における湯
面を直接観察すると共に該観察画像を設定基準輝度もし
くは波長で2値化処理して湯面レベル境界線を求め、こ
の境界線の経時変化より単位時間当たりの変動量を算出
することにより湯面変動量を検出することを特徴とする
鋳型内湯面変動量検出方法。(1) A light guide connected to an image processing device is attached to a through hole drilled in the meniscus-equivalent part of the long side or short side of the continuous casting mold, and this light guide directly monitors the molten metal surface during casting. While observing, the observed image is binarized using a set standard brightness or wavelength to obtain the hot water level boundary line, and the amount of change in the hot water level is calculated by calculating the amount of change per unit time from the change in this boundary line over time. A method for detecting the amount of variation in the level of molten metal in a mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP88987A JPS63168263A (en) | 1987-01-06 | 1987-01-06 | Method for detecting variating molten surface level in mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP88987A JPS63168263A (en) | 1987-01-06 | 1987-01-06 | Method for detecting variating molten surface level in mold |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63168263A true JPS63168263A (en) | 1988-07-12 |
Family
ID=11486244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP88987A Pending JPS63168263A (en) | 1987-01-06 | 1987-01-06 | Method for detecting variating molten surface level in mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63168263A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3424614A1 (en) * | 2017-07-03 | 2019-01-09 | Primetals Technologies Austria GmbH | Installation of a fibre optic temperature sensor in a mould and mould with multiple fibre optic temperature sensors |
-
1987
- 1987-01-06 JP JP88987A patent/JPS63168263A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3424614A1 (en) * | 2017-07-03 | 2019-01-09 | Primetals Technologies Austria GmbH | Installation of a fibre optic temperature sensor in a mould and mould with multiple fibre optic temperature sensors |
WO2019007656A1 (en) * | 2017-07-03 | 2019-01-10 | Primetals Technologies Austria GmbH | Installation of a fiber-optic temperature sensor into an ingot mold and ingot mold having a plurality of fiber-optic temperature sensors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014017714A1 (en) | Apparatus for predicting slab quality and method for same | |
US5020585A (en) | Break-out detection in continuous casting | |
CN112805561A (en) | Steelmaking-continuous casting process equipment control and state analysis method and system using same | |
US6179041B1 (en) | Method and apparatus for the early recognition of ruptures in continuous casting of steel with an oscillating mold | |
Thomas | On-line detection of quality problems in continuous casting of steel | |
JPS63168263A (en) | Method for detecting variating molten surface level in mold | |
JP2001239353A (en) | Detecting method of abnormal casting condition inside mold in continuous casting | |
CN109029830A (en) | Steel leakage detection system and method | |
JPS63168262A (en) | Estimating method for surface flaw in cast slab | |
JPS58148063A (en) | Method for predicting cracking of ingot in continuous casting | |
KR100523793B1 (en) | Breakout monitoring system and its method in continuous casting process | |
KR100865307B1 (en) | Method for estimating inclined angle of gas holder piston | |
JP2950188B2 (en) | Method of controlling surface defects in continuous casting | |
JP2003145257A (en) | Method for judging completion in pouring of molten steel and judging instrument therefor | |
KR0117420Y1 (en) | Slag detector of continous casting machine | |
Schiavon et al. | New Field Results on Ultrasonic Mould Thermal Mapping for Quality Improvement and Initial Solidification Diagnostics | |
JPH02251362A (en) | Method and instrument for detecting flowing-out of slag | |
KR100516028B1 (en) | Method and device for estimating/controlling molten steel flowing pattern in continuous casting | |
JPH04284956A (en) | Method for continuously casting steel | |
KR20060074399A (en) | Apparatus for measuring immersing depth of submerged entry nozzle | |
JPH10277716A (en) | Method for measuring thickness of solidified shell in continuous casing and instrument therefor | |
US20030114997A1 (en) | Detection of roller damage and/or misalignment in continuous casting of metals | |
Balogun et al. | A Fiber Optic Distributed Temperature Mapping Technique to Characterize Shell Solidification in Peritectic Grade Steels | |
JPS6040656A (en) | Method and device for continuously casting metal | |
JPH1190600A (en) | Method detecting variation of molten metal surface in continuous casting and control method therefor |