JPS63168262A - Estimating method for surface flaw in cast slab - Google Patents

Estimating method for surface flaw in cast slab

Info

Publication number
JPS63168262A
JPS63168262A JP88887A JP88887A JPS63168262A JP S63168262 A JPS63168262 A JP S63168262A JP 88887 A JP88887 A JP 88887A JP 88887 A JP88887 A JP 88887A JP S63168262 A JPS63168262 A JP S63168262A
Authority
JP
Japan
Prior art keywords
mold
variation
amount
molten
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88887A
Other languages
Japanese (ja)
Inventor
Akira Matsushita
昭 松下
Masami Tenma
天満 雅美
Takeyoshi Ninomiya
二宮 健嘉
Michiya Hayashida
道弥 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP88887A priority Critical patent/JPS63168262A/en
Publication of JPS63168262A publication Critical patent/JPS63168262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To directly observe molten surface in a mold and the behavior of lubricating agent by detecting the mold surface variation arranging photo conductor at the corresponding part of meniscus and estimating the development of surface flaw as compared with the allowable variation. CONSTITUTION:An optical fiber 6a is used as the photo conductor and the obtd. observing picture is inputted to a PGB treating device 21a and in succession, treated to be binarized by a binarization device 21b. The boundary line between the molten steel 12 and the lubricating agent is operated by a boundary line arithmetic unit 21c through the treated signal, to find the molten surface. In a molten surface variation calculating device 22, the condition of variation for the molten surface near the meniscus is quantitatively detected. The allowable variation for eliminating the development of surface defect is inputted to a comparator, to compare with the inputted detected molten surface variation through the picture treating device 21 and when the detected molten surface variation exceeds the allowable variation, the probability for developing the surface defect is high. In this case, alarm is given by a warning device 27 or in some case, warning signal is inputted to a process control device 24, to control changing and supplying of the lubricating agent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造において特に鋳型内で発生する鋳片
の表面欠陥をオンライン状態で、迅速かつ正確に推定す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for rapidly and accurately estimating surface defects of a slab in continuous casting, particularly in a mold, in an online state.

〔従来の技術〕[Conventional technology]

周知のように連続鋳造用の鋳型は長辺と短辺を組合せて
構成されており、この鋳型内に溶鋼を注入し、鋳型内面
に接する表面に所定厚みの凝固殻を生成せしめた後、そ
の下方より連続的に引き出し鋳片の製造が行われている
。従って溶鋼は鋳型内において最初の凝固、つまり初期
凝固を開始する。この初期凝固の状態は鋳片の表面欠陥
の発生やその他の品質に重大な影響を与える。
As is well known, a mold for continuous casting is composed of a combination of long sides and short sides. Molten steel is injected into the mold to form a solidified shell of a predetermined thickness on the surface in contact with the inner surface of the mold. Slabs are manufactured continuously from below. Therefore, the molten steel begins its initial solidification within the mold. This initial solidification state has a significant effect on the occurrence of surface defects and other quality of the slab.

鋳型にはその内面と凝固殻との間にパウダー等の潤滑材
を効率良く流入させ、かつ凝固殻と鋳型内面との焼付を
防止するために鋳造方向に往復運動する振動が付与され
ている。而して操業条件に応じて前述した潤滑材の種類
やその供給状態、及び振動条件等が適切にwI御されて
いない場合、凝固殻中にピンホールが生成されたり、潤
滑材やスラグあるいはその他の介在物を巻き込み、極端
な場合表面に割れが発生する等、種々の欠陥を生じる。
The mold is provided with vibrations that reciprocate in the casting direction in order to efficiently flow a lubricant such as powder between the inner surface of the mold and the solidified shell and to prevent seizure between the solidified shell and the inner surface of the mold. If the type of lubricant mentioned above, its supply status, vibration conditions, etc. are not properly controlled according to the operating conditions, pinholes may be generated in the solidified shell, or the lubricant, slag, or other In extreme cases, various defects may occur, including cracks on the surface.

このような欠陥は製造された鋳片の表面欠陥として残り
、後工程の圧延等でヘゲ、スリ゛バー疵、割れ等の原因
となる。又、極端な場合、ブレークアウトを誘発してし
操業不能となる事態にも繋がる。
Such defects remain as surface defects on the manufactured slab and cause sludge, sliver flaws, cracks, etc. during subsequent rolling steps. Moreover, in extreme cases, it may induce a breakout and lead to a situation where the operation becomes impossible.

特に近年、鋳造速度の高速化や連続鋳造と圧延工程の直
結化(以下、直送圧延と言う)が積極的に進められてい
ることから、前述したような欠陥の発生は、それらを実
施する上でも大きな障害となる。
Particularly in recent years, active efforts have been made to increase casting speeds and to directly connect continuous casting and rolling processes (hereinafter referred to as direct rolling), so the occurrence of the defects described above is a problem that is difficult to implement. But it is a big obstacle.

ところが従来鋳型内における状況を直接的に検出する方
法はなく、例えば製造された後の鋳片の表面性状を観察
し、その結果より過去の鋳造状況の適否、即ち選択され
た潤滑剤の適否やその供給状態、あるいは鋳型の振動数
及び振幅等の振動条件を判断することが一般的であった
However, conventionally there is no way to directly detect the conditions inside the mold. For example, by observing the surface properties of the slab after it has been manufactured, it is possible to determine the suitability of past casting conditions, in other words, the suitability of the selected lubricant. It was common to judge the supply state or the vibration conditions such as the frequency and amplitude of the mold.

一方、凝固殻の焼付や割れ等の欠陥については、例えば
特開昭57−115に号公報に示されるように鋳型の壁
面の鋳造方向に複数の温度検出端を埋設し、この温度検
出端による測温値を相互比較したり、基準値と比較する
などして鋳造欠陥の発生を推定する方法、あるいは特開
昭61−200453号公報に示されるように鋳造方向
複数の温度検出端による測温値をフーリエ変換して鋳型
内の温度変化をパターン認識し、これから鋳造欠陥の種
別や発生位置を推定する方法がそれぞれ提案され、一部
で実用化されている。
On the other hand, for defects such as seizure and cracking of the solidified shell, for example, as shown in Japanese Patent Application Laid-Open No. 57-115, a plurality of temperature detection ends are buried in the casting direction of the wall surface of the mold, and these temperature detection ends are used. A method of estimating the occurrence of casting defects by comparing measured temperature values with each other or with a reference value, or a method of measuring temperature using multiple temperature detection terminals in the casting direction as shown in Japanese Patent Application Laid-Open No. 61-200453. Methods have been proposed to perform Fourier transform on the values, recognize patterns of temperature changes within the mold, and estimate the type and location of casting defects from this, and some have been put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したように、従来法においては鋳型内の状況、特に
メニスカス近傍の湯面や潤滑剤の挙動を直接的に検出す
る方法は全くなく、製造された鋳片から遡って過去の鋳
造状態を推定し、判定することが普通であった。このた
め鋳造中に例えば湯面レベルの変動や湯面自体に波動が
生じ、潤滑剤の供給不足、不均一流入等が発生してもオ
ンラインでそれらを直接的に検出することはできなかっ
た。従ってそれらに対応した適切な制御を実施すること
はできず、あくまでも過去の操業実績を踏まえた経験的
な操業に顛ることが実態であった。
As mentioned above, in the conventional method, there is no way to directly detect the situation inside the mold, especially the behavior of the molten metal level near the meniscus and the lubricant, and it is necessary to estimate the past casting condition by looking back from the manufactured slab. It was common to make judgments. For this reason, during casting, for example, fluctuations in the level of the molten metal or waves occurring in the molten metal surface itself, insufficient supply of lubricant, uneven inflow, etc., could not be directly detected online. Therefore, it has not been possible to implement appropriate controls corresponding to these, and the reality has been to rely on empirical operations based on past operational results.

又、鋳型内における各種の鋳造欠陥を検出する前記従来
方法はいずれも鋳型壁面に埋設された温度検出端で当該
埋設部位の温度を測定し、その測温値から鋳片の表面欠
陥を推定するといった間接的な方法であった。このため
欠陥が発生していないにもかかわらず、表面欠陥発生と
誤認識することが多々発生し、鋳造欠陥を見落とす事態
も皆無とはなっていなかった。このような誤認識や鋳造
欠陥の見落としは直送圧延に多大な影響を与え、その効
率的な実施ができなくなるという大きな問題があった。
In addition, in all of the above conventional methods for detecting various casting defects in the mold, the temperature of the buried portion is measured with a temperature detection end buried in the wall of the mold, and the surface defects of the slab are estimated from the measured temperature value. It was an indirect method. For this reason, even though no defects have occurred, it has often been mistakenly recognized as a surface defect, and there have been cases in which casting defects have been overlooked. Such erroneous recognition and oversight of casting defects have a great effect on direct rolling, and there is a major problem in that it cannot be carried out efficiently.

本発明は前記問題点の抜本的な解決を図るものである。The present invention aims to fundamentally solve the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するための本発明は、連続鋳造鋳型を
構成する長辺もしくは短辺のメニスカス相当部に穿設さ
れた貫通孔に画像処理装置に連接された光導体を装着し
、この光導体を介して鋳造中における湯面を直接観察し
て得られた観察画像より湯面変動量を検出すると共に、
この検出湯面変動量を予め求められた湯面変動量と鋳型
内表面欠陥発生との相関に基づいて設定された当該操業
条件下の許容変動量と比較し、前記検出湯面変動量が前
記許容変動量を超えた際に表面欠陥の発生を推定するこ
とを特徴とする連続鋳造における鋳片表面欠陥の推定方
法である。
In order to solve the above-mentioned problems, the present invention attaches a light guide connected to an image processing device to a through hole drilled in a portion corresponding to a meniscus on a long side or a short side of a continuous casting mold. The amount of fluctuation in the melt level is detected from the observation image obtained by directly observing the melt level during casting through a conductor, and
The detected amount of fluid level fluctuation is compared with the allowable amount of fluctuation under the operating conditions, which is set based on the correlation between the amount of fluid level fluctuation determined in advance and the occurrence of mold inner surface defects, and the detected amount of fluid level fluctuation is determined by This is a method for estimating surface defects in slabs in continuous casting, which is characterized by estimating the occurrence of surface defects when an allowable variation amount is exceeded.

〔作 用〕[For production]

さて、鋳型の振動条件は小振幅、高振動数にするとオシ
レーションマークの深さが低減し、その形態も良くなっ
て鋳片の表面性状が良好となることが過去の操業実績よ
り経験されている。ところがこのことは従来、以下の理
由によるものであろうと考えられていた。即ち、鋳型が
第3図に示すように正弦波状に振動している場合を例に
とって説明すると、この振動の振幅をA、振動数をf、
鋳造速度をVc、時間をtとすれば鋳型の変位Xは下記
の(1)式で与えられる。
It has been learned from past operational experience that when the vibration conditions of the mold are set to a small amplitude and a high frequency, the depth of the oscillation mark is reduced, its shape improves, and the surface quality of the slab improves. There is. However, it was conventionally thought that this was due to the following reasons. That is, to explain the case where the mold is vibrating sinusoidally as shown in Fig. 3, the amplitude of this vibration is A, the frequency is f,
If the casting speed is Vc and the time is t, the displacement X of the mold is given by the following equation (1).

x=Asin (2πft) ”・・・・・(1)鋳型
1の速度Vmは(1)式を時間tで微分してVm=dx
/dt = 2 πf Acos (2zft) −・
”・(2)となる。ここで鋳型1の下降速度Vmが鋳造
速度Vcより大きい場合、鋳片は鋳型から下向きに押し
込まれることになる。この鋳型lが下降するときに押し
込まれる時間(一般にネガティブストリップ時間と称さ
れる。以下TN時間と言う)が小さい程、鋳片の表面及
び表層品質は良好であると言われている。このTN時間
は下記(3)式で求められ、振幅Aが小さく、振動数f
が大きい程、TN時間は小さくなることが判る。
x = Asin (2πft) ”... (1) The velocity Vm of mold 1 is calculated by differentiating equation (1) with respect to time t, and Vm = dx
/dt = 2 πf Acos (2zft) −・
”・(2) Here, if the descending speed Vm of the mold 1 is greater than the casting speed Vc, the slab will be pushed downward from the mold. It is said that the smaller the negative strip time (hereinafter referred to as TN time), the better the surface and surface layer quality of the slab.This TN time is determined by the following equation (3), and the amplitude A is small and the frequency f
It can be seen that the larger the value, the smaller the TN time.

TN = (1/πf)・ cos−’ (Vc/2π
fA)・・・・・・・・・(3)このTN時間を小さく
するために前記正弦波状でなく、非正弦波状振動を採用
する場合のあることも公知である。
TN = (1/πf)・cos-' (Vc/2π
fA) (3) It is also known that in order to reduce the TN time, non-sinusoidal vibration may be used instead of the sinusoidal vibration.

しかしながらこのような理由づけは前記湯面(本発明に
おいては後述する第4図に示す鋳型内面1aと溶鋼との
接触部をメニスカス16と言い、鋳型的設定部位での溶
鋼表面を湯面と言う。又この湯面の連続した表面を湯面
レベル15と言う)が絶対座標に対して静止している、
即ち鋳型1が振動しても鋳型1内の湯面が変動していな
いことが前提である。従来鋳型1内では潤滑材の作用で
鋳型内面1aと溶鋼とは完全に滑りを生じ、鋳型1が上
下動しても湯面は常に一定であるとの考えが当業者には
常識であり、このような基本認識に基に目視で鋳型の上
方より鋳型内をつぶさに観察して、湯面レベルは安定し
ているにもかかわらず湯面にさざ波が生じていることを
見出した。このことにより従来からの基本認識に疑問を
抱いた本発明者らは、実際の操業中におけるメニスカス
近傍の湯面の変動状況を検出する方法について種々実験
研究を重ね、その検出に成功した。
However, such reasoning is based on the above-mentioned molten metal surface (in the present invention, the contact area between the mold inner surface 1a and molten steel shown in FIG. .Also, this continuous surface of the hot water surface is called the hot water surface level 15) is stationary with respect to the absolute coordinates.
That is, it is assumed that the molten metal level within the mold 1 does not fluctuate even if the mold 1 vibrates. It is common knowledge among those skilled in the art that in the conventional mold 1, the inner surface 1a of the mold and the molten steel completely slip due to the action of the lubricant, and that even if the mold 1 moves up and down, the molten metal level remains constant. Based on this basic understanding, we carefully observed the interior of the mold from above the mold and found that ripples were occurring on the surface of the mold, even though the level was stable. Due to this, the present inventors had doubts about the conventional basic understanding, and conducted various experimental studies on a method for detecting fluctuations in the hot water level near the meniscus during actual operation, and succeeded in detecting it.

而してまず本発明において連続鋳造中における湯面変動
量を検出する方法について説明する。
First, a method of detecting the amount of fluctuation in the molten metal level during continuous casting in the present invention will be explained.

第1図は湯面変動量を実測する基本的な構成を説明する
ための鋳型近傍の断面構造図であり、第2図は鋳型の斜
視図である。図において1は鋳型であり、長辺2と短辺
3とから構成されている。
FIG. 1 is a cross-sectional structural diagram of the vicinity of a mold for explaining the basic configuration for actually measuring the amount of variation in the level of hot water, and FIG. 2 is a perspective view of the mold. In the figure, 1 is a mold, which is composed of a long side 2 and a short side 3.

本例では長辺2のメニスカス相当部4にその内面まで貫
通する貫通孔5が穿設されている。この貫通孔5には光
導体6が耐熱ガラス7を介して装着されている。光導体
6は鋳型内の光の輝度及びもしくは波長を検出できる例
えば、光ファイバー、あるいは分光器とフォトマルを組
合わせたもの、フィルター、レンズを組合せたCOD素
子、あるいはMO3型素子、又はITVカメラ等を用い
ることが可能である。しかしながら本発明者らの経験で
は貫通孔5の径を小さくでき、しかも観察視野も大きく
できる光ファイバーが最も優れていた。
In this example, a through hole 5 penetrating to the inner surface of the meniscus portion 4 of the long side 2 is bored. A light guide 6 is attached to the through hole 5 with a heat-resistant glass 7 interposed therebetween. The light guide 6 can detect the brightness and/or wavelength of the light inside the mold, for example, an optical fiber, a combination of a spectrometer and a photomultiplier, a COD element combining a filter and a lens, an MO3 type element, an ITV camera, etc. It is possible to use However, in the experience of the present inventors, an optical fiber that allows the diameter of the through hole 5 to be made small and also allows for a large observation field of view is the most excellent.

耐熱ガラス7は溶1ii112の漏出を防止すると共に
溶鋼12の箭熱から光導体6を保護する。
The heat-resistant glass 7 prevents leakage of the molten steel 112 and protects the light guide 6 from the heat of the molten steel 12.

光導体6は後述する機能を有する画像処理装置21に連
接されている。9は鋳型lに振動を付与する振動発生装
置、10は振動発生装置9の振動数、振幅等を制御する
振動制御装置である。又11は鋳型1内に溶鋼12を注
入するノズルであり、3は鋳片、14は鋳片13の表層
部に形成された凝固殻を示す。
The light guide 6 is connected to an image processing device 21 whose functions will be described below. 9 is a vibration generator that applies vibration to the mold l; 10 is a vibration control device that controls the frequency, amplitude, etc. of the vibration generator 9. Further, 11 is a nozzle for injecting molten steel 12 into the mold 1, 3 is a slab, and 14 is a solidified shell formed on the surface layer of the slab 13.

次に画像処理装置21での処理機構の一例を説明する。Next, an example of a processing mechanism in the image processing device 21 will be explained.

光導体6として例えば光ファイバー6aを用いると、こ
の光ファイバー6aで得られた観察画像はRGB処理装
置21aに入力される。本例における光ファイバー6a
の画素数を3万本とすると、RGB処理装置21aに入
力された個々の画素による検出信号はそれぞれRGB処
理装置21aに続く2値化処理装置21bで予め設定さ
れた基準値で2値化処理井される。例えば溶鋼温度の発
する輝度を周知のルクス等で表し、その値を基準値とし
て用いることができる。即ち鋳型1内に供給された潤滑
剤17は第5図に示すように溶m412の表面を覆い、
それが溶融するに伴って溶鋼12と鋳型内面1aとの間
に流入して潤滑機能を発揮する。この溶融した潤滑剤1
7の温度は約1400″Cであり、溶鋼温度の約152
0°Cより若干低い程度である。しかしながら潤滑剤1
7はその主成分がCaO及び5iOzであり、硝子と同
様に透過性を有していることから光ファイバー6aで直
接観察した場合、溶鋼12に比してその輝度は低くなる
。従って溶鋼12の輝度を基準として観察画像の信号を
2値化処理≠雲すると、例えば溶鋼12の輝度以上の部
分を白くし、逆に溶鋼12の輝度以下の部分を黒く表示
して判別することができる。
If, for example, an optical fiber 6a is used as the light guide 6, an observed image obtained by the optical fiber 6a is input to the RGB processing device 21a. Optical fiber 6a in this example
Assuming that the number of pixels is 30,000, each detection signal from each pixel input to the RGB processing device 21a is binarized using a preset reference value in the binarization processing device 21b following the RGB processing device 21a. It is well known. For example, the brightness emitted by the temperature of molten steel can be expressed in terms of well-known lux, etc., and that value can be used as a reference value. That is, the lubricant 17 supplied into the mold 1 covers the surface of the melt m412 as shown in FIG.
As it melts, it flows between the molten steel 12 and the mold inner surface 1a and exerts a lubricating function. This molten lubricant 1
The temperature of No. 7 is about 1400″C, which is about 152″C of the molten steel temperature.
It is slightly lower than 0°C. However, lubricant 1
7 has CaO and 5iOz as its main components, and has transparency like glass, so when directly observed with an optical fiber 6a, its brightness is lower than that of molten steel 12. Therefore, if the signal of the observed image is binarized using the brightness of the molten steel 12 as a reference, for example, parts with a brightness higher than the brightness of the molten steel 12 will be displayed white, and conversely, parts with a brightness lower than the brightness of the molten steel 12 will be displayed black for discrimination. I can do it.

一方、前記潤滑剤の厚みは薄く、実質上は前記潤滑剤表
面を湯面レベルとしても実害のない場合がある。溶融し
た潤滑剤17と未溶解の潤滑剤17aとの間には著しい
輝度差がある。従ってこのような場合は溶融した潤滑剤
の輝度を基準値として用いることでもよい。又、入力さ
れた観察画像を任意数のブロック分けし、−各々のブロ
ック間で画像の縦方向微分、横方向微分演算等を行い、
その演算結果が例えば潤滑剤と溶鋼との輝度差を基準値
としてそれ以上か、未満かで2値化処理する方法、ある
いは溶鋼と潤滑剤の境界部に相当する輝度が入力された
場合のみ出力する方法、さらには溶鋼12の有する例え
ば赤色の波長を基準として2値化処理する方法等を採用
することが可能である。2値化処理装置21bにおける
処理とは係る方法を総称して言うものである。
On the other hand, since the thickness of the lubricant is thin, there are cases in which the surface of the lubricant is substantially at the level of the hot water level without causing any actual harm. There is a significant brightness difference between the molten lubricant 17 and the undissolved lubricant 17a. Therefore, in such a case, the brightness of the molten lubricant may be used as the reference value. In addition, the input observation image is divided into an arbitrary number of blocks, and - vertical differential and horizontal differential operations are performed on the image between each block.
For example, the calculation result is binarized based on whether it is greater than or less than the luminance difference between the lubricant and molten steel as a reference value, or it is output only when the luminance corresponding to the boundary between molten steel and lubricant is input. Further, it is possible to adopt a method of performing binarization processing based on, for example, a red wavelength of the molten steel 12. The processing in the binarization processing device 21b is a general term for such methods.

このように2値化処理装置21bで処理された信号は境
界線演算装置21cで溶fj112と潤滑剤17との境
界線が演算さら、湯面レベルが求められる。
The signal thus processed by the binarization processing device 21b is used to calculate the boundary line between the molten fj 112 and the lubricant 17 in the boundary line calculation device 21c, and the level of the molten metal is determined.

第4図に示すように光ファイバー68の観察視野Y内に
おける湯面レベル15が連続的にあるいは任意の周期で
求められたら、この湯面レベル15の予め設定された部
位での変位量を逐次算出することによって当該部位にお
ける湯面の変動量が検出できる。第6図はその具体的な
算出方法の一例を示すもので、鋳型内面1aから所定間
隔、あるいは設定部位迄の距離lを横座標とし、湯面レ
ベル15を縦座標(h)として表す。所定の横座標(設
定部位りに対して成る時間のhで表される湯面レベル1
5から単位時間経過後の湯面レベル15aの差Δhを算
出することによって単位時間当たりの湯面変動量が求め
られる。第1図において22がこの湯面変動量を求める
湯面変動量算出装置である。
As shown in FIG. 4, when the hot water level 15 within the observation field Y of the optical fiber 68 is determined continuously or at an arbitrary period, the amount of displacement of this hot water level 15 at preset parts is calculated one after another. By doing so, it is possible to detect the amount of variation in the hot water level at the relevant location. FIG. 6 shows an example of a specific calculation method, where the abscissa represents the distance l from the inner surface of the mold 1a to a predetermined interval or a set point, and the molten metal level 15 is represented as the ordinate (h). The hot water surface level 1 is expressed by the time h for a predetermined abscissa (setting position).
By calculating the difference Δh in the hot water level 15a after a lapse of unit time from 5, the amount of fluctuation in the hot water level per unit time is obtained. In FIG. 1, reference numeral 22 denotes a hot water level fluctuation amount calculation device for calculating this hot water level fluctuation amount.

湯面変動量算出装置22では前述したような演算を、例
えば鋳型内壁面より1〜3飾間隔で、又は鋳型内壁面よ
り3胴、10mmの部位と言った具体的な部位毎で行わ
せることによってメニスカス近傍の湯面の変動状況を定
量的に検出することが可能となる。このようにして検出
された鋳型中の湯面の変動量を以下、検出湯面変動量と
定義して用いる。
The liquid level fluctuation calculation device 22 performs the above-mentioned calculations, for example, at intervals of 1 to 3 decorations from the mold inner wall surface, or for each specific region such as a region 3 cylinders and 10 mm from the mold inner wall surface. This makes it possible to quantitatively detect fluctuations in the hot water level near the meniscus. The amount of variation in the level of the molten metal in the mold detected in this way will be defined and used as the amount of variation in the molten metal level detected hereinafter.

前述した光導体6による観察画像より、鋳造中の湯面変
動状況を繰り返し検出し、研究を重ねた結果、本発明者
らは従来の前記基本認識とは全く異なり、湯面は静止し
ておらず、鋳型の振動と同期していると言う新知見を得
た。即ち、(1)湯面は静止しておらず、時間と共に=
変動しており、この湯面変動は、鋳型内への溶鋼の注入
量と鋳片引き抜きとのバランスによるものだけではなく
鋳型の振動による湯面波動も存在する、(2)湯面の鋳
型に対する相対変動(鋳型1に装着された光導体6で得
られた湯面の動きを言う)は第7図(b)に示すように
同周期、逆位相である、(3)湯面の鋳型に対する絶対
変動(前記相対運動から鋳型振動を相殺し、地球を絶対
基準として見た湯面の動きを言う)は第7図(C)に示
すように同周期、同位相であり、湯面の振幅は鋳型振幅
の7〜8割である。
As a result of repeatedly detecting the fluctuations in the molten metal level during casting from the observation images using the aforementioned light guide 6 and conducting repeated research, the present inventors discovered that the molten metal level is not static, which is completely different from the conventional basic understanding. First, we obtained new knowledge that it is synchronized with the vibration of the mold. That is, (1) the hot water level is not stationary, and with time =
This level fluctuation is not only due to the balance between the amount of molten steel injected into the mold and the withdrawal of slabs, but also due to surface waves due to mold vibration. The relative fluctuation (the movement of the molten metal surface obtained by the light guide 6 attached to the mold 1) has the same period and opposite phase as shown in FIG. 7(b). (3) The molten metal surface relative to the mold The absolute fluctuation (the movement of the hot water surface when mold vibration is canceled out from the relative movement and the earth is taken as an absolute reference) has the same period and same phase as shown in Figure 7 (C), and the amplitude of the hot water surface is 70-80% of the mold amplitude.

次いで本発明者らは前記知見に基づいて実際に鋳片表面
に発生した欠陥(以下、表面欠陥と言う)と湯面変動量
との間に相関関係がないかどうかについて調査した。
Next, based on the above findings, the present inventors investigated whether there was any correlation between defects that actually occurred on the surface of the slab (hereinafter referred to as surface defects) and the amount of fluctuation in the melt level.

第1表に示す鋳造条件下において、鋳型長辺2の短辺3
と接合する部分のメニスカス相当部(鋳片表面欠陥の発
生し易い各コーナ一部に4箇所)に光ファイバー6aを
装着し、鋳型内面1aより3胴の部位の湯面変動量を検
出した。この湯面変動量の検出と同時にその時の操業デ
ーター、例えば鋳造速度、湯面レベル、鋳型の振動速度
等を第1図に示すデータ採取装置25から入力し、湯面
変動量算出装置22を介して記録装置26に同時に記録
した。この結果、表面欠陥の無い正常な鋳片が得られた
ときの検出湯面変動量は、ばらつきはあるものの、平均
すると鋳型振幅の約70%であった。
Under the casting conditions shown in Table 1, the short side 3 of the mold long side 2
Optical fibers 6a were attached to the meniscus-equivalent portions of the joints (4 locations at each corner where slab surface defects are likely to occur), and the amount of variation in the level of the molten metal in the 3-barrel portion was detected from the mold inner surface 1a. Simultaneously with the detection of the amount of variation in the level, the operational data at that time, such as casting speed, level, vibration speed of the mold, etc., is inputted from the data acquisition device 25 shown in FIG. and simultaneously recorded on the recording device 26. As a result, when a normal slab with no surface defects was obtained, the detected amount of fluctuation in the molten metal level was approximately 70% of the mold amplitude on average, although there was some variation.

第1表 一方、表面欠陥が発生したときは検出湯面変動量が正常
時に比し増大していく傾向のあることも確認された。即
ち、検出湯面変動量が大きいということは、メニスカス
部の湯面が太き(変動してさいということは、初期凝固
が安定しているということができる。従ってメニスカス
部の初期凝固は安定している方が表面欠陥には有利であ
ることが確認された。
Table 1 On the other hand, it was also confirmed that when a surface defect occurs, the amount of detected melt level fluctuation tends to increase compared to when it is normal. In other words, if the detected level fluctuation is large, it means that the level at the meniscus is large (it does not fluctuate), which means that the initial solidification is stable.Therefore, the initial solidification at the meniscus is stable. It was confirmed that this method is more advantageous for surface defects.

第8図は前述した湯面変動量と表面欠陥との相関関係を
前記操業条件のもとて具体的に調査した結果の一例を示
すものである。表面欠陥発生は、鋳片1m当たりのピン
ホール、介在物巻込み等の表面欠陥の発生数量(欠陥個
数/m)を指数として表しく以下表面欠陥指数と言う)
、又、湯面変動量は検出湯面変動量に対する鋳型振幅の
比、つまり前述した絶対変動量を指数化して表しく以下
湯面変動量指数と言う)、それぞれ縦軸と横軸で示した
FIG. 8 shows an example of the results of a concrete investigation of the correlation between the above-mentioned melt level fluctuation amount and surface defects under the above-mentioned operating conditions. The occurrence of surface defects is expressed as an index of the number of surface defects such as pinholes and inclusions per meter of slab (number of defects/m) (hereinafter referred to as surface defect index).
In addition, the amount of fluid level fluctuation is the ratio of the mold amplitude to the amount of detected fluid level fluctuation, that is, the absolute amount of fluctuation described above is expressed as an index (hereinafter referred to as the amount of fluid level fluctuation index), and is shown on the vertical and horizontal axes, respectively. .

第8図から明らかなように湯面変動量指数が5以上とな
ると表面欠陥指数が急増して、表面欠陥の発生し易い状
況にあることが判る。
As is clear from FIG. 8, when the hot water level variation index becomes 5 or more, the surface defect index rapidly increases, indicating that surface defects are likely to occur.

而してこのような各操業条件に対応した湯面変動量と表
面欠陥発生の相関を過去の操業実績より求めておくこと
によって鋳型内において表面欠陥発生を無くするための
許容変動量を設定することが可能である。
By determining the correlation between the amount of fluctuation in the melt level and the occurrence of surface defects corresponding to each operating condition based on past operating results, the allowable amount of fluctuation to eliminate the occurrence of surface defects within the mold can be set. Is possible.

この許容変動量が設定されたら例えば第1図の比較器2
3にその値を入力させ、画像処理装置21を介して入力
された検出湯面変動量と比較させる。
Once this allowable variation amount is set, for example, the comparator 2 in FIG.
3, the value is inputted and compared with the detected amount of water level fluctuation inputted via the image processing device 21.

前述の説明より明らかなように検出湯面変動量が許容変
動量を超えたら表面欠陥の発生確率が高いことになる。
As is clear from the above explanation, if the detected amount of variation in the melt level exceeds the allowable amount of variation, the probability of surface defects occurring is high.

従ってその場合警報装置27で警報を発したり、場合に
よってはその発生信号をプロセス制御装置24に入力し
、このプロセス制御装置24によって例えば潤滑剤の種
別の変更や供給量を制御したり、あるいは振動制御装置
10に指令を発し鋳型振動条件を変更するなどの対応処
置を自動的に行わせることも可能である。
Therefore, in that case, the alarm device 27 may issue an alarm, and depending on the case, the generated signal may be input to the process control device 24, and the process control device 24 may, for example, change the type of lubricant, control the supply amount, or vibrate the lubricant. It is also possible to issue a command to the control device 10 to automatically take corresponding measures such as changing the mold vibration conditions.

検出湯面変動量は画像処理装置21で、あるいは比較器
23に入力する前の湯面変動量算出装置22で前述した
ようにその時の鋳型振幅を取り込んだ湯面変動指数とし
て、あるいは相対変動量として表すことも可能であり、
表面欠陥発生との相関の最も顕著に表れる変動量で把握
すればよい。
The detected hot water level fluctuation amount is detected by the image processing device 21 or by the hot water level fluctuation calculation device 22 before being input to the comparator 23, as described above, as a hot water level fluctuation index that incorporates the mold amplitude at that time, or as a relative fluctuation amount. It is also possible to express it as
It is sufficient to understand the amount of variation that shows the most significant correlation with the occurrence of surface defects.

〔実施例〕〔Example〕

月産16万屯の湾曲型連鋳機において本発明を実施した
The present invention was carried out in a curved continuous casting machine with a monthly production capacity of 160,000 tons.

本実施例においては第1図に示す装置を用い、鋳型長辺
の短辺と接合する部分のメニスカス相当部(鋳片表面欠
陥の発生し易い各コーナ一部に4箇所)に13mmの貫
通孔を穿設し、この貫通孔に画素数5万本、径12mo
+の光ファイバーを装着した。
In this example, the apparatus shown in Fig. 1 was used, and 13 mm through-holes were made in the meniscus-equivalent part of the part where the long side of the mold joins with the short side (4 places at each corner where slab surface defects are likely to occur). This through hole has 50,000 pixels and a diameter of 12 mo.
A + optical fiber was attached.

光ファイバーの観察視野は50°とした。貫通孔の鋳型
内面側には厚み10閣のシリコンガラスを嵌め込み、溶
鋼の漏出を防止すると共に光ファイバーの保護を図った
。又、記録装置26には鋳造速度。
The observation field of the optical fiber was 50°. Silicon glass 10 mm thick was fitted onto the inner surface of the through-hole mold to prevent leakage of molten steel and protect the optical fiber. The recording device 26 also records the casting speed.

湯面レベル、鋳型の振動速度等をデータ採取装置25か
ら湯面変動量算出装置22を介して記録せしめた。
The level of the hot water, the vibration speed of the mold, etc. were recorded from the data acquisition device 25 via the hot water level variation calculation device 22.

本実施例における鋳造条件は第1表に示す通りである。The casting conditions in this example are as shown in Table 1.

上記鋳造条件における湯面変動量と表面欠陥発生との相
関は第8図の通りであり、従って本実施例では許容変動
量も湯面変動指数として表し、その値は5とした。一方
、光ファイバー6aからの観察画像は画像処理装置21
で前述した処理を行い、鋳型内面から3rm離れた部位
の湯面変動量を検出した。
The correlation between the amount of fluid level fluctuation and the occurrence of surface defects under the above casting conditions is as shown in FIG. 8. Therefore, in this example, the allowable amount of fluctuation is also expressed as a fluid surface fluctuation index, and its value is set to 5. On the other hand, the observed image from the optical fiber 6a is processed by the image processing device 21.
The above-mentioned process was carried out, and the amount of variation in the level of the molten metal at a location 3rm away from the inner surface of the mold was detected.

以上のようにして操業を継続し、表面欠陥発生の推定精
度、及び製造された鋳片の表面欠陥発生状況を調査した
The operation continued as described above, and the accuracy of estimating the occurrence of surface defects and the occurrence of surface defects in the manufactured slabs were investigated.

第9図は鋳型内に埋設された検出端の測温値を用いて間
接的に表面欠陥の発生を推定する従来法と、本発明法で
の表面欠陥発生の推定精度を比較したものである。本実
施例では鋳造中表面欠陥の予告が発せられ、その部分が
鋳片となった際に実際に表面欠陥が発生しているか否か
調査し、前記表面欠陥の予告が正しかったか、あるいは
誤報であったかで判断した。第9回から明らかなように
表面欠陥発生に重要な影響を及ぼすメニスカス部の挙動
を直接観察し、その観察画像からの信号を基に湯面変動
量を検出して表面欠陥発生の推定を行う本発明の実施に
より従来法に比較し誤報を著しく減少させることができ
た。
Figure 9 compares the accuracy of estimating the occurrence of surface defects with the method of the present invention and the conventional method that indirectly estimates the occurrence of surface defects using the temperature measurement value of the detection end embedded in the mold. . In this example, a notice of surface defects is issued during casting, and when the part becomes a slab, it is investigated whether or not surface defects actually occur. I judged it by how warm it was. As is clear from Part 9, the behavior of the meniscus, which has an important influence on the occurrence of surface defects, is directly observed, and the amount of fluctuation in the melt level is detected based on the signal from the observed image to estimate the occurrence of surface defects. By implementing the present invention, it was possible to significantly reduce false alarms compared to conventional methods.

次に第1O図は、直送圧延を行った際の製品での疵発生
率を調査した結果の一例を従来法と比較して表したもの
である。第10図より判るように本発明の実施により表
面欠陥を検出する精度も従来法より高く、最終製品での
疵発生を少なくできた。
Next, FIG. 1O shows an example of the results of investigating the incidence of defects in products when direct rolling is performed, in comparison with the conventional method. As can be seen from FIG. 10, the accuracy of detecting surface defects by implementing the present invention was higher than that of the conventional method, and the occurrence of defects in the final product could be reduced.

尚、本実施例においては光ファイバー6aを鋳片表面欠
陥の発生し易い各長辺のコーナ一部に4箇所設置したが
、設置箇所については、鋳造する鋼種及び鋳造条件に応
じて適宜設定すればよく、例えば短辺3に装着すること
でも支障はない。
In this example, the optical fibers 6a were installed at four locations at the corners of each long side where surface defects are likely to occur, but the installation locations may be set as appropriate depending on the type of steel to be cast and casting conditions. For example, it may be attached to the short side 3 without any problem.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により鋳型内の湯面や潤滑剤の挙動を直接
的に観察することが可能となる。又、この直接的観察結
果に基づいて湯面の変動量を検出すると共にその湯面変
動量と表面欠陥との過去の操業実績を踏まえた相関より
、鋳型内における表面欠陥の発生状況がオンライン状態
で、正確に且つ迅速に推定できるようになる。この結果
その状態に応じた的確な操業アクションを実施でき、表
面欠陥のない正常な鋳片の製造が可能となる。加えて誤
認識も激減したことより前述した直送圧延の実施化率も
著しく向上する。
By implementing the present invention, it becomes possible to directly observe the behavior of the molten metal level and lubricant in the mold. In addition, by detecting the amount of fluctuation in the melt level based on the direct observation results, and by correlating the amount of fluctuation in the mold surface with surface defects based on past operational results, it is possible to check the occurrence status of surface defects in the mold in an online state. This makes it possible to estimate accurately and quickly. As a result, precise operational actions can be taken according to the situation, and normal slabs without surface defects can be manufactured. In addition, since the number of misrecognitions has been drastically reduced, the implementation rate of the above-mentioned direct rolling will be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的な構成を説明するための鋳型近
傍の断面構造図、 第2図は鋳型の斜視図、 第3図は鋳型の変位状況の一例を説明する図、第4図は
光ファイバーの観察視野内の湯面レベルの表示例を示す
図、 第5図はメニスカス近傍の部分断面図、第6図は湯面変
動量の具体的な算出方法の一例を示す図、 第7図は鋳型の変位状況とそれに対応した湯面の変動量
とを比較して表した図であり、第7図(a)が近似正弦
波による鋳型の変位状況、第7図(b)が湯面の相対変
動量、第7図(C)が湯面の絶対変動量を示し、 第8図は湯面変動量と表面欠陥発生との関係を調査した
結果の一例を示す図、第9図は鋳型内に埋設された検出
端の測温値を用いて間接的に表面欠陥の発生を推定する
従来法と本発明法での表面欠陥発生の推定精度を比較し
た図、 第10図は直送圧延を行った際の製品での疵発生率を調
査した結果の一例を従来法と比較して表した図である。 1・・・鋳型、1a・・・鋳型内面、2・・・長辺、3
・・・短辺、4・・・メニスカス相当部、5・・・貫通
孔、6・・・光導体、6a・・・光ファイバー、7・・
・耐熱ガラス、9・・・振動発生装置、lO・・・振動
制御装置、11・・・ノズル、13・・・鋳片、14・
・・凝固殻、15.15a・・・湯面レベル、16・・
・メニスカス、17.17a・・・潤滑剤、21・・・
画像処理装置、21a・・・RGB処理装置、21b・
・・2値化処理装置、21c・・・境界線演算装置、2
2・・・湯面変動量算出装置、23・・・比較器、24
・・・プロセス制御装置、25・・・データ採取装置、
26・・・記録装置、27・・・警報装置。 代理人 弁理士  秋 沢 政 光 他1名 71′3図 7F4図 オフ図 時間C3eC) π8図 様幌j去 彼ヌ広
Fig. 1 is a cross-sectional structural diagram of the vicinity of the mold to explain the basic configuration of the present invention, Fig. 2 is a perspective view of the mold, Fig. 3 is a diagram illustrating an example of the displacement state of the mold, and Fig. 4 Figure 5 is a partial cross-sectional view of the vicinity of the meniscus; Figure 6 is a diagram showing an example of a specific method for calculating the amount of fluctuation in the level; Figure 7 The figures are diagrams comparing the displacement status of the mold and the corresponding amount of fluctuation in the melt level. Figure 7(a) shows the displacement status of the mold due to an approximate sine wave, and Figure 7(b) shows the displacement status of the mold due to the approximate sine wave. Figure 7 (C) shows the relative variation in the surface, and Figure 7 (C) shows the absolute variation in the melt level. Figure 8 shows an example of the results of investigating the relationship between the variation in the melt level and the occurrence of surface defects. Figure 10 is a comparison of the accuracy of estimating the occurrence of surface defects using the conventional method and the method of the present invention, which indirectly estimate the occurrence of surface defects using the temperature value of the detection end embedded in the mold. FIG. 2 is a diagram illustrating an example of the results of investigating the incidence of defects in products during rolling in comparison with a conventional method. 1... Mold, 1a... Mold inner surface, 2... Long side, 3
... short side, 4 ... meniscus equivalent part, 5 ... through hole, 6 ... light guide, 6a ... optical fiber, 7 ...
- Heat-resistant glass, 9... Vibration generator, lO... Vibration control device, 11... Nozzle, 13... Slab, 14.
... Solidified shell, 15.15a ... Hot water level, 16...
・Meniscus, 17.17a...Lubricant, 21...
Image processing device, 21a...RGB processing device, 21b.
...Binarization processing device, 21c...Boundary line calculation device, 2
2... Hot water level fluctuation amount calculation device, 23... Comparator, 24
... process control device, 25 ... data collection device,
26... Recording device, 27... Alarm device. Agent Patent attorney Masamitsu Aki Sawa and 1 other person 71'3 Figure 7F4 off view time C3eC)

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造鋳型を構成する長辺もしくは短辺のメニ
スカス相当部に穿設された貫通孔に画像処理装置に連接
された光導体を装着し、この光導体を介して鋳造中にお
ける湯面を直接観察して得られた観察画像より湯面変動
量を検出すると共に、この検出湯面変動量を予め求めら
れた湯面変動量と鋳型内表面欠陥発生との相関に基づい
て設定された当該操業条件下の許容変動量と比較し、前
記検出湯面変動量が前記許容変動量を超えた際に表面欠
陥の発生を推定することを特徴とする連続鋳造における
鋳片表面欠陥の推定方法。
(1) A light guide connected to an image processing device is attached to a through hole drilled in the meniscus-equivalent part of the long side or short side of the continuous casting mold, and the molten metal level during casting is monitored via this light guide. The amount of fluid level fluctuation is detected from the observation image obtained by direct observation of A method for estimating surface defects in a slab in continuous casting, comprising comparing the amount of variation with an allowable amount of variation under the operating conditions, and estimating the occurrence of a surface defect when the detected amount of variation in the melt level exceeds the amount of variation. .
JP88887A 1987-01-06 1987-01-06 Estimating method for surface flaw in cast slab Pending JPS63168262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88887A JPS63168262A (en) 1987-01-06 1987-01-06 Estimating method for surface flaw in cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP88887A JPS63168262A (en) 1987-01-06 1987-01-06 Estimating method for surface flaw in cast slab

Publications (1)

Publication Number Publication Date
JPS63168262A true JPS63168262A (en) 1988-07-12

Family

ID=11486215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88887A Pending JPS63168262A (en) 1987-01-06 1987-01-06 Estimating method for surface flaw in cast slab

Country Status (1)

Country Link
JP (1) JPS63168262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505406B1 (en) * 2012-04-26 2015-03-25 현대제철 주식회사 Method for predicting quality of slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505406B1 (en) * 2012-04-26 2015-03-25 현대제철 주식회사 Method for predicting quality of slab

Similar Documents

Publication Publication Date Title
JP6430467B2 (en) Slab quality prediction apparatus and method
JP2609476B2 (en) Method and apparatus for detecting blowing in continuous casting
CN112805561A (en) Steelmaking-continuous casting process equipment control and state analysis method and system using same
CN110849321A (en) Concrete pouring height real-time monitoring method and system
US6179041B1 (en) Method and apparatus for the early recognition of ruptures in continuous casting of steel with an oscillating mold
Thomas On-line detection of quality problems in continuous casting of steel
CN114012053A (en) Method for judging nodulation and blockage abnormal state of submerged nozzle of crystallizer
JPS63168262A (en) Estimating method for surface flaw in cast slab
JP2001239353A (en) Detecting method of abnormal casting condition inside mold in continuous casting
JPS63168263A (en) Method for detecting variating molten surface level in mold
CN109029830A (en) A kind of bleed-out detection system and method
KR100523793B1 (en) Breakout monitoring system and its method in continuous casting process
JP2950188B2 (en) Method of controlling surface defects in continuous casting
Dinda et al. Gas bubble digital data generation by image analysis using reduced-scale water modeling of a slab continuous caster mold
JPH06207608A (en) Detecting method for oil leakage of oil pressure device
KR100928775B1 (en) A predicting device of the main polarization stage in the performance process by measurement of mold vibration and frictional force
KR101130719B1 (en) Method for sensing the melt level
KR100761575B1 (en) Detection of roller damage and/or misalignment in continuous casting of metals
KR0117420Y1 (en) Slag detector of continous casting machine
JPH0663716A (en) Device for monitoring friction force between mold for continuous casting and cast slab
JP3252770B2 (en) Detecting method and control method of molten metal level in continuous casting
KR100368730B1 (en) Dynamic Bulging Diagnosis Method Using Surface Level Frequency Analysis
JPH04284956A (en) Method for continuously casting steel
JPH1071453A (en) Method for predicting breakout in horizontal continuous casting
JPH02137655A (en) Method for measuring fluctuation in molten steel surface and method for controlling such fluctuation