JPS631675B2 - - Google Patents

Info

Publication number
JPS631675B2
JPS631675B2 JP55057363A JP5736380A JPS631675B2 JP S631675 B2 JPS631675 B2 JP S631675B2 JP 55057363 A JP55057363 A JP 55057363A JP 5736380 A JP5736380 A JP 5736380A JP S631675 B2 JPS631675 B2 JP S631675B2
Authority
JP
Japan
Prior art keywords
electrode
working electrode
potential
solid electrolyte
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55057363A
Other languages
Japanese (ja)
Other versions
JPS56153577A (en
Inventor
Tatsu Osagawa
Nobumasa Ooshima
Hiromasa Yamamoto
Kazuyoshi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5736380A priority Critical patent/JPS56153577A/en
Publication of JPS56153577A publication Critical patent/JPS56153577A/en
Publication of JPS631675B2 publication Critical patent/JPS631675B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Description

【発明の詳細な説明】 本発明は固体電気化学素子、特に、動作極とこ
の動作極に銅イオン固体電解質よりなる固体電解
質層を介して対向する対極と、さらに、動作極の
電位を正確に検出するために、対極とは別に固体
固体電解質層を介して、動作極に対向するように
して設けられた基準電極とを有し、動作極と対極
との間を通過する電気量に対応して、基準極に対
する動作極の電位がほぼ直線的に変化する、たと
えば記憶素子またはタイマーとして用いられる固
体電気化学素子に関するものである。その目的
は、通電を停止したときの電位がそのまま安定に
保持されて、温度による変動を少なくすることで
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a solid-state electrochemical device, in particular, a working electrode, a counter electrode that faces the working electrode via a solid electrolyte layer made of a copper ion solid electrolyte, and a method for accurately adjusting the potential of the working electrode. In order to detect the amount of electricity that passes between the working electrode and the counter electrode, the reference electrode is provided separately from the counter electrode and faces the working electrode via a solid electrolyte layer. The present invention relates to a solid-state electrochemical device used, for example, as a memory device or a timer, in which the potential of an active electrode relative to a reference electrode changes approximately linearly. The purpose of this is to keep the potential stable as it is when the current supply is stopped, and to reduce fluctuations due to temperature.

固体電気化学素子に充電、休止、放電、休止を
順次行なわせたときの、基準極に対する動作極の
電位の理想的な経過は、第1図に示すように、そ
れぞれの動作点に区切りをもつたいくつかの直線
を組み合わせたものとして示される。すなわち、
一定電流で素子に充電(動作極から対極方向への
通電)していくと、基準極に対する動作極電位は
時間に対してほぼ直線的に上昇していく。次に、
通電を休止状態に置くと、動作極電位は通電停止
時の値を保持し続ける。そして、一定電流で放電
(対極から動作極の方向に通電)させると、動作
極電位は時間に対してほぼ直線的に下降してい
く。さらに、通電を休止した状態に切り換える
と、動作極電位は通電停止時の値を保持し続け
る。
When a solid-state electrochemical device is sequentially charged, rested, discharged, and rested, the ideal progression of the potential of the working electrode with respect to the reference electrode has a break at each operating point, as shown in Figure 1. It is shown as a combination of several straight lines. That is,
When the element is charged with a constant current (current is passed from the working electrode to the opposite electrode), the potential of the working electrode with respect to the reference electrode increases almost linearly with time. next,
When the energization is stopped, the active electrode potential continues to hold the value at the time when the energization is stopped. Then, when a constant current is discharged (current is applied in the direction from the counter electrode to the working electrode), the working electrode potential decreases almost linearly with time. Furthermore, when switching to a state in which energization is stopped, the active electrode potential continues to hold the value at the time when energization was stopped.

このような動作の素子を得るため、固体電解質
として安価な銅イオン固体電解質を用い、動作極
材料としてカルコゲン化銅を少なくとも一部に用
いたものが製造された。ここに用いるカルコゲン
化銅は具体的には硫化第1銅、セレン化第1銅、
テルル化第1銅およびこれらを混合したものであ
る。
In order to obtain an element that operates in this manner, an inexpensive copper ion solid electrolyte was used as the solid electrolyte and chalcogenated copper was used at least in part as the working electrode material. Specifically, the copper chalcogenide used here is cuprous sulfide, cuprous selenide,
Cuprous telluride and mixtures thereof.

第2図にこの素子の構成の一例を示す。すなわ
ち、銅イオン固体電解質よりなる固体電解質層1
を介して、動作極2と対極3とを対向させるとと
もに、これらの両者の外側面上には、集電電極
5,6がそれぞれ設けられている。さらに、動作
極2には対極3側とは反対側に、同じ銅イオン固
体電解質からなる固体電解質層4を介して基準極
5を設け、これに集電電極6を設けて、基準極5
と動作極2との間で動作極電位を正確に検出でき
るようになつている。そして、リード線7,8,
9がそれぞれの集電電極10,11,6に半田1
2,13,14により接続されている。
FIG. 2 shows an example of the structure of this element. That is, solid electrolyte layer 1 made of copper ion solid electrolyte
The working electrode 2 and the counter electrode 3 are opposed to each other via the electrode, and current collecting electrodes 5 and 6 are provided on the outer surfaces of both of them, respectively. Furthermore, a reference electrode 5 is provided on the side opposite to the counter electrode 3 side of the working electrode 2 via a solid electrolyte layer 4 made of the same copper ion solid electrolyte, and a current collecting electrode 6 is provided on this.
The working electrode potential can be accurately detected between the working electrode 2 and the working electrode 2. And lead wires 7, 8,
9 solder 1 to each current collecting electrode 10, 11, 6
2, 13, and 14.

第2図に示したような構成において、この素子
を生産性よく製造しようとしたとき、その具体的
な素子の見取図の一例を示せば、第3図のように
なる。第3図に見られるように、素子の保護コー
ト15を樹脂で行なうようにし、かつこれを連続
的に行なうには、三本のリード線が同一面に配さ
れ、その先端が短絡しているような櫛形リード線
を用いることができればよい。ところが、上記の
ような構成においては、動作極、対極、基準極は
素子を作製した当初はそれぞれ異なつた電位を保
持しているものである。
In the configuration shown in FIG. 2, when an attempt is made to manufacture this element with high productivity, an example of a specific sketch of the element is shown in FIG. 3. As shown in Fig. 3, in order to apply the protective coating 15 of the element with resin and to do this continuously, three lead wires are placed on the same surface and their tips are short-circuited. It is sufficient if a comb-shaped lead wire such as this can be used. However, in the above configuration, the working electrode, the counter electrode, and the reference electrode each hold different potentials when the device is first manufactured.

このような素子を、先端が短絡しているような
櫛形リード線を用いて半田付けし、素子の保護コ
ートを施した後切り離して個々の素子を作つた場
合、個々に切り離した直後のそれぞれの電極電位
はすべて同じになつている。こうした素子に第1
図に示したような充電、放電の動作を行なわせた
とき、動作極電位の変化は第4図に示すような形
となり、第1図に示した変化に比べて充電、放電
時の変化が著しく悪くなることを見出した。さら
に、この素子の動作極電位を50mVに設定した
後、60℃に設定された恒温室槽内に素子を入れ、
動作極電位の変化を観測すると、第5図aに示し
たような変化を示し、動作極電位の温度に対する
安定性が非常に悪いことが判明した。
If such an element is soldered using a comb-shaped lead wire with a short-circuited tip, and then separated after applying a protective coating to the element to make individual elements, each element will be separated immediately after being separated. All electrode potentials are the same. In these elements, the first
When the charging and discharging operations shown in the figure are performed, the change in the operating electrode potential takes the form shown in Figure 4, and compared to the change shown in Figure 1, the change during charging and discharging is I found that it got significantly worse. Furthermore, after setting the operating electrode potential of this device to 50 mV, the device was placed in a thermostatic chamber set at 60°C.
When the change in the working electrode potential was observed, the change as shown in FIG. 5a was observed, and it was found that the stability of the working electrode potential with respect to temperature was very poor.

本発明は、上記のような素子作製後の電極電位
の不規則性、不安定性をなくすようにし、生産性
よく、製造ができ、かつ素子の特性の安定なもの
を作るためになされたものである。
The present invention has been made to eliminate the irregularity and instability of the electrode potential after device fabrication as described above, and to create a device that can be manufactured with high productivity and has stable characteristics. be.

上記のような目的にそつて、先端が短絡してい
るような櫛形リード線を用いることができるよう
にするためには、素子の三つの電極が持つ電位が
等しくなるように素子を作ることが望ましいとい
う考え方に従つて、種々の試みを行なつた。その
結果、素子の三つの電極にそれぞれ埋設する集電
電極材料としては金、白金、パラジウムなどの貴
金属と、銅、真鍮などの金属に前記貴金属をめつ
きしたものを用いることが望ましいことを見出し
た。
In order to be able to use a comb-shaped lead wire whose tips are short-circuited for the purpose described above, it is necessary to create an element so that the potentials of the three electrodes of the element are equal. Various attempts were made based on the idea of desirability. As a result, we found that it is desirable to use precious metals such as gold, platinum, and palladium, and metals such as copper and brass plated with the precious metals, as materials for the current collecting electrodes embedded in each of the three electrodes of the element. Ta.

まず、動作極の集電電極として、例へば、ステ
ンレスのワイヤー或いはネツトを使用すると、第
6図のグラフで示すように、充電開始時ならびに
停止時に電位の急激な変化(ΔV)を生ずる。こ
れは、動作極と動作極の集電電極との間の接触抵
抗が十分低くないために生ずることがわかつた。
従つて、このような電位の急激な変化を生じさせ
ない材料を動作極の集電電極として使用する必要
があり、これには、銅、真鍮などの銅の合金、
金、白金、パラジウムなどの貴金属および銅、真
鍮などの金属に前記貴金属をめつきしたものが良
いことがわかつた。
First, if, for example, a stainless steel wire or net is used as the current collecting electrode of the working electrode, a sudden change in potential (ΔV) occurs at the start and stop of charging, as shown in the graph of FIG. It has been found that this occurs because the contact resistance between the working electrode and the current collecting electrode of the working electrode is not low enough.
Therefore, it is necessary to use a material that does not cause such a sudden change in potential as the current collecting electrode of the working electrode, such as copper, copper alloys such as brass,
It has been found that noble metals such as gold, platinum, and palladium, and metals such as copper and brass plated with the above-mentioned noble metals are good.

ここで基準極集電体として60メツシユ銅ネツト
を使用し、かつ基準極に対する動作極の電位の値
を−20℃〜+80℃の温度範囲で変化させた様子を
示すと、第7図の破線aのようになる。これに対
して基準極集電電極の材料として60メツシユ銅ネ
ツトに厚さ5μmの金めつきを施したものを使用
し、かつ上述と同じように、基準極に対する動作
極の電位の値を−20℃〜+80℃の温度範囲で変化
させた様子を示すと、第7図の実線bのようにな
り、ほとんどその電位が変化せずに安定してお
り、この効果は多大なものである。これは、銅ネ
ツトを使用した場合には、この集電電極の近くの
銅イオンの濃度が高くなり、この銅イオン濃度
が、動作極と基準極とでは異なるために、それぞ
れの極の電位の温度変化が違うことによつて生ず
ることが判明した。
Here, a 60-mesh copper net is used as the reference electrode current collector, and the broken line in Figure 7 shows how the potential of the working electrode with respect to the reference electrode is changed in the temperature range of -20°C to +80°C. It becomes like a. On the other hand, a 60-mesh copper net plated with gold to a thickness of 5 μm was used as the material for the reference electrode collector electrode, and in the same way as described above, the potential value of the working electrode with respect to the reference electrode was set to - When the temperature is varied in the temperature range of 20° C. to +80° C., the solid line b in FIG. 7 shows that the potential is stable with almost no change, and this effect is significant. This is because when a copper net is used, the concentration of copper ions near the current collecting electrode increases, and the concentration of copper ions differs between the working electrode and the reference electrode, so the potential of each electrode increases. It was found that this was caused by different temperature changes.

また、対極集電電極の材料として60メツシユ銅
ネツトを使用し、後述する方法により素子を作製
したとき(動作極および基準極には、金、白金、
パラジウムなどの貴金属および銅、真鍮などの金
属に前記貴金属をめつきしたものの中から選ばれ
た材料をもちいるものとする)、基準極に対する
動作極電位は、ほぼ+15〜25mVを示し、基準極
に対する対極電位は、ほぼ−20〜−30mVを示
す。このような素子を、先端が短絡している櫛形
リード線を用いて半田付けし、素子の保護コート
を施した後、切り離して個々の素子とした場合、
充電、放電の動作を行なわせたときの動作極電位
の変位は第4図に示すような形となる。対極集電
電極の材料として60メツシユの真鍮ネツトに厚さ
3μmの金めつきを施したものを使用し、前述し
たと同じ方法でリード付けおよび保護コートを施
して素子とした場合、充電、放電の動作を行なわ
せたときの動作極電位の変化は、第1図に示すよ
うに安定な動作をし、かつ動作極電位の温度の変
化に対する安定性も、第7図の実線bのように安
定なものであつた。これらの違いは、後述の素子
の作製方法に見られるように、動作極と基準極と
の組成の違いによるものと考えられる。従つて、
それぞれの極に埋設する集電電極としては、集電
電極の近くの銅イオン濃度の変化を起させない材
料が好ましいのであつて、それには、動作極に使
用される集電電極と同様に、基準極および対極に
使用される集電電極もまた前記金属あるいは銅、
真鍮などの金属に前記貴金属をメツキしたものが
望ましい。
In addition, when a 60-mesh copper net was used as the material for the counter current collector electrode and an element was fabricated by the method described below (the working electrode and the reference electrode were made of gold, platinum,
(The material selected from precious metals such as palladium and metals such as copper and brass plated with the above-mentioned metals), the operating electrode potential with respect to the reference electrode is approximately +15 to 25 mV, and the reference electrode The potential of the counter electrode is approximately -20 to -30 mV. When such an element is soldered using a comb-shaped lead wire with a short-circuited tip, a protective coating is applied to the element, and the element is separated into individual elements.
When charging and discharging operations are performed, the displacement of the operating electrode potential takes the form as shown in FIG. 60 mesh brass net is used as the material for the counter current collector electrode.
If a device with 3 μm gold plating is used, and a lead is attached and a protective coating is applied in the same manner as described above, the change in the operating electrode potential during charging and discharging operations is as follows: As shown in FIG. 1, the operation was stable, and the stability of the operating electrode potential against temperature changes was also stable as shown by the solid line b in FIG. 7. These differences are considered to be due to the difference in composition between the working electrode and the reference electrode, as seen in the device manufacturing method described below. Therefore,
It is preferable for the collector electrodes buried in each pole to be made of a material that does not cause changes in the copper ion concentration near the collector electrodes. The current collecting electrodes used as electrodes and counter electrodes are also made of the metals or copper,
It is preferable to use a metal such as brass plated with the above-mentioned noble metal.

次に、第2図で示した固体電気化学素子の製造
法の一例を具体的に説明すると、素子本体の径を
15mmとし、対極3はCu2Sと固体電解質との重量
比が9:1である混合物0.6gをプレ成型して作
製したものである。この上に固体電解質粉0.6g
を均等に分散させて一体にプレスして、固体電解
質層1を形成する。さらに、この上にCu2Sと固
体電解質との重量比が5:5の混合物0.6gを均
等に分散させ、一体にプレスして動作極2を形成
する。また、この上から動作極集電電極10とす
る厚さが0.1mm、巾1mm、長さ13mmの銅箔に金め
つきを施したものを圧入して動作極2内に埋設す
るようにし、さらに0.6gの固体電解質粉と、対
極3と同一組成の混合物0.6gをプレス成型して
固体電解質層4と基準極5とを形成した後、基準
極5および対極3に60メツシユの真鍮ネツトに金
めつきを施したものをそれぞれに圧入して、集電
電極6,11をそれぞれの電極5,3内に埋設す
るようにし、これらを4トン/cm2の圧力で一体成
形した後、素子をプレス型から取出す。なお、動
作極集電電極10は、基準極2と固体電解質層4
の一部を切除して動作極集電電極10の表面を露
出させて、リード線付けしやすいようにする。そ
して、この素子の各集電電極6,10,11に先
端が短絡している櫛形リード線を半田付けし、こ
の素子を適当な樹脂15でモールドした後、櫛形
リード線の連結部分を切除して、リード線7,
8,9を形成する。それから動作極2と対極3と
の間に1mAの電流で充放電させた場合、基準極
4に対する動作極2の電位の変化は第1図に示す
ようになり、かつその保持電位は第5図の曲線b
および第7図の曲線bに示したように非常に安定
である。
Next, to specifically explain an example of the manufacturing method of the solid-state electrochemical device shown in Fig. 2, the diameter of the device body is
The counter electrode 3 was prepared by pre-molding 0.6 g of a mixture of Cu 2 S and solid electrolyte in a weight ratio of 9:1. On top of this, add 0.6g of solid electrolyte powder.
are evenly dispersed and pressed together to form the solid electrolyte layer 1. Furthermore, 0.6 g of a mixture of Cu 2 S and solid electrolyte having a weight ratio of 5:5 is evenly dispersed thereon and pressed together to form the working electrode 2 . Further, a gold-plated copper foil with a thickness of 0.1 mm, a width of 1 mm, and a length of 13 mm is press-fitted into the working electrode current collecting electrode 10 from above and buried in the working electrode 2. Furthermore, 0.6 g of solid electrolyte powder and 0.6 g of a mixture having the same composition as the counter electrode 3 were press-molded to form the solid electrolyte layer 4 and the reference electrode 5, and then the reference electrode 5 and the counter electrode 3 were made of 60 mesh brass nets. The gold-plated electrodes are press-fitted into each electrode, and the current collecting electrodes 6 and 11 are embedded in the respective electrodes 5 and 3. After integrally molding these at a pressure of 4 tons/cm 2 , the element is assembled. Take out from the press mold. Note that the working electrode collector electrode 10 includes a reference electrode 2 and a solid electrolyte layer 4.
The surface of the working current collecting electrode 10 is exposed by cutting off a portion of the working electrode 10 to make it easier to attach lead wires. Then, comb-shaped lead wires whose tips are short-circuited are soldered to each of the current collecting electrodes 6, 10, and 11 of this element, and after molding this element with a suitable resin 15, the connecting portions of the comb-shaped lead wires are cut off. Then, lead wire 7,
Form 8 and 9. When the working electrode 2 and the counter electrode 3 are then charged and discharged with a current of 1 mA, the change in the potential of the working electrode 2 with respect to the reference electrode 4 is as shown in Figure 1, and the holding potential is as shown in Figure 5. curve b
And, as shown by curve b in FIG. 7, it is very stable.

以上のように、本発明は、この種の固体電気化
学素子において、従来大略的でしか把握されてい
なかつた充放電時の電位の変化を詳細に検討した
ことにより、この種素子の製造において、簡単か
つ生産性ある方法をとり得るようになつたばかり
でなく、従来考えられなかつた電位の温度変化に
対する安定性ある素子構成を見い出したために、
この種の固体電気化学素子の実用性を著しく高め
た上に、素子の生産における自動化の可能とする
構造にして生産性を著しく高めた、工業上非常に
有益なものである。
As described above, the present invention has been made by conducting a detailed study on the change in potential during charging and discharging, which was only roughly understood in the past, in this type of solid-state electrochemical device. Not only has it become possible to use a simple and productive method, but we have also discovered a device configuration that is stable against temperature changes in potential, which was previously unthinkable.
This type of solid-state electrochemical device has a significantly improved practicality, and also has a structure that enables automation in device production, significantly increasing productivity, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の固体電気化学素子の一つを一
定電流で充放電させたときの基準極に対する動作
極電位の時間変化を示す曲線図、第2図は本発明
素子の一実施例の断面図、第3図は本発明素子の
一実施例の一部断面を含む見取図、第4図は従来
の固体電気化学素子を一定電流で充放電させたと
きの基準極に対する動作極電位の時間変化を示す
曲線図、第5図は対極集電電極の材料を相違させ
た二つの本発明素子において、60℃雰囲気中に素
子を放置したときの動作極電位の時間変化を示す
曲線図、第6図は第1図において動作極と動作極
集電電極との接触が不良である場合の特性を示す
曲線図、第7図は基準極集電電極の材料を相違さ
せた二つの本発明素子において、その周囲温度を
変化させた場合の基準極に対する動作極電位の温
度に対する変化をそれぞれ示した曲線図である。 1,4……固体電解質層、2……動作極、3…
…対極、5……基準極、6,10,11……集電
電極、7,8,9……リード線、12,13,1
4……半田、15……保護コート。
FIG. 1 is a curve diagram showing the time change of the operating electrode potential with respect to the reference electrode when one of the solid-state electrochemical devices of the present invention is charged and discharged with a constant current, and FIG. 3 is a schematic diagram including a partial cross section of an embodiment of the device of the present invention, and FIG. 4 is a diagram showing the time of the operating electrode potential with respect to the reference electrode when a conventional solid electrochemical device is charged and discharged with a constant current. Figure 5 is a curve diagram showing changes in operating electrode potential over time when the elements are left in an atmosphere of 60°C in two devices of the present invention with different materials for the counter current collecting electrode. Figure 6 is a curve diagram showing the characteristics when the contact between the working electrode and the working electrode collector electrode is poor in Figure 1, and Figure 7 shows two devices of the present invention with different materials for the reference electrode collector electrode. FIG. 3 is a curve diagram showing changes in the operating electrode potential relative to the reference electrode with respect to temperature when the ambient temperature is changed. 1, 4...Solid electrolyte layer, 2...Working electrode, 3...
... Counter electrode, 5 ... Reference electrode, 6, 10, 11 ... Current collecting electrode, 7, 8, 9 ... Lead wire, 12, 13, 1
4... Solder, 15... Protective coat.

Claims (1)

【特許請求の範囲】 1 銅イオン固体電解質よりなる固体電解質層を
介して対向し、かつそれぞれが集電電極を有する
動作極と対極と、さらに前記動作極の電位を正確
に検出するために、前記対極とは別に固体電解質
層を介し、前記動作極に対向するようにして設け
られた集電電極を持つ基準電極とを有し、前記動
作極の材料としてカルコゲン化銅と固体電解質と
の混合物を使用するとともに、前記動作極、前記
対極および前記基準極に埋設する前記集電電極に
使用する金属として、すべて同じグループから選
ばれた金属を使用したことを特徴とする固体電気
化学素子。 2 動作極、対極および基準極に埋設する集電電
極に貴金属およびメツキ可能な金属に前記貴金属
をメツキした金属よりなるグループの中から選択
された少なくとも一種の金属を使用した特許請求
の範囲第1項記載の固体電気化学素子。
[Scope of Claims] 1. A working electrode and a counter electrode that face each other with a solid electrolyte layer made of a copper ion solid electrolyte interposed therebetween, each having a current collecting electrode, and furthermore, in order to accurately detect the potential of the working electrode, Separately from the counter electrode, the reference electrode has a current collecting electrode provided opposite to the working electrode via a solid electrolyte layer, and the working electrode is made of a mixture of copper chalcogenide and a solid electrolyte. A solid electrochemical element, characterized in that metals selected from the same group are used for the current collecting electrodes embedded in the working electrode, the counter electrode, and the reference electrode. 2. Claim 1 in which at least one metal selected from the group consisting of noble metals and metals plated with the noble metals on plateable metals is used for the current collecting electrodes embedded in the working electrode, the counter electrode, and the reference electrode. The solid-state electrochemical device described in Section 1.
JP5736380A 1980-04-30 1980-04-30 Solid-state electrochemical element Granted JPS56153577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5736380A JPS56153577A (en) 1980-04-30 1980-04-30 Solid-state electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5736380A JPS56153577A (en) 1980-04-30 1980-04-30 Solid-state electrochemical element

Publications (2)

Publication Number Publication Date
JPS56153577A JPS56153577A (en) 1981-11-27
JPS631675B2 true JPS631675B2 (en) 1988-01-13

Family

ID=13053489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5736380A Granted JPS56153577A (en) 1980-04-30 1980-04-30 Solid-state electrochemical element

Country Status (1)

Country Link
JP (1) JPS56153577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088251A (en) * 2018-11-28 2020-06-04 富士通株式会社 Electronic device and integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088251A (en) * 2018-11-28 2020-06-04 富士通株式会社 Electronic device and integrated circuit

Also Published As

Publication number Publication date
JPS56153577A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
EP0408572B1 (en) Thermogenerator
US2609470A (en) Resistance materials and elements
JPS6431475A (en) Superconducting device and forming method thereof
JPS631675B2 (en)
JPS6490422A (en) Electrochromic element
JPS61227387A (en) Surge absorption element and manufacture thereof
US2642053A (en) Electrode for sparking plugs and their manufacture
DE2539001A1 (en) METHOD OF APPLYING ELECTRODES TO CERAMIC ELECTROCHEMICAL GAS ANALYZERS
JPS6486527A (en) Ccb tape carrier
DE3509014A1 (en) Electrical component having a ceramically produced body and contact assignments of opposite polarity
JP2623881B2 (en) Negative thermistor element
JPS5776450A (en) Oxygen sensor
DE2046144A1 (en) Thermally activated galvanic element
JPS5925462B2 (en) electrochemical switching element
Behrent Fabrication of radio-frequency micropotentiometer resistance elements
JPS633121Y2 (en)
JPS5917147A (en) Manufacture of solid electrolyte oxygen sensor
Murugesan et al. All-solid-state cells based on solid electrolyte systems Cu1− xAgxI–Ag2O–Y, where x= 0.05–0.25; Y= MoO3, B2O3, SeO2, V2O5 and CrO3
JPS55152451A (en) Oxygen sensor with solid electrode
JPH0114301B2 (en)
JPH04364006A (en) High temperature oxide superconducting current lead
JPH05129105A (en) Chip varistor
JPS57171254A (en) Oxygen sensor element
Hsi et al. A new method for measuring low resistivity contacts between silver and YBa2Cu3O7− x superconductor
JPS6136340B2 (en)