JPS6316672B2 - - Google Patents

Info

Publication number
JPS6316672B2
JPS6316672B2 JP10275680A JP10275680A JPS6316672B2 JP S6316672 B2 JPS6316672 B2 JP S6316672B2 JP 10275680 A JP10275680 A JP 10275680A JP 10275680 A JP10275680 A JP 10275680A JP S6316672 B2 JPS6316672 B2 JP S6316672B2
Authority
JP
Japan
Prior art keywords
drying
frequency irradiation
vacuum pump
displacement
drying chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10275680A
Other languages
Japanese (ja)
Other versions
JPS5728977A (en
Inventor
Hidenori Awata
Motoyuki Takashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10275680A priority Critical patent/JPS5728977A/en
Publication of JPS5728977A publication Critical patent/JPS5728977A/en
Publication of JPS6316672B2 publication Critical patent/JPS6316672B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、乾燥室内の水蒸気を真空ポンプによ
り低温トラツプに送つて氷結させる真空凍結乾燥
方法、並びに、その方法に使用する装置に関し、
乾燥に要する時間を大巾に短縮できると共に、被
処理物の均一加熱を容易かつ確実に行えるように
して、殊に食品乾燥を栄養や香りを維持した状態
で能率良く乾燥できるようにする事を目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum freeze-drying method in which water vapor in a drying chamber is sent to a low-temperature trap using a vacuum pump to freeze it, and an apparatus used in the method.
It is possible to greatly shorten the time required for drying, and also to easily and reliably heat the processed material uniformly, and in particular, to efficiently dry food while preserving nutrition and aroma. purpose.

次に、例示図により本発明の実施態様を説明す
る。
Next, embodiments of the present invention will be described with reference to illustrative figures.

第1図に示すように、密閉及び開放自在な乾燥
室1を形成するタンク1aに、低温トラツプ2を
介して真空ポンプ3を連通させ、被処理物を載置
するトレイ4に対して互いちがいに位置する状態
で、輻射加熱及び高周波加熱が可能な加熱板5を
乾燥室1内に並設し、そして、前記低温トラツプ
2において、乾燥室1からの水蒸気を氷結させて
捕捉するための冷却管2aの一端側を、ポンプ2
b及び冷却器2cを備えた供給管2dにより、か
つ、他端側を戻り管2eにより夫々冷媒貯槽2f
に接続して、フロン12やフロン22等の冷媒
を、冷却器2cで、タンク6から供給される液化
天然ガス、液体窒素、液体炭酸等の低温液化ガス
により冷却した後、冷却管2aに循環供給すべく
構成してある。
As shown in FIG. 1, a vacuum pump 3 is communicated with a tank 1a forming a drying chamber 1 that can be closed and opened via a low temperature trap 2, and the vacuum pump 3 is connected to a tank 1a forming a drying chamber 1 that can be opened and closed. Heating plates 5 capable of radiant heating and high-frequency heating are installed in parallel in the drying chamber 1, and a cooling pipe is installed in the low-temperature trap 2 to freeze and capture water vapor from the drying chamber 1. Pump 2 on one end side of 2a.
A refrigerant storage tank 2f is connected to the refrigerant storage tank 2f by a supply pipe 2d equipped with a cooling device b and a cooler 2c, and a return pipe 2e at the other end.
After cooling the refrigerant such as Freon 12 and Freon 22 with low-temperature liquefied gas such as liquefied natural gas, liquid nitrogen, and liquid carbonate supplied from the tank 6 in the cooler 2c, it is circulated through the cooling pipe 2a. It is configured to supply.

前記加熱板5を構成するに、第2図に示すよう
に、金属製の第1及び第2導管部分5a,5bに
わたる状態で形成した金属製加熱管部分5cの多
数を、平面状にかつ隙間の無い状態で並設し、加
熱管部分5cの一端側を、一つおきに第1導管部
分5aあるいは第2導管部分5bに、高周波通過
可能な開口5dにより接続すると共に、他端側
を、高周波通過を阻止する金網5eを張設した開
口により第2導管部分5dあるいは第1導管部分
5aに接続し、そして、加熱管部分5cの夫々
に、被処理物に高周波を照射すべく、テフロンや
ガラス等の高周波通過可能な耐熱性気密材料で蓋
をした開口5fを、均等な高周波照射が可能なよ
うに金網張設側ほど巾が拡がる状態で設け、ま
た、両導管部分5a,5bに各別の高周波照射装
置7を接続すると共に、スチームや熱風等の加熱
流体を発生する装置8を供給管9により第1導管
部分5aにかつ戻り管10により第2導管部分5
bに接続してある。
To construct the heating plate 5, as shown in FIG. 2, a large number of metal heating tube portions 5c, which are formed so as to span the first and second metal conduit portions 5a and 5b, are arranged in a planar shape and with gaps. They are arranged side by side without any heat pipes, one end of each heating tube section 5c is connected to the first conduit section 5a or the second conduit section 5b every other time through an opening 5d that allows high frequency to pass through, and the other end side is It is connected to the second conduit portion 5d or the first conduit portion 5a through an opening covered with a wire mesh 5e that blocks the passage of high frequency waves, and each of the heating tube portions 5c is made of Teflon or the like in order to irradiate the object to be treated with high frequency waves. An opening 5f covered with a heat-resistant airtight material that allows high-frequency waves to pass through, such as glass, is provided in such a way that the width increases toward the side where the wire mesh is installed so as to enable uniform high-frequency irradiation. Another high-frequency irradiation device 7 is connected, and a device 8 for generating a heated fluid such as steam or hot air is connected to the first conduit section 5a by a supply pipe 9 and to the second conduit section 5 by a return pipe 10.
It is connected to b.

前記加熱流体発生装置8及び高周波照射装置7
に対して、第1図に示すように、プログラム式自
動制御器11を付設し、また、前記真空ポンプ3
に対して、前記乾燥室1内の圧力を検出する装置
14、並びに、その検出装置14による検出値を
設定範囲内に維持すべく真空ポンプ3の排気量を
自動調節する制御器15を付設すると共に、前記
低温トラツプ2に対して、前記冷却器2cからの
冷媒の温度を検出する装置16、並びに、その検
出装置16による検出値を設定範囲内に維持すべ
く冷却器2cへの低温液化ガス供給量の制御弁1
7を自動調節する制御器18を付設し、かつ、そ
れら制御器15,18を前記プログラム式自動制
御器11に連係してある。
The heated fluid generating device 8 and the high frequency irradiation device 7
As shown in FIG. 1, a program type automatic controller 11 is attached to the vacuum pump 3.
A device 14 for detecting the pressure inside the drying chamber 1, and a controller 15 for automatically adjusting the displacement of the vacuum pump 3 in order to maintain the detected value by the detection device 14 within a set range are attached. At the same time, for the low temperature trap 2, there is a device 16 for detecting the temperature of the refrigerant from the cooler 2c, and a low temperature liquefied gas is supplied to the cooler 2c in order to maintain the detected value by the detection device 16 within a set range. Supply amount control valve 1
A controller 18 for automatically adjusting the controller 7 is attached, and the controllers 15 and 18 are linked to the programmable automatic controller 11.

尚、真空ポンプ3の排気量を自動調節するに、
メカニカルブースターと油回転式真空ポンプを直
列接続し、メカニカルブースターのオンオフ制御
を自動的に行わせるようにする。
In addition, to automatically adjust the displacement of the vacuum pump 3,
A mechanical booster and an oil rotary vacuum pump are connected in series, and the on/off control of the mechanical booster is automatically performed.

次に、上記装置による真空凍結乾燥方法につい
て説明する。
Next, a vacuum freeze-drying method using the above apparatus will be explained.

凍結した被処理物を前記トレイ4に載置して乾
燥室1内に入れ、乾燥室1を密閉する。そして、
前記低温トラツプ2を作動させて、約−40℃の冷
媒を冷却管2aに供給し、プログラム式自動制御
器11によつて、前記真空ポンプ3を作動させ
て、乾燥室1内の圧力を0.1トールないし0.5トー
ルに維持すると共に、前記高周波照射装置7を停
止させた状態で前記加熱流体発生装置8を作動さ
せ、もつて、凍結した被処理物中の氷を輻射加熱
利用で昇華させて、水蒸気を低温トラツプ2で捕
捉しながら、かつ、プログラム式自動制御器11
により加熱流体発生装置8の出力を適宜調節させ
て、被処理物の昇温をその変質が無いように抑制
しながら、輻射による大量入熱でもつて乾燥を行
なう。そして、設定時間が経過すると、プログラ
ム式自動制御器11によつて、高周波照射装置7
を作動させると共に、それとほぼ同時に、乾燥室
11の圧力が0.1トール以下になるように真空ポ
ンプ3の排気量を増大させ、かつ、加熱流体発生
装置8の出力を被処理物の昇温による変質が生じ
ないように適当に低下させながら、被処理物内部
の氷を高周波照射により昇華させ、さらに、乾燥
が完了するに足る設定時間が経過すると、プログ
ラム式自動制御器11により装置全体を停止させ
て、乾燥処理を完了する。
The frozen object to be processed is placed on the tray 4 and placed in the drying chamber 1, and the drying chamber 1 is sealed. and,
The low-temperature trap 2 is activated to supply refrigerant at about -40°C to the cooling pipe 2a, and the programmable automatic controller 11 is activated to activate the vacuum pump 3 to reduce the pressure inside the drying chamber 1 to 0.1. torr to 0.5 torr, operate the heated fluid generator 8 with the high frequency irradiation device 7 stopped, and then sublimate the ice in the frozen object using radiation heating, While trapping water vapor with the low-temperature trap 2, the programmable automatic controller 11
By appropriately adjusting the output of the heated fluid generator 8, the temperature of the object to be treated is suppressed so as not to change its quality, while drying is performed even with a large amount of heat input by radiation. Then, when the set time has elapsed, the programmable automatic controller 11 controls the high-frequency irradiation device 7.
At the same time, the displacement of the vacuum pump 3 is increased so that the pressure in the drying chamber 11 becomes 0.1 Torr or less, and the output of the heated fluid generator 8 is reduced to prevent deterioration due to the temperature rise of the processed material. The ice inside the object to be treated is sublimated by high-frequency irradiation while being lowered appropriately so as not to cause any to complete the drying process.

上述のように、高周波照射に伴つて、真空ポン
プ3の排気量を増大させて、乾燥室1内の水蒸気
や空気等を迅速に排出させ、もつて、水蒸気や空
気がイオン化する事に起因して、高周波照射によ
るグロー放電が顕著になる事を抑制して、グロー
放電に伴う不均一な加熱による被処理物の部分的
変質を防止する。
As mentioned above, along with high-frequency irradiation, the displacement of the vacuum pump 3 is increased to quickly exhaust water vapor and air inside the drying chamber 1, resulting in ionization of the water vapor and air. This suppresses glow discharge caused by high-frequency irradiation from becoming noticeable and prevents partial deterioration of the object to be processed due to uneven heating associated with glow discharge.

尚、本発明は、各種食品を主たる乾燥対象物と
するが、その他、例えば医薬品等、各種のものを
対象にできる。
Although the present invention mainly targets various foods, it can also target various other products, such as pharmaceuticals.

前記真空ポンプ3の排気量を増大するに、第3
図に示すように、高周波照射に伴う乾燥室内での
グロー放電を検出する装置12、並びに、その検
出装置12からの情報に基いてグロー放電を抑制
すべく前記真空ポンプ3の排気量を増大する自動
制御器13を設けて、高周波照射による乾燥にお
いて、前記グロー放電検出装置12によつて、高
周波照射エネルギーの10%程度以上がグロー放電
している事が検出されると、前記自動制御器13
により真空ポンプ3の排気量を増大させてもよ
く、また、高周波照射開始に伴つてあるいは前記
グロー放電検出装置12を利用して、人為的に調
節操作してもよい。
In order to increase the displacement of the vacuum pump 3, a third
As shown in the figure, a device 12 detects glow discharge in the drying chamber due to high-frequency irradiation, and based on information from the detection device 12, the displacement of the vacuum pump 3 is increased in order to suppress glow discharge. An automatic controller 13 is provided, and when it is detected by the glow discharge detection device 12 that about 10% or more of the high frequency irradiation energy is being glow discharged during drying by high frequency irradiation, the automatic controller 13
The displacement of the vacuum pump 3 may be increased by this, or the adjustment may be performed artificially with the start of high-frequency irradiation or by using the glow discharge detection device 12.

前記加熱流体発生装置8に代えて各種の輻射加
熱手段が利用でき、それらを輻射加熱装置8と総
称し、また、前記高周波照射装置7の具体的構成
も各種変更可能である。また、高周波照射を開始
すると輻射加熱を停止するように、操作したりあ
るいは制御機構を構成してもよい。
Various types of radiant heating means can be used in place of the heated fluid generating device 8, and these are collectively referred to as the radiant heating device 8, and the specific configuration of the high frequency irradiation device 7 can also be modified in various ways. Further, an operation or a control mechanism may be configured so that the radiant heating is stopped when the high-frequency irradiation is started.

グロー放電を抑制するに、前記低温トラツプ2
における冷却器2cからの冷媒の温度を低下させ
る手段、並びに、高周波照射出力を前記検出装置
12からの情報に基いて低下させる手段の一方あ
るいは両方を併用してもよい。
To suppress glow discharge, the low temperature trap 2
One or both of the means for lowering the temperature of the refrigerant from the cooler 2c and the means for lowering the high frequency irradiation output based on information from the detection device 12 may be used in combination.

以上要するに、本第1発明は、冒記方法におい
て、前記乾燥室1内の被処理物に対して、乾燥初
期において輻射加熱のみをかつその後で高周波照
射を行うと共に、前記高周波照射の開始とほぼ同
時に、あるいは、高周波照射に伴うグロー放電
を、乾燥室1に備えられた検出装置12により検
出して、グロー放電を抑制するように前記真空ポ
ンプ3の排気量を増大させる事を特徴とする。
In summary, the first invention provides the method described above, in which the object to be processed in the drying chamber 1 is subjected to only radiant heating at the initial stage of drying and then irradiated with high frequency. At the same time, or alternatively, glow discharge accompanying high-frequency irradiation is detected by the detection device 12 provided in the drying chamber 1, and the displacement of the vacuum pump 3 is increased to suppress the glow discharge.

すなわち、乾燥初期には大量の熱を与えやすい
輻射加熱を利用し、被処理物の表面が乾燥して熱
伝導度が低下すると、内部の凍結部分に効率的に
熱を付与できる高周波照射を利用する事によつ
て、乾燥に要する時間を大巾に、例えば単に輻射
加熱のみを利用する場合に比して30ないし50%
も、短縮でき、極めて能率良く乾燥を行えるよう
になつた。
In other words, in the early stages of drying, we use radiation heating, which can easily apply a large amount of heat, and when the surface of the object to be treated dries and its thermal conductivity decreases, we use high-frequency irradiation, which can efficiently apply heat to the frozen parts inside. By doing so, the time required for drying can be significantly reduced, for example by 30 to 50% compared to using only radiant heating.
The drying time can now be shortened and drying can be carried out extremely efficiently.

また、単純に高周波を照射すると加熱が不均一
になつて、部分的な変質や変色を生じやすく、こ
の事は、殊に食品を栄養及び香り等が損われない
ように乾燥する場合には致命的な欠点になるが、
このように、加熱が不均一になりやすい原因を追
究したところ、乾燥室1内において水蒸気や空気
等のガスがイオン化してグロー放電が生じ、高周
波照射エネルギーの10%程度以上がグロー放電す
ると、乾燥物の変質や変色において実害が生じる
事を見出したのであり、この知見に基いて、上述
のように、真空ポンプ3の排気量を増大して、乾
燥室1内の水蒸気や空気の排出を迅速に行わせる
事によつて、変質や変色を抑制した良好な乾燥を
容易確実に行えるに至つたのである。
In addition, simply irradiating high frequency waves will cause uneven heating, which tends to cause local deterioration and discoloration, which is especially fatal when drying food to prevent loss of nutrients and aroma. Although it is a drawback,
In this way, we investigated the causes of uneven heating and found that gases such as water vapor and air are ionized in the drying chamber 1 and glow discharge occurs, and when about 10% or more of the high-frequency irradiation energy is used for glow discharge. It was discovered that actual damage occurs due to deterioration and discoloration of dried materials.Based on this knowledge, as mentioned above, the displacement of the vacuum pump 3 was increased to reduce the discharge of water vapor and air in the drying chamber 1. By performing this process quickly, it has become possible to easily and reliably achieve good drying that suppresses deterioration and discoloration.

ちなみに、真空ポンプ3の排気量を乾燥初期か
ら低くしておいて、乾燥室1の圧力を0.1トール
以下に維持する事も考えられるが、そのようにす
ると、被処理物の熱伝導度が低下し、乾燥を能率
良く行えるようにしようとする目的が損われる
が、上述のように、高周波照射開始とほぼ同時あ
るいはその後必要に応じて真空ポンプ3の排気量
を増大すると、乾燥速度への悪影響が実質上無い
状態でグロー放電を抑制でき、全体として、良好
な乾燥を容易確実にかつ迅速に行え、殊に、食品
の乾燥を栄養や香りを損わないでかつ能率良く行
わせられるようになつた。
By the way, it is possible to keep the pressure in the drying chamber 1 below 0.1 Torr by lowering the displacement of the vacuum pump 3 from the beginning of drying, but if you do that, the thermal conductivity of the material to be processed will decrease. However, as mentioned above, if the displacement of the vacuum pump 3 is increased at the same time as the start of high-frequency irradiation or as necessary thereafter, it will have a negative effect on the drying speed. Glow discharge can be suppressed with virtually no oxidation, and as a whole, good drying can be performed easily, reliably, and quickly, and in particular, food can be dried efficiently without loss of nutrition and flavor. Summer.

また、本第2発明による真空凍結乾燥装置は、
乾燥室1に、被処理物に対する輻射加熱装置8及
び高周波照射装置7を設け、前記乾燥室1の水蒸
気を氷結させるべく低温トラツプ2に送る真空ポ
ンプ3を排気量変更設定自在に設け、乾燥初期に
おいて前記輻射加熱装置8を作動させると共に、
乾燥開始後設定時間経過すると、前記高周波照射
装置7を作動させ、かつ、前記真空ポンプ3の排
気量を増大させるべく構成した自動制御器11を
設けてある事を特徴とする。
Further, the vacuum freeze-drying apparatus according to the second invention includes:
The drying chamber 1 is equipped with a radiant heating device 8 and a high-frequency irradiation device 7 for the object to be processed, and a vacuum pump 3 that sends water vapor in the drying chamber 1 to a low-temperature trap 2 in order to freeze it is provided with a variable displacement setting. While operating the radiant heating device 8,
The apparatus is characterized in that an automatic controller 11 is provided which is configured to operate the high frequency irradiation device 7 and increase the displacement of the vacuum pump 3 when a set time has elapsed after the start of drying.

すなわち、前記自動制御器11によつて、優秀
な本第1発明による方法を確実に行わせる事がで
き、その上、高周波照射とほぼ同時に真空ポンプ
3の排気量を増大させる構成を採用する事によつ
て、制御構成を比較的簡単にでき、機能面及び構
成面で有利な装置を提供できた。
That is, the automatic controller 11 allows the excellent method according to the first invention to be carried out reliably, and furthermore, a configuration is adopted in which the displacement of the vacuum pump 3 is increased almost simultaneously with high-frequency irradiation. As a result, the control structure can be made relatively simple, and a device that is advantageous in terms of function and structure can be provided.

また、本第3発明による真空凍結乾燥装置は、
乾燥室1に、被処理物に対する輻射加熱装置8及
び高周波照射装置7、並びに、高周波照射に伴う
グロー放電を検出する装置12を設け、前記乾燥
室1の水蒸気を氷結させるべく低温トラツプ2に
送る真空ポンプ3を、排気量変更設定自在に設
け、乾燥初期において前記輻射加熱装置8を作動
させると共に、乾燥開始後設定時間経過すると、
前記高周波照射装置7を作動させるべく構成した
自動制御器11を設け、前記検出装置12からの
情報に基いてグロー放電を抑制すべく前記真空ポ
ンプ3の排気量を増大させる自動制御器13を設
けてある事を特徴とする。
Moreover, the vacuum freeze-drying apparatus according to the third invention includes:
The drying chamber 1 is provided with a radiant heating device 8 and a high-frequency irradiation device 7 for the object to be treated, as well as a device 12 for detecting glow discharge accompanying the high-frequency irradiation, and the water vapor in the drying chamber 1 is sent to a low-temperature trap 2 to freeze it. A vacuum pump 3 is provided whose displacement can be set freely, and the radiant heating device 8 is operated at the beginning of drying, and when a set time has elapsed after the start of drying,
An automatic controller 11 configured to operate the high frequency irradiation device 7 is provided, and an automatic controller 13 is provided that increases the displacement of the vacuum pump 3 to suppress glow discharge based on information from the detection device 12. It is characterized by certain things.

すなわち、前述本第2発明と同様、前記両自動
制御器11,13によつて、優秀な本第1発明に
よる方法を確実に行わせる事ができ、しかも、実
際に設定以上のグロー放電が生じた時に真空ポン
プ3の排気量を増大させるから、たとえ輻射加熱
と高周波照射を同時に行わせる場合であつても、
本第1発明において詳述したような圧力低下によ
る被処理物の熱伝導度低下を極力抑制した状態で
能率良く乾燥を行え、機能面で極めて優れた装置
を提供できるようになつた。
That is, as in the second aspect of the present invention, the automatic controllers 11 and 13 can reliably perform the excellent method according to the first aspect of the present invention, and moreover, glow discharge exceeding the setting actually occurs. Even if radiation heating and high-frequency irradiation are performed at the same time, the displacement of the vacuum pump 3 increases when
It has now become possible to provide an apparatus that is highly functional and can perform efficient drying while suppressing as much as possible the reduction in thermal conductivity of the processed material due to the pressure drop as described in detail in the first aspect of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る真空凍結乾燥方法、並び
に、その方法に使用する装置の実施の態様を例示
し、第1図はフローシート、第2図は加熱板を示
す概略説明図、第3図は別の実施態様を示すフロ
ーシートである。 1……乾燥室、2……低温トラツプ、3……真
空ポンプ、7……高周波照射装置、8……輻射加
熱装置、11……自動制御器、12……グロー放
電検出装置、13……自動制御器。
The drawings illustrate embodiments of the vacuum freeze-drying method and the apparatus used in the method according to the present invention, FIG. 1 is a flow sheet, FIG. 2 is a schematic explanatory diagram showing a heating plate, and FIG. 3 is a schematic explanatory diagram showing a heating plate. 3 is a flow sheet showing another embodiment. 1...Drying room, 2...Low temperature trap, 3...Vacuum pump, 7...High frequency irradiation device, 8...Radiation heating device, 11...Automatic controller, 12...Glow discharge detection device, 13... Automatic controller.

Claims (1)

【特許請求の範囲】 1 乾燥室1内の水蒸気を真空ポンプ3により低
温トラツプ2に送つて氷結させる真空凍結乾燥方
法であつて、前記乾燥室1内の被処理物に対し
て、乾燥初期において輻射加熱のみをかつその後
で高周波照射を行うと共に、前記高周波照射の開
始とほぼ同時に、あるいは、高周波照射に伴うグ
ロー放電を、乾燥室1に備えられた検出装置12
により検出して、グロー放電を抑制するように前
記真空ポンプ3の排気量を増大させる事を特徴と
する真空凍結乾燥方法。 2 乾燥室1に、被処理物に対する輻射加熱装置
8及び高周波照射装置7を設け、前記乾燥室1の
水蒸気を氷結させるべく低温トラツプ2に送る真
空ポンプ3を、排気量変更設定自在に設け、乾燥
初期において前記輻射加熱装置8を作動させると
共に、乾燥開始後設定時間経過すると、前記高周
波照射装置7を作動させ、かつ、前記真空ポンプ
3の排気量を増大させるべく構成した自動制御器
11を設けてある事を特徴とする真空凍結乾燥装
置。 3 乾燥室1に、被処理物に対する輻射加熱装置
8及び高周波照射装置7、並びに、高周波照射に
伴うグロー放電を検出する装置12を設け、前記
乾燥室1の水蒸気を氷結させるべく低温トラツプ
2に送る真空ポンプ3を、排気量変更設定自在に
設け、乾燥初期において前記輻加熱装置8を作動
させると共に、乾燥開始後設定時間経過すると、
前記高周波照射装置7を作動させるべく構成した
自動制御器11を設け、前記検出装置12からの
情報に基いてグロー放電を抑制すべく前記真空ポ
ンプ3の排気量を増大させる自動制御器13を設
けてある事を特徴とする真空凍結乾燥装置。
[Claims] 1. A vacuum freeze-drying method in which water vapor in a drying chamber 1 is sent to a low-temperature trap 2 by a vacuum pump 3 to freeze it, which A detection device 12 provided in the drying chamber 1 performs only radiant heating and then high-frequency irradiation, and detects glow discharge accompanying the high-frequency irradiation almost simultaneously with the start of the high-frequency irradiation.
A vacuum freeze-drying method characterized in that the displacement of the vacuum pump 3 is increased to suppress glow discharge. 2. The drying chamber 1 is provided with a radiant heating device 8 and a high-frequency irradiation device 7 for the object to be processed, and a vacuum pump 3 is provided that sends the water vapor in the drying chamber 1 to the low temperature trap 2 in order to freeze it, and the displacement can be freely set. An automatic controller 11 configured to operate the radiant heating device 8 at the beginning of drying, and to operate the high frequency irradiation device 7 and increase the displacement of the vacuum pump 3 when a set time has elapsed after the start of drying. A vacuum freeze-drying device characterized by: 3. The drying chamber 1 is equipped with a radiant heating device 8 and a high-frequency irradiation device 7 for the workpiece, as well as a device 12 for detecting glow discharge accompanying high-frequency irradiation, and a low-temperature trap 2 is installed in order to freeze water vapor in the drying chamber 1. A feeding vacuum pump 3 is provided whose displacement can be set freely, and the radiation heating device 8 is operated in the initial stage of drying, and when a set time has elapsed after the start of drying,
An automatic controller 11 configured to operate the high frequency irradiation device 7 is provided, and an automatic controller 13 is provided that increases the displacement of the vacuum pump 3 to suppress glow discharge based on information from the detection device 12. A vacuum freeze-drying device characterized by:
JP10275680A 1980-07-25 1980-07-25 Vacuum refrigeration drying and apparatus used therefor Granted JPS5728977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10275680A JPS5728977A (en) 1980-07-25 1980-07-25 Vacuum refrigeration drying and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10275680A JPS5728977A (en) 1980-07-25 1980-07-25 Vacuum refrigeration drying and apparatus used therefor

Publications (2)

Publication Number Publication Date
JPS5728977A JPS5728977A (en) 1982-02-16
JPS6316672B2 true JPS6316672B2 (en) 1988-04-11

Family

ID=14336043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10275680A Granted JPS5728977A (en) 1980-07-25 1980-07-25 Vacuum refrigeration drying and apparatus used therefor

Country Status (1)

Country Link
JP (1) JPS5728977A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3750847D1 (en) * 1987-07-29 1995-01-19 Santasalo Sohlberg Finn Aqua Freeze-drying facility.
WO2006077656A1 (en) * 2005-01-21 2006-07-27 Shunichi Yagi Method of low-temperature drying of substance under vacuum and apparatus therefor

Also Published As

Publication number Publication date
JPS5728977A (en) 1982-02-16

Similar Documents

Publication Publication Date Title
US3908029A (en) Method for drying pasta products with microwave heating
JP5832031B2 (en) Method and apparatus for drying ingredients
DK179480B1 (en) Dryer and method of drying
Bazyma et al. The investigation of low temperature vacuum drying processes of agricultural materials
CN106839661B (en) Microwave vacuum freeze drying equipment and material drying method
US9060523B1 (en) Thermal process for food enhancement
DK163136B (en) Apparatus for the manufacture of quick-cooking rice and vegetables
JPH06101999B2 (en) Vacuum expansion and drying device
US2318027A (en) Process for dehydrating watercontaining materials
WO2019085736A1 (en) Food vacuum freeze-drying and sterilization method and device
US3299525A (en) Carrier gas sublimation
EP1441191B1 (en) Method and apparatus for drying books and similar paper-based material
JPS6316672B2 (en)
JP2022042523A (en) Drying method
JPS635068B2 (en)
JPS635069B2 (en)
US3304617A (en) Method and apparatus for freeze-drying foods
RU2302740C1 (en) Plant material drying apparatus
US3466756A (en) Method for dehydrating materials
JPH0684878A (en) Evaporation molecular activation type vacuum drying method
RU2300893C1 (en) Method for drying of plant materials
US1166819A (en) Method of treating wood and other porous materials.
KR101194017B1 (en) Apparatus and method for thawing and drying of frozen marine products
US4570357A (en) Heat-treating process and its apparatus in reducing air pressure within a chamber
RU2238490C2 (en) Method for drying vegetable materials