JPH0684878A - Evaporation molecular activation type vacuum drying method - Google Patents

Evaporation molecular activation type vacuum drying method

Info

Publication number
JPH0684878A
JPH0684878A JP14750492A JP14750492A JPH0684878A JP H0684878 A JPH0684878 A JP H0684878A JP 14750492 A JP14750492 A JP 14750492A JP 14750492 A JP14750492 A JP 14750492A JP H0684878 A JPH0684878 A JP H0684878A
Authority
JP
Japan
Prior art keywords
work
drying
vacuum
gas
closed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14750492A
Other languages
Japanese (ja)
Inventor
Kanji Harima
▲寛▼爾 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATO SHINKU KIKAI KOGYO KK
Original Assignee
SATO SHINKU KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATO SHINKU KIKAI KOGYO KK filed Critical SATO SHINKU KIKAI KOGYO KK
Priority to JP14750492A priority Critical patent/JPH0684878A/en
Publication of JPH0684878A publication Critical patent/JPH0684878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To reduce a drying time of a work in water soluble cleaning while ensuring drying state at high degree by drying the work by repeating several sets of an evacuation process of an airtightly closed container and a heating process for filling an inside of tone airtightly closed container with heated gas after completion of the evacuation process. CONSTITUTION:A work W is loaded inside an airtightly closed container which is enclosed with a stand 5 and a cover container 6. The work W is dried by repeating several sets of an evacuation process for evacuating an inside of the airtightly closed container and a heating process for filling an inside of the airtightly closed container with heated gas after completion of the evacuation process. The processes are performed in order of an operation a heating gas heat exchanger 14, opening and closing of a gas supplying electormagnetic valve 15, opening and closing of a gas leak electromagnetic valve 9, operation of a vacuum pump 16 and control of opening and closing timing of a vacuum pump electromagnetic valve 17. Thereby, the work receives heat directly from heated gas and a temperature of the work is raised and evaporation of water is promoted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体,電気部品,基
板,超精密部品等の水溶性洗浄における蒸発分子活性式
真空乾燥方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporative molecule activated vacuum drying method for water-soluble cleaning of semiconductors, electric parts, substrates, ultraprecision parts and the like.

【0002】[0002]

【従来の技術】半導体,電気部品,基板,超精密部品等
の洗浄溶剤として使用されているフロン,トリクロルエ
タン等が使用禁止になることに伴い、水溶性洗浄が主流
を占めつつある。しかし、水溶性洗浄では、乾燥が大き
な問題で、現在も水溶性洗浄への移行が遅々として進ん
でいない。従来の乾燥方法としては、(1)ワークを高
速で振ることにより水分を振り切ってワークを乾燥させ
るスピン乾燥、(2)空気を吹き付けることにより水分
を飛ばしてワークを乾燥させるエアーナイフ乾燥、
(3)温風を吹き付けることによりワークを乾燥させる
温風乾燥、(4)雰囲気を真空にして蒸発を促進させる
真空乾燥、(5)反射熱,輻射熱による加熱を併用する
加熱型真空乾燥の各方式が知られている。
2. Description of the Related Art With the prohibition of the use of fluorocarbons, trichloroethane, etc., which are used as cleaning solvents for semiconductors, electric parts, substrates, ultra-precision parts, etc., water-soluble cleaning is becoming the mainstream. However, with water-soluble cleaning, drying is a major problem, and the transition to water-soluble cleaning has not progressed slowly even now. Conventional drying methods include (1) spin drying in which the water is shaken off at high speed to dry the work, and (2) air knife drying in which air is blown away to dry the work.
(3) Warm air drying to dry the work by blowing warm air, (4) Vacuum drying to vacuum the atmosphere to promote evaporation, and (5) Heating-type vacuum drying that uses heating by reflected heat and radiant heat in combination. The scheme is known.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の各乾
燥方法の中で、(4)の真空乾燥,(5)の加熱型真空
乾燥は、乾燥状態を高度に確保できる点から良いとされ
ているものの、(4)の真空乾燥においては、ワークか
ら水分が蒸発する際に蒸発潜熱が奪はれてワークが冷や
され、乾燥し難くなり、乾燥に時間がかかる。
However, among the above-mentioned drying methods, the vacuum drying of (4) and the heating type vacuum drying of (5) are considered to be good in that the dry state can be ensured at a high level. However, in the vacuum drying of (4), when the water is evaporated from the work, the latent heat of evaporation is removed and the work is cooled, which makes it difficult to dry, and it takes time to dry.

【0004】また、(5)の加熱型真空乾燥において
は、ワークが冷えないように、ワークを加温しながら真
空にすることにより、一層の蒸発が促進される。しか
し、熱を伝える媒体としての気体がないので、熱伝播手
段として反射熱,輻射熱のみしか利用できず、そのた
め、ワークに対する熱伝達効率が悪く、また、ワークの
照射部分における温度上昇に比して非照射部分における
温度上昇は少なく、依然としてワークの温度が低く、乾
燥し難く、乾燥に時間がかかる。
Further, in the heating-type vacuum drying of (5), evaporation is further promoted by applying vacuum while heating the work so as not to cool the work. However, since there is no gas as a medium for transmitting heat, only reflected heat and radiant heat can be used as heat transfer means, so the heat transfer efficiency to the work is poor, and the temperature rise in the irradiated portion of the work is higher than that of the work. The temperature rise in the non-irradiated portion is small, the temperature of the work is still low, it is difficult to dry, and it takes time to dry.

【0005】要するに、両真空乾燥では、ともに、乾燥
に時間がかかり、著しい時には乾燥しなかったり或いは
乾燥染みが発生することがある。特に、細い間隔のある
ワーク,注射針等の極細管の内部,薄い金属の板の重な
った隙間におけるワークの乾燥が不充分となる。
In short, both of the vacuum drying processes take a long time to dry, and in some cases, drying may occur or dry stains may occur. In particular, the work is not sufficiently dried in the work with a narrow interval, in the ultrafine tube such as the injection needle, and in the gap where the thin metal plates are overlapped.

【0006】本発明は、上述の問題点を解決するために
なされたもので、その目的は、乾燥状態を高度に確保し
つつ、水溶性洗浄におけるワークの乾燥時間を短くする
ことができる蒸発分子活性式真空乾燥方法を提供するこ
とである。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to evaporate molecules capable of shortening the drying time of a work in water-soluble cleaning while ensuring a high degree of dryness. It is to provide an active vacuum drying method.

【0007】[0007]

【課題を解決するための手段】本発明は、密閉容器内を
真空にする真空工程と、真空工程の完了後加熱された気
体を密閉容器内に充満する加熱工程とを1セットとし
て、複数セット繰り返してワークを乾燥させることを特
徴とする。
SUMMARY OF THE INVENTION According to the present invention, a plurality of sets are provided, each of which includes a vacuum process for evacuating the closed container and a heating process for filling the closed container with heated gas after completion of the vacuum process. The feature is that the work is repeatedly dried.

【0008】[0008]

【作用】本発明においては、密閉容器内を真空にする真
空工程と、真空工程の完了後加熱された気体を密閉容器
内に充満する加熱工程とを1セットとして、複数セット
繰り返してワークを乾燥させる。
In the present invention, a vacuum process for vacuuming the inside of the closed container and a heating process for filling the closed container with heated gas after the completion of the vacuum process are set as one set, and a plurality of sets are repeated to dry the work. Let

【0009】真空工程では、雰囲気を真空にすると、沸
点が下がり、水分の蒸発が促進し、ワークの隙間や細管
(ワーク)の内部から水分が浸出してくるが、蒸発潜熱
を奪はれてワークが冷え、水分の蒸発速度はどんどん下
がっていく。
In the vacuum process, when the atmosphere is evacuated, the boiling point is lowered, the evaporation of water is promoted, and the water is leached from the gap of the work and the inside of the thin tube (work), but the latent heat of evaporation is removed. The work becomes colder, and the evaporation rate of water decreases steadily.

【0010】そして、加熱工程では、加熱された気体が
密閉容器に充満されると、加熱された気体分子は、自由
な分子運動により、ワークや水分子に衝突し、密閉容器
内のワークの温度が上昇し、水分の蒸発が促進され、ワ
ークが乾燥される。ワークの隙間や細管(ワーク)の内
部から浸出した水分も蒸発される。
In the heating step, when the heated gas is filled in the closed container, the heated gas molecules collide with the work and water molecules due to free molecular motion, and the temperature of the work in the closed container is increased. Rise, the evaporation of water is promoted, and the work is dried. Moisture that has leached from the gap between the work and the inside of the thin tube (work) is also evaporated.

【0011】即ち、加熱された気体分子は、細管(ワー
ク)の内部やワークの隙間に入り込んで水分子と熱交換
をしたり、水分子との衝突で水分子を細管(ワーク)の
内部やワークの隙間から他の場所に追いやったりし、そ
の上、ワークの温度上昇も速まり、乾燥が促進される。
That is, the heated gas molecules enter the inside of the thin tube (work) or the gap between the workpieces to exchange heat with the water molecules, or collide with the water molecules to transfer the water molecules inside the thin tube (work). It may be driven from the gap of the work to another place, and in addition, the temperature of the work rises faster and the drying is promoted.

【0012】そして、加熱工程の後真空工程に再び戻る
が、この真空工程が必要な理由は、以下による。上述の
ように、加熱工程で、温度が高い状態下での蒸発が促進
されるが、特に、細管(ワーク)やワークの隙間の部分
では、気体分子により水分子の運動が妨げられ、飽和状
態またはそれに近い状態に至ると考えられる。
Then, after the heating process, the process returns to the vacuum process again. The reason why this vacuum process is necessary is as follows. As described above, in the heating step, evaporation under high temperature conditions is promoted, but especially in the narrow tube (work) or in the gap between the works, the movement of water molecules is hindered by the gas molecules and the saturated state is reached. Or it is thought to reach a state close to it.

【0013】勿論、水分子はその分子運動により、気体
中に拡散はするものの、その拡散速度は遅くなってく
る。再び、雰囲気を真空に排気することにより、飽和蒸
気圧が除かれ、加熱されたワークの温度は、真空排気中
には既に、その気圧下での沸点以上の温度(1〜1.5
倍)になっているので、速やかに乾燥が進む。同時に、
前回残されたワークの水分も加熱気体の流出と同時にワ
ークの表に浸出してくる。
Of course, the water molecules diffuse into the gas due to their molecular motion, but the diffusion speed becomes slower. By evacuating the atmosphere to vacuum again, the saturated vapor pressure is removed, and the temperature of the heated work is already higher than the boiling point (1 to 1.5) under the atmospheric pressure during evacuation.
Since it is doubled, the drying progresses quickly. at the same time,
Moisture of the work left behind last time also leaches into the work surface at the same time as the heated gas flows out.

【0014】[0014]

【実施例】以下、図面により本発明の実施例について説
明する。図1,図2は本発明の実施例に係わる蒸発分子
活性式真空乾燥方法を適用した乾燥システムを示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 show a drying system to which an evaporative molecule activated vacuum drying method according to an embodiment of the present invention is applied.

【0015】図において、符号1は所定の高さのコンベ
ヤラインで、このコンベヤライン1の上流側には、第1
乾燥装置として、エアーナイフ乾燥装置2が配置され、
下流側には第2乾燥装置として、蒸発分子活性式真空乾
燥装置3が配置されている。
In the figure, reference numeral 1 is a conveyor line having a predetermined height, and the upstream side of the conveyor line 1 has a first
An air knife dryer 2 is arranged as a dryer,
On the downstream side, an evaporative molecule activated vacuum drying device 3 is arranged as a second drying device.

【0016】エアーナイフ乾燥装置2は、上部にエアー
ノズル4Aを、下部にエアーノズル4Bを有している。
蒸発分子活性式真空乾燥装置3は、ワークWを乗せる置
台5を有し、この置台5の上方に、下方を開口した被せ
容器6が、支持体7に設けたシリンダ8により昇降自在
に設けられている。
The air knife drying device 2 has an air nozzle 4A in the upper part and an air nozzle 4B in the lower part.
The evaporative molecule activation type vacuum drying device 3 has a mounting table 5 on which a work W is placed, and a covering container 6 having an opening downward is provided above the mounting table 5 so as to be vertically movable by a cylinder 8 provided on a support 7. ing.

【0017】被せ容器6の上面には、気体リーク用電磁
弁9が装着され、被せ容器6の内部には、複数の赤外線
ヒータ10が装着されている。各赤外線ヒータ10には
反射板11が取り付けられている。また、被せ容器6の
側面には、真空計12及び圧力計13が取り付けられて
いる。
A gas leak electromagnetic valve 9 is mounted on the upper surface of the covering container 6, and a plurality of infrared heaters 10 are mounted inside the covering container 6. A reflection plate 11 is attached to each infrared heater 10. A vacuum gauge 12 and a pressure gauge 13 are attached to the side surface of the covering container 6.

【0018】また、置台5の下方には加熱気体用熱交換
器14が配置され、この加熱気体用熱交換器14の側面
には気体入口14Aが形成され、上面には気体供給用電
磁弁15が装着されている。
A heating gas heat exchanger 14 is disposed below the table 5, a gas inlet 14A is formed on a side surface of the heating gas heat exchanger 14, and a gas supply solenoid valve 15 is provided on an upper surface. Is installed.

【0019】16は真空ポンプで、その上面に排気孔1
6A及び吸入孔16Bを有し、真空ポンプ16の真空ポ
ンプ用電磁弁17は、置台5の下面に装着されている。
次に、本実施例の作用を説明する。
A vacuum pump 16 has an exhaust hole 1 on its upper surface.
The vacuum pump electromagnetic valve 17 of the vacuum pump 16 is mounted on the lower surface of the stand 5.
Next, the operation of this embodiment will be described.

【0020】先ず、ワークWがコンベヤライン1によ
り、エアーナイフ乾燥装置2に搬送され、エアーナイフ
乾燥装置2では、エアーノズル4A,4Bにより、空気
がワークWに吹き付けられ、水分が飛ばされる。なお、
ワークWとしては、例えば、半導体,電器部品,基板や
その他超精密部品が挙げられる。
First, the work W is conveyed to the air knife drying device 2 by the conveyor line 1, and in the air knife drying device 2, the air is blown to the work W by the air nozzles 4A and 4B, and the water content is removed. In addition,
Examples of the work W include semiconductors, electric parts, substrates, and other ultra-precision parts.

【0021】次いで、ワークWは、コンベヤライン1上
を滑り、置台5上に搬送され、この置台5上に被せ容器
6が下降する。これにより、ワークWは置台5と被せ容
器6で囲まれた密閉容器内に収容される。
Next, the work W slides on the conveyor line 1 and is conveyed to the placing table 5, and the cover container 6 descends on the placing table 5. As a result, the work W is housed in the closed container surrounded by the table 5 and the cover container 6.

【0022】しかして、密閉容器内を真空にする真空工
程と、真空工程の完了後加熱された気体を密閉容器内に
充満する加熱工程とを1セットとして、複数セット繰り
返してワークWが乾燥される。その順序は、タイマーに
より、加熱気体用熱交換器14の作動,気体供給用電磁
弁15の開閉,気体リーク用電磁弁9の開閉,真空ポン
プ15の作動,真空ポンプ用電磁弁17の開閉のタイミ
ングを制御することにより行なわれる。
Thus, the work W is dried by repeating a plurality of sets with one set consisting of a vacuum process for evacuating the closed container and a heating process for filling the closed container with heated gas after completion of the vacuum process. It The order of the operation of the heat exchanger 14 for heating gas, the opening / closing of the gas supply solenoid valve 15, the opening / closing of the gas leak solenoid valve 9, the operation of the vacuum pump 15, and the opening / closing of the vacuum pump solenoid valve 17 are controlled by a timer. This is done by controlling the timing.

【0023】真空工程は、真空ポンプ用電磁弁17を開
いて真空ポンプ15の運転動作により密閉容器内を吸引
してなり、密閉容器内が1mmHg〜200mmHgの
真空になる。加熱工程は、加熱気体用熱交換器14から
1気圧以上の加熱された窒素(気体)を気体供給用電磁
弁15を介して密閉容器内に供給してなり、ワークWが
40℃〜150℃に加熱される。なお、窒素の圧力は、
気体リーク用電磁弁9で調整される。
In the vacuum process, the electromagnetic valve 17 for the vacuum pump is opened to suck the inside of the closed container by the operation of the vacuum pump 15, so that the inside of the closed container becomes a vacuum of 1 mmHg to 200 mmHg. In the heating step, heated nitrogen (gas) having a pressure of 1 atm or more is supplied from the heat exchanger 14 for heated gas into the closed container through the electromagnetic valve 15 for gas supply, and the work W is 40 ° C. to 150 ° C. To be heated. The pressure of nitrogen is
It is adjusted by the gas leak solenoid valve 9.

【0024】真空工程では、真空ポンプ16により、雰
囲気を真空にすると、沸点が下がり(例えば100mm
Hgでは約52℃,30mmHgでは約30℃)、水分
の蒸発が促進され、ワークWの隙間や細管(ワークW)
の内部から水分が浸出してくるが、蒸発潜熱を奪はれて
ワークWが冷え、雰囲気は飽和状態に至り、水分の蒸発
が起こらなくなる。なお、赤外線ヒータ10により副射
熱がワークW上に照射されているが、密閉容器内は真空
になっているので、雰囲気の温度上昇は不充分である。
しかも、ワークの照射部分における温度上昇に比して非
照射部分における温度上昇は少なくっている。
In the vacuum process, when the atmosphere is evacuated by the vacuum pump 16, the boiling point is lowered (for example, 100 mm).
Hg is about 52 ℃, 30mmHg is about 30 ℃), evaporation of water is promoted, and the gap of work W and thin tube (work W)
Although water leaks from the inside of the work, the latent heat of evaporation is removed and the work W is cooled, the atmosphere reaches a saturated state, and the water does not evaporate. The infrared heater 10 irradiates the work W with secondary heat, but since the inside of the closed container is in a vacuum, the temperature rise of the atmosphere is insufficient.
Moreover, the temperature rise in the non-irradiated part of the work is smaller than that in the irradiated part.

【0025】そして、加熱工程では、赤外線ヒータ10
により副射熱がワークW上に照射されるとともに、加熱
気体用熱交換器14により加熱された窒素が密閉容器に
充満されると、加熱された窒素分子は、自由な分子運動
により、ワークWや水分子に衝突し、密閉容器内のワー
クWの温度が上昇するとともに、雰囲気も非飽和状態と
なり、水分の蒸発が促進され、ワークWが乾燥される。
ワークWの隙間や細管(ワークW)の内部から浸出した
水分も蒸発される。なお、ワークWの照射部分における
温度上昇のみならず、非照射部分における温度上昇も顕
著である。
In the heating process, the infrared heater 10
When the workpiece W is irradiated with the secondary heat by the heat exchanger and the nitrogen heated by the heating gas heat exchanger 14 is filled in the closed container, the heated nitrogen molecules are moved by the free molecular motion. When the temperature of the work W in the closed container rises, the atmosphere becomes unsaturated, the evaporation of water is promoted, and the work W is dried.
Moisture leached from the gap of the work W and the inside of the thin tube (work W) is also evaporated. Note that not only the temperature rise in the irradiated portion of the work W, but also the temperature rise in the non-irradiated portion is remarkable.

【0026】即ち、加熱された窒素分子は、細管(ワー
クW)の内部やワークWの隙間に入り込んで水分子と熱
交換をしたり、水分子との衝突で水分子を細管(ワーク
W)の内部やワークWの隙間から他の場所に追いやった
りして、ワークWの温度上昇がなされ、乾燥が促進され
る。
That is, the heated nitrogen molecules enter the inside of the thin tube (work W) or the gaps of the work W to exchange heat with the water molecules, or collide with the water molecules to transfer the water molecules to the thin tube (work W). The temperature of the work W is increased by driving it to another place from inside the space or between the gaps of the work W, and the drying is promoted.

【0027】そして、加熱工程の後真空工程に再び戻る
が、この真空工程が必要な理由は、以下による。上述の
ように、加熱工程で、温度が高い状態下での蒸発が促進
されるが、特に、細管(ワークW)やワークWの隙間の
部分では、窒素分子により水分子の運動が妨げられ、飽
和状態またはそれに近い状態に至ると考えられる。
Then, after the heating process, the process returns to the vacuum process again. The reason why this vacuum process is necessary is as follows. As described above, in the heating step, evaporation in a high temperature state is promoted, but especially in the narrow tube (work W) or in the gap portion of the work W, movement of water molecules is hindered by nitrogen molecules, It is considered to reach a saturated state or a state close to it.

【0028】勿論、水分子はその分子運動により、窒素
中に拡散はするものの、その拡散速度は遅くなってく
る。再び、雰囲気を真空に排気することにより、飽和蒸
気圧が除かれ、加熱されたワークの温度は、真空排気中
には既に、その気圧下での沸点以上の温度(1〜1.5
倍)になっているので、速やかに乾燥が進む。同時に、
前回残されたワークの水分も加熱気体の流出と同時にワ
ークの表に浸出してくる。
Of course, water molecules diffuse into nitrogen due to their molecular motion, but the diffusion rate becomes slower. By evacuating the atmosphere to vacuum again, the saturated vapor pressure is removed, and the temperature of the heated work is already higher than the boiling point (1 to 1.5) under the atmospheric pressure during evacuation.
Since it is doubled, the drying progresses quickly. at the same time,
Moisture of the work left behind last time also leaches into the work surface at the same time as the heated gas flows out.

【0029】なお、気体分子として窒素分子を用いてい
るので、密閉容器内の酸化が防止されている。上述のよ
うに、蒸発分子活性式真空乾燥装置3により、ワークW
は乾燥された後、被せ容器6を上昇させ、コンベヤライ
ン1の搬出コンベヤ1A上に送られる。
Since nitrogen molecules are used as gas molecules, oxidation in the closed container is prevented. As described above, the work W
After being dried, the covering container 6 is raised and sent to the carry-out conveyor 1A of the conveyor line 1.

【0030】次に、上記作用の実験例を図3に基づいて
説明する。図3において、符号21はデシケータで、こ
のデシケータ21の両側には、能力500Wの第1赤外
線ランプ22及び能力500Wの第2赤外線23がデシ
ケータ21に向けて配置されている。デシケータ21に
は、真空計21A及び温度計21Bが装着されている。
Next, an experimental example of the above operation will be described with reference to FIG. In FIG. 3, reference numeral 21 is a desiccator, and on both sides of the desiccator 21, a first infrared lamp 22 having an ability of 500 W and a second infrared ray 23 having an ability of 500 W are arranged toward the desiccator 21. The desiccator 21 is equipped with a vacuum gauge 21A and a thermometer 21B.

【0031】デシケータ21には供給管24が接続さ
れ、その途中には能力2KWの熱交換用ヒータ25が装
着され、その先端には窒素供給量を任意に可変可能な窒
素ボンベ26が装着されている。
A supply pipe 24 is connected to the desiccator 21, a heat exchanging heater 25 having a capacity of 2 KW is installed in the middle of the desiccator 21, and a nitrogen cylinder 26 capable of arbitrarily changing the nitrogen supply amount is installed at the tip thereof. There is.

【0032】供給管24の、デシケータ21と熱交換用
ヒータ25の間の部分には、吸込み管27を介して真空
ロータリポンプ28(排気速度50リットル/min)
が装着されている。
A vacuum rotary pump 28 (exhaust speed 50 liters / min) is provided at a portion of the supply pipe 24 between the desiccator 21 and the heat exchange heater 25 via a suction pipe 27.
Is installed.

【0033】そして、実験の試料として、大きさ180
mm×30mm,厚さ38μmのリードフレーム片を1
00枚重ねたリードフレームRを準備し、リードフレー
ムRを2分間超音波洗浄した後、同一治具にセットして
デシケータ21の中に収める。
Then, as an experimental sample, a size of 180
1 mm x 30 mm lead frame piece with a thickness of 38 μm
00 lead frames R are prepared, ultrasonically cleaned for 2 minutes, set in the same jig, and then housed in the desiccator 21.

【0034】以下のように3つの乾燥条件(1),
(2),(3)による乾燥テストを実施し、それらの乾
燥の状況をチェックした。乾燥条件(1)においては、
赤外線ランプ22,23を照射せず、真空ロータリポン
プ28のみによる作動を行う。
The three drying conditions (1) are as follows:
The drying test according to (2) and (3) was carried out to check the drying condition. Under the drying condition (1),
The infrared lamps 22 and 23 are not irradiated and only the vacuum rotary pump 28 is operated.

【0035】この場合、小さな水滴がなかなか消えず、
4分程度するとリードフレームRの表面が凍って白くな
ってくる。即ち、真空のみによる乾燥では水分をリード
フレームRから除去できない。
In this case, small water droplets do not disappear easily,
After about 4 minutes, the surface of the lead frame R freezes and becomes white. That is, the moisture cannot be removed from the lead frame R by only drying in vacuum.

【0036】乾燥条件(2)においては、赤外線ランプ
22,23を照射するとともに、真空ロータリポンプ2
8の作動を行なう。この場合、リードフレームRの外側
の表面から小さな水滴は徐々に小さくなっていくが、な
かなか消えない。水滴は4分30秒で消えた。この時真
空度は約1mmHgであった。デシケータ21の蓋を開
いてリードフレームRの重なっている各リードフレーム
片の間の乾燥状態をみると、殆ど乾燥せず、水滴が残っ
ていた。この時、赤外線が温度センサに当たっていない
状態で、温度は常温であった。
Under the drying condition (2), the infrared lamps 22 and 23 are irradiated and the vacuum rotary pump 2 is used.
8 operation is performed. In this case, small water droplets gradually become smaller from the outer surface of the lead frame R, but do not easily disappear. The water droplet disappeared in 4 minutes and 30 seconds. At this time, the degree of vacuum was about 1 mmHg. When the lid of the desiccator 21 was opened and the dried state between the lead frame pieces on which the lead frame R overlaps was observed, it was found that the lead frame R was hardly dried and water droplets remained. At this time, the temperature was room temperature with the infrared rays not hitting the temperature sensor.

【0037】次に、各リードフレーム片の間の乾燥状態
を5分間隔で観察すると、リードフレームRの重なって
いるリードフレーム片の間は20分後にほぼ乾燥してい
た。乾燥条件(3)においては、赤外線ランプ22,2
3の照射を続けた状態で、真空ロータリポンプ28の作
動及び窒素ガスの注入の繰り返しを行なう。即ち、デシ
ケータ21内を10秒程度で約1mmHgの真空度にし
た後、150℃に加熱された窒素ガスを100リットル
/minの供給速度でデシケータ21内に注入した。注
入後10秒程度でデシケータ21の蓋が動き、窒素ガス
の圧力が1気圧以上になっていることを確認した。同時
にリードフレームRの外側の表面から小さな水滴が消え
ていることを確認した。
Next, when the dried state between the lead frame pieces was observed at intervals of 5 minutes, it was found that the portion between the lead frame pieces where the lead frame R overlaps was almost dried after 20 minutes. In the drying condition (3), the infrared lamps 22, 2
With the irradiation of No. 3 continued, the operation of the vacuum rotary pump 28 and the injection of nitrogen gas are repeated. That is, the inside of the desiccator 21 was evacuated to a vacuum degree of about 1 mmHg in about 10 seconds, and then nitrogen gas heated to 150 ° C. was injected into the desiccator 21 at a supply rate of 100 liter / min. About 10 seconds after the injection, the lid of the desiccator 21 moved, and it was confirmed that the pressure of the nitrogen gas was 1 atm or higher. At the same time, it was confirmed that small water droplets disappeared from the outer surface of the lead frame R.

【0038】リードフレームRの重なっている各リード
フレーム片の間の乾燥を考慮して、150℃に加熱され
た窒素ガスを30秒間注入し、注入を止める。そして、
真空ロータリポンプ28を20秒間作動させた後、再び
150℃の窒素ガスを30秒注入し、再び真空に引く。
Considering drying between the overlapping lead frame pieces of the lead frame R, nitrogen gas heated to 150 ° C. is injected for 30 seconds and the injection is stopped. And
After operating the vacuum rotary pump 28 for 20 seconds, nitrogen gas at 150 ° C. is injected again for 30 seconds and the vacuum is drawn again.

【0039】整理すると、 真空 10秒 加熱窒素ガス注入 30秒 真空 20秒 加熱窒素ガス注入 30秒 真空 20秒 リーク の合計2分でリードフレームRを取り出し、リードフレ
ームRの重なっている各リードフレーム片の間の乾燥状
態を調べると、水滴が全く消えていることを確認した。
なお、その時のリードフレームRの温度は75℃であっ
た。
In summary, vacuum 10 seconds heated nitrogen gas injection 30 seconds vacuum 20 seconds heated nitrogen gas injection 30 seconds vacuum 20 seconds Lead frame R was taken out in a total of 2 minutes of leakage, and each lead frame piece on which lead frame R overlaps When the dry state during the period was examined, it was confirmed that the water droplets were completely disappeared.
The temperature of the lead frame R at that time was 75 ° C.

【0040】実験結果をまとめると、(1),(2),
(3)の3条件による乾燥テストにより、加熱した窒素
ガスをデシケータ21内に注入した(3)の乾燥時間は
2分で、これに対して、(1)は未乾燥で、また、加熱
した窒素ガスをデシケータ21内に注入しない(2)は
20分である。
Summarizing the experimental results, (1), (2),
According to the drying test under the three conditions of (3), the drying time of (3) in which heated nitrogen gas was injected into the desiccator 21 was 2 minutes, while (1) was not dried and was heated. (2) where nitrogen gas is not injected into the desiccator 21 is 20 minutes.

【0041】以上のように、同一もしくはそれ以上の乾
燥状態を確保するのに、(3)の乾燥条件による乾燥時
間が、(1),(2)の乾燥条件による乾燥時間より格
段に短いことが確認された。
As described above, in order to secure the same or more dry condition, the drying time under the drying condition (3) is much shorter than the drying time under the drying conditions (1) and (2). Was confirmed.

【0042】以上の如き構成によれば、真空工程の完了
後加熱された窒素を密閉容器内に充満する加熱工程を有
し、加熱工程で、加熱された窒素からワークWが直接熱
を受けるので、ワークWの温度を40℃〜150℃にま
で上昇させ、水分の蒸発を促進させることができる。従
って、熱伝播手段として反射熱,輻射熱のみしか利用し
ない従来の加熱型真空乾燥より、熱伝達効率を良くし、
乾燥時間を短くすることができる。
According to the above construction, there is a heating step of filling the sealed container with heated nitrogen after completion of the vacuum step, and the work W receives heat directly from the heated nitrogen in the heating step. The temperature of the work W can be raised to 40 ° C. to 150 ° C. to accelerate the evaporation of water. Therefore, the heat transfer efficiency is improved as compared with the conventional heating type vacuum drying that uses only reflected heat and radiant heat as heat transfer means.
The drying time can be shortened.

【0043】また、真空工程で細管の内部やワークWの
隙間から水分を浸出させ、これを加熱工程で蒸発するこ
とを繰り返すので、乾燥状態を高度にすることができ
る。しかも、ワークWの酸化防止ばかりでなく、水分及
びその中に介在する他分子の酸化をも防止し、その表面
を清浄にすることができる。
Further, since the water is leached from the inside of the thin tube or the gap between the works W in the vacuum step and the evaporation is repeated in the heating step, the dry state can be enhanced. Moreover, not only the oxidation of the work W can be prevented, but also the oxidation of water and other molecules intervening therein can be prevented and the surface can be cleaned.

【0044】従って、乾燥状態を高度に確保しつつ、水
溶性洗浄におけるワークWの乾燥時間を短くすることが
できる。なお、本実施例においては、加熱用の気体とし
て窒素を挙げているが、これに限定されることなく、例
えば炭酸ガス,空気,不活性ガス等を用いることができ
る。
Therefore, it is possible to shorten the drying time of the work W in the water-soluble cleaning while ensuring a high degree of dryness. In this embodiment, nitrogen is used as the heating gas, but the gas is not limited to this, and carbon dioxide gas, air, an inert gas or the like can be used.

【0045】[0045]

【発明の効果】以上説明したように、本発明は、真空工
程の完了後加熱された気体を密閉容器内に充満する加熱
工程を有しているので、加熱工程で、加熱された気体か
らワークが直接熱を受け、ワークの温度を上昇させ、水
分の蒸発を促進させることができる。従って、熱伝播手
段として反射熱,輻射熱のみしか利用しない従来の加熱
型真空乾燥より、熱伝達効率を良くし、乾燥時間を短く
することができる。
As described above, the present invention has the heating step of filling the heated gas into the airtight container after the completion of the vacuum step. Therefore, in the heating step, the work gas is heated from the heated gas. Can directly receive heat, raise the temperature of the work, and accelerate evaporation of water. Therefore, the heat transfer efficiency can be improved and the drying time can be shortened as compared with the conventional heating type vacuum drying which uses only reflected heat and radiant heat as the heat transfer means.

【0046】また、真空工程で、ワークの隙間やワーク
としての細管の内部から水分を浸出させ、これを加熱工
程で蒸発することを繰り返すので、乾燥状態を高度にす
ることができる。
Further, in the vacuum process, water is leached from the gap between the works and the inside of the thin tube as the work, and this is repeatedly evaporated in the heating process, so that the dry state can be enhanced.

【0047】従って、乾燥状態を高度に確保しつつ、水
溶性洗浄におけるワークの乾燥時間を短くすることがで
きる効果を奏する。
Therefore, there is an effect that the drying time of the work in the water-soluble cleaning can be shortened while ensuring a high dry state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる蒸発分子活性式真空乾
燥方法を適用した乾燥システムを示す側面図である。
FIG. 1 is a side view showing a drying system to which an evaporation molecule activated vacuum drying method according to an embodiment of the present invention is applied.

【図2】同真空乾燥システムを示す平面図である。FIG. 2 is a plan view showing the vacuum drying system.

【図3】同真空乾燥システムの蒸発分子活性式真空乾燥
装置用の真空実験装置の説明図である。
FIG. 3 is an explanatory diagram of a vacuum experimental apparatus for an evaporative molecule activation type vacuum drying apparatus of the same vacuum drying system.

【符号の説明】[Explanation of symbols]

1 蒸発分子活性式真空乾燥装置 W ワーク 1 Evaporative molecule activation type vacuum dryer W work

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内を真空にする真空工程と、真
空工程の完了後加熱された気体を密閉容器内に充満する
加熱工程とを1セットとして、複数セット繰り返してワ
ークを乾燥させることを特徴とする蒸発分子活性式真空
乾燥方法。
1. A vacuum process for evacuating the closed container and a heating process for filling the closed container with a heated gas after completion of the vacuum process are set as one set, and a plurality of sets are repeatedly dried. A vacuum drying method characterized by evaporative molecule activation.
JP14750492A 1992-06-08 1992-06-08 Evaporation molecular activation type vacuum drying method Pending JPH0684878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14750492A JPH0684878A (en) 1992-06-08 1992-06-08 Evaporation molecular activation type vacuum drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14750492A JPH0684878A (en) 1992-06-08 1992-06-08 Evaporation molecular activation type vacuum drying method

Publications (1)

Publication Number Publication Date
JPH0684878A true JPH0684878A (en) 1994-03-25

Family

ID=15431867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14750492A Pending JPH0684878A (en) 1992-06-08 1992-06-08 Evaporation molecular activation type vacuum drying method

Country Status (1)

Country Link
JP (1) JPH0684878A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505606A (en) * 2012-02-01 2015-02-23 リバイブ エレクトロニクス, エルエルシーRevive Electronics, Llc Method and apparatus for drying electronic devices
JP2015127272A (en) * 2013-12-27 2015-07-09 三菱マテリアル株式会社 Vacuum desiccation method of silicon crushed pieces
US9644891B2 (en) 2012-02-01 2017-05-09 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US9746241B2 (en) 2012-02-01 2017-08-29 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US9970708B2 (en) 2012-02-01 2018-05-15 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US10240867B2 (en) 2012-02-01 2019-03-26 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US10690413B2 (en) 2012-02-01 2020-06-23 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US10876792B2 (en) 2012-02-01 2020-12-29 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US11713924B2 (en) 2012-02-01 2023-08-01 Revive Electronics, LLC Methods and apparatuses for drying electronic devices

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505606A (en) * 2012-02-01 2015-02-23 リバイブ エレクトロニクス, エルエルシーRevive Electronics, Llc Method and apparatus for drying electronic devices
US9644891B2 (en) 2012-02-01 2017-05-09 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US9683780B2 (en) 2012-02-01 2017-06-20 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US9746241B2 (en) 2012-02-01 2017-08-29 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US9816757B1 (en) 2012-02-01 2017-11-14 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US9970708B2 (en) 2012-02-01 2018-05-15 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US10240867B2 (en) 2012-02-01 2019-03-26 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US10690413B2 (en) 2012-02-01 2020-06-23 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US10876792B2 (en) 2012-02-01 2020-12-29 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US10928135B2 (en) 2012-02-01 2021-02-23 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US11713924B2 (en) 2012-02-01 2023-08-01 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
JP2015127272A (en) * 2013-12-27 2015-07-09 三菱マテリアル株式会社 Vacuum desiccation method of silicon crushed pieces

Similar Documents

Publication Publication Date Title
KR102443362B1 (en) Heat treatment apparatus, heat treatment method, and storage medium
KR100335322B1 (en) Processing method such as semiconductor wafer and processing device therefor
US6192600B1 (en) Thermocapillary dryer
JPH06326073A (en) Method and apparatus for treatment of cleaning and drying of substrate
JPH05275412A (en) Method and apparatus for cleaning and drying treatment of substrate
JPH0684878A (en) Evaporation molecular activation type vacuum drying method
JP3001986B2 (en) Method and apparatus for drying a substrate
CN104064496B (en) Substrate board treatment and substrate processing method using same
JPH05261347A (en) Washing apparatus
US11842903B2 (en) Apparatus for treating substrate and method for treating substrate
JP2017162916A (en) Substrate processing method and substrate processing apparatus
JP2000138210A (en) Spin coater and aging processing device
US6161300A (en) Alcohol vapor dryer system
JPH0719733A (en) Vacuum drying processing device
JPH0972659A (en) Small article dryer
JP2004079682A (en) Substrate processing apparatus
JP2004101130A (en) Vacuum dryer
JP3676756B2 (en) Substrate cleaning / drying equipment
JP2000150368A (en) Gas processing method and its device
JPH11340187A (en) Device and method for cleaning and drying
JPH0669180A (en) Vacuum drier
JP4492775B2 (en) Substrate processing equipment
JPH06337193A (en) Vacuum dryer
JPH06221754A (en) Pressure reducing dryer
JPH1048843A (en) Treating device