JPS63165132A - Composite material consisting of graphite and copper - Google Patents

Composite material consisting of graphite and copper

Info

Publication number
JPS63165132A
JPS63165132A JP31549486A JP31549486A JPS63165132A JP S63165132 A JPS63165132 A JP S63165132A JP 31549486 A JP31549486 A JP 31549486A JP 31549486 A JP31549486 A JP 31549486A JP S63165132 A JPS63165132 A JP S63165132A
Authority
JP
Japan
Prior art keywords
graphite
copper
linear expansion
insert material
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31549486A
Other languages
Japanese (ja)
Other versions
JPH07100358B2 (en
Inventor
直 加藤
隆司 茅本
東野 豊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP61315494A priority Critical patent/JPH07100358B2/en
Publication of JPS63165132A publication Critical patent/JPS63165132A/en
Publication of JPH07100358B2 publication Critical patent/JPH07100358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、例えばスパッタリングターゲットやX1m発
生用ターゲット等に使用される黒鉛と銅からなる複合材
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite material made of graphite and copper used, for example, in sputtering targets, targets for X1m generation, and the like.

〔従来の技術〕[Conventional technology]

黒鉛と銅の熱膨張率は互いに大きく異なっている。例え
ば銅の線膨張係数は約18X 104であるのに対し、
黒鉛のm膨張係数は約7X104である。
The thermal expansion coefficients of graphite and copper are significantly different from each other. For example, the coefficient of linear expansion of copper is approximately 18×104, while
The m-expansion coefficient of graphite is approximately 7X104.

このため、黒鉛と銅をa%瀧(約600〜1000℃)
で硬ろう付けや拡散接合等の方法で接合すると、冷却過
程において黒鉛と銅の熱膨張差によって相対的な寸法差
を生じ、残留応力が発生する。このため黒鉛と銅からな
る複合材は、その寸法が小さければ残留応力の影響は小
さく接合は可能であるが、実用的な大きさになると残留
応力の影響によって黒鉛に大きな引張り応力を生じる。
For this reason, graphite and copper are mixed at a% temperature (about 600 to 1000℃).
If they are joined using methods such as hard brazing or diffusion bonding, a relative dimensional difference will occur due to the difference in thermal expansion between graphite and copper during the cooling process, and residual stress will occur. For this reason, if the composite material made of graphite and copper is small, the influence of residual stress is small and bonding is possible, but when it reaches a practical size, the influence of residual stress causes large tensile stress in the graphite.

黒鉛は引張り応力に弱いため、接合後にクラックが入り
、破壊してしまう。例えば、直径200 mの円盤形テ
ストピースを900℃で接合し、室温まで冷却すると、
銅板の直径は約4al収縮するが、黒鉛の直径は約1a
nLか収縮しない。その結果、黒鉛と銅は厚み方向に撓
み、黒鉛に放射状のクランクが発生してついには破壊に
至る。
Graphite is weak against tensile stress, so it cracks and breaks after joining. For example, when a disk-shaped test piece with a diameter of 200 m is joined at 900°C and cooled to room temperature,
The diameter of the copper plate shrinks by about 4al, but the diameter of graphite shrinks by about 1a.
nL or no contraction. As a result, the graphite and copper bend in the thickness direction, causing radial cranks to occur in the graphite, eventually leading to its destruction.

このため現状では、黒鉛と銅を結合するための手段とし
て、ボルト締め等による機械的締結や、樹脂系接着剤に
よる接合、あるいはインジウムや半田等を使用した軟ろ
う付けに頼っている。
For this reason, at present, as means for joining graphite and copper, we rely on mechanical fastening such as bolting, joining with resin adhesives, or soft brazing using indium, solder, or the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述した従来技術では、次のような問題点
がある。
However, the above-mentioned conventional technology has the following problems.

例えば機械的な締結方法では、高温に熱せられた時の膨
張あるいは冷却に伴う収縮等の熱的衝撃によって締結力
が低下しやすい。また、エポキシ系やナイロン系接着剤
などの樹脂系接着剤では接着強度に難があり、しかも耐
熱性がない。また真空中での使用において不純物ガスを
発生する等の問題がある。一方、軟ろう付けでは接合強
度が低いとともに、耐熱性に劣るといった問題があった
For example, in a mechanical fastening method, the fastening force tends to decrease due to thermal shock such as expansion when heated to high temperature or contraction due to cooling. Furthermore, resin adhesives such as epoxy adhesives and nylon adhesives have difficulty in adhesive strength and lack heat resistance. Further, there are problems such as generation of impurity gas when used in a vacuum. On the other hand, soft brazing has problems such as low joint strength and poor heat resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明の複合材は、黒鉛と
銅(r!4合金も含む)との間に互いに熱膨張率の異な
る金属からなる2枚のインサート材を厚み方向に重ねて
介在させる。そして黒鉛側に位置する第1のインサート
材は、その線膨張係数α1が銅の線膨張係数αCUより
も小さく、かつ黒鉛の線膨張係数αCよりも大きい金属
からなる。また銅側に位置する第2のインサート材は、
その線膨張係数α2が黒鉛の線膨張係数αCと同等もし
くは黒鉛の線膨張係数αCよりも小さく、かつ上記第1
のインサート材の線膨張係数α1よりも小さい金属から
なる。これら2種類のインサート材を介し、過当な荷重
を負荷した状態で600℃ないし1000℃まで加熱す
ることにより、上記黒鉛と銅を硬ろう付けまたは拡散接
合によって互いに結合させるようにしたものである。
In order to solve the above problems, the composite material of the present invention is made by stacking two insert materials made of metals with different coefficients of thermal expansion between graphite and copper (including R!4 alloy) in the thickness direction. intervene. The first insert material located on the graphite side is made of a metal whose linear expansion coefficient α1 is smaller than the linear expansion coefficient αCU of copper and larger than the linear expansion coefficient αC of graphite. The second insert material located on the copper side is
The linear expansion coefficient α2 is equal to or smaller than the linear expansion coefficient αC of graphite, and the first
It is made of a metal whose coefficient of linear expansion α1 is smaller than that of the insert material. The graphite and copper are bonded to each other by hard brazing or diffusion bonding by heating to 600°C to 1000°C with an excessive load applied through these two types of insert materials.

〔作用〕[Effect]

銅と黒鉛を硬ろう付けや拡散接合等のような高温で接合
すると、銅の熱膨張率が黒鉛よりも大きいため、冷却中
に銅が黒鉛よりも大きく収縮する。
When copper and graphite are bonded together at high temperatures, such as by hard brazing or diffusion bonding, the coefficient of thermal expansion of copper is greater than that of graphite, so copper contracts more than graphite during cooling.

このため何の対策も講じていない場合には黒鉛中に過大
な引張り応力が生じ、ついには破壊に至る。
For this reason, if no measures are taken, excessive tensile stress will occur in the graphite, eventually leading to its destruction.

しかるに本発明の複合材は、上述した線膨張係数α1.
α2をもつ金属製インサート材を2段階に分けて黒鉛と
銅との間に挿入しておくことによって、冷却過程で黒鉛
に作用する熱応力を効果的に低減させることができるよ
うになり、実用的な大きさの黒鉛と銅からなる複合材の
^温接合が可能となった。
However, the composite material of the present invention has the above-mentioned linear expansion coefficient α1.
By inserting a metal insert material with α2 between graphite and copper in two stages, it is now possible to effectively reduce the thermal stress that acts on graphite during the cooling process. It has become possible to bond a composite material made of graphite and copper with a size of

(実施例) 第1図に示された本発明の第1実施例の複合材1は、口
径30mの円盤状のテストピースであり、−面側に黒鉛
2が、また他面側に銅3が設けられている。そして黒鉛
2と銅3との間には、黒鉛2側に第1のインサート材4
が、また銅3側に第2のインサート材5が介在させられ
ている。更には、黒鉛2と第1のインサート材4との間
に硬ろう材6が設けられている。また、各インサート材
4゜51!ll、および1ii3と第2のインサート材
5との間にもそれぞれ硬ろう材7.8が設けられている
(Example) The composite material 1 of the first example of the present invention shown in FIG. is provided. A first insert material 4 is placed between the graphite 2 and the copper 3 on the graphite 2 side.
However, a second insert material 5 is also interposed on the copper 3 side. Furthermore, a hard brazing material 6 is provided between the graphite 2 and the first insert material 4. Also, each insert material is 4゜51! A hard brazing material 7.8 is also provided between ll and ll and the second insert material 5, respectively.

これらの硬ろう材6,7.8は、いずれもニッケル製で
あり、その厚さは例えば5ないし500μm位が適当で
ある。硬ろう材6.7.8は、必要とされる耐熱性に応
じてニッケルの代りに銀あるいは銅系の金属を採用して
もよい。この実施例の場合、黒鉛2の厚さは一例として
7alN銅3の厚さは4j111、インサート材4.5
の厚さはいずれも0.5履とした。
These hard soldering materials 6, 7.8 are both made of nickel, and their thickness is suitably about 5 to 500 μm, for example. The hard solder material 6.7.8 may be made of silver or copper metal instead of nickel depending on the required heat resistance. In this example, the thickness of the graphite 2 is 7alN, the thickness of the copper 3 is 4j111, and the thickness of the insert material is 4.5.
The thickness of each was set to 0.5 shoes.

黒鉛2側に位置する第1のインサート材4はチタン製で
あり、その線膨張係数α1はおおむね8X104である
。ただし、チタンの代りにバナジウム等のように線膨張
係数がIQX 10”以下の金属を使用してもよい。銅
3側に位置する第2のインサート材5はモリブデン製で
あり、その線膨張係数α2はおおむね6X10’である
。ただし、モリブデンの代りにタングステン等のような
線膨張係数が6X104以下の金属を使用してもよい。
The first insert material 4 located on the graphite 2 side is made of titanium, and its linear expansion coefficient α1 is approximately 8×104. However, instead of titanium, a metal with a linear expansion coefficient of IQX 10" or less, such as vanadium, may be used. The second insert material 5 located on the copper 3 side is made of molybdenum, and its linear expansion coefficient α2 is approximately 6×10′. However, instead of molybdenum, a metal having a linear expansion coefficient of 6×10 4 or less, such as tungsten, may be used.

いずれにしても、インサート材4,5には硬ろう材6゜
7.8よりも耐熱性の高い金属が使用される。
In any case, the insert materials 4 and 5 are made of a metal having higher heat resistance than the hard soldering material 6°7.8.

上記インサート材4,5と硬ろう材6.7.8を、黒鉛
2と銅3との間に上記の配列で重ねたのち、適当な荷重
を付加しながら、硬ろう材6,7゜8が溶融する温度ま
で加熱・保持することにより。
After stacking the insert materials 4, 5 and the hard solder metal 6, 7, 8 in the above arrangement between the graphite 2 and the copper 3, apply an appropriate load to the hard solder metal 6, 7.8. By heating and holding it to a temperature where it melts.

黒鉛2と銅3.およびインサート材4.5の硬ろう付け
を同時に行なう。
Graphite 2 and copper 3. And the hard brazing of the insert material 4.5 is performed at the same time.

上記複合材1に使われている第1のインサート材4の線
膨張係数α1は、黒鉛2の線膨張係数αCよりも多少大
きい。このため、高温に加熱された状態で接合すると、
常温まで冷却された時に黒鉛2に多少の圧縮応力が生じ
る。黒鉛2は引張り方向の力には弱いが圧縮に対しては
ある程度の強度を発揮するため、このように適度な圧縮
応力の付与は黒鉛2を割れにくくする上で有効である。
The linear expansion coefficient α1 of the first insert material 4 used in the composite material 1 is somewhat larger than the linear expansion coefficient αC of the graphite 2. For this reason, if joined while heated to a high temperature,
When the graphite 2 is cooled to room temperature, some compressive stress is generated in the graphite 2. Graphite 2 is weak against force in the tensile direction, but exhibits a certain degree of strength against compression, so applying an appropriate compressive stress in this manner is effective in making graphite 2 difficult to crack.

また、銅3側に設けられた第2のインサート材5の線膨
張係数α2は黒鉛2の線膨張係数αC以下としており、
この第2のインサート材5を##3に接合させているか
ら、高温で接合された銅3が常温に戻る際に収縮しよう
としても、その熱応力が黒鉛2側に影響することを緩和
できる。このように2段階のインサート材4.5を介在
させることで、黒鉛2に生じる引張り応力の低減化が図
れるようになり、黒鉛2のクランクの発生と破壊を防止
できるものである。なお、黒鉛2の線膨張係数をαC,
第1のインサート材4の線膨張係数をα1、第2のイン
サート材5の線膨張係数をα2、銅3の線膨張係数をα
CUとした場合、黒鉛2のクラック発生の防止に効果の
ある各材料の線膨張係数の概略値の関係は次の通りであ
る。
Further, the linear expansion coefficient α2 of the second insert material 5 provided on the copper 3 side is set to be less than the linear expansion coefficient αC of the graphite 2,
Since this second insert material 5 is bonded to ##3, even if the copper 3 bonded at high temperature tries to shrink when it returns to room temperature, the influence of the thermal stress on the graphite 2 side can be alleviated. . By interposing the two-stage insert material 4.5 in this manner, the tensile stress generated in the graphite 2 can be reduced, and the generation and destruction of graphite 2 can be prevented. Note that the linear expansion coefficient of graphite 2 is αC,
The linear expansion coefficient of the first insert material 4 is α1, the linear expansion coefficient of the second insert material 5 is α2, and the linear expansion coefficient of the copper 3 is α
In the case of CU, the relationship between the approximate values of the coefficient of linear expansion of each material effective in preventing the occurrence of cracks in graphite 2 is as follows.

α2≦ac <cxl < <ac +3 x104 
) < <acuまた、黒鉛2の厚みをtC1第1のイ
ンサート材4の厚みをtl、第2のインサート材5の厚
みをt2、銅3の厚みをtcuとした場合、各々の厚さ
は以下の範囲が適している。
α2≦ac <cxl <<ac +3 x104
) << acu In addition, if the thickness of the graphite 2 is tC1, the thickness of the first insert material 4 is tl, the thickness of the second insert material 5 is t2, and the thickness of copper 3 is tcu, each thickness is as follows. range is suitable.

tc≧21111 0.1mm≦t1≦3jIll O0law≦t2≦3am tcu≧1M 上記複合材1は、硬ろう付けによって黒鉛2と銅3およ
びインサート材4.5が高い強度で接合されており、し
かも耐熱性に浸れている。従って上記複合材1は、例え
ば炭素のスパッタリングターゲットやX線発生用ターゲ
ットとしての要求を充分m足する。
tc≧21111 0.1mm≦t1≦3jIll O0law≦t2≦3am tcu≧1M The above composite material 1 has graphite 2, copper 3, and insert material 4.5 joined with high strength by hard brazing, and is heat resistant. I'm immersed in sex. Therefore, the composite material 1 sufficiently satisfies the requirements as, for example, a carbon sputtering target or an X-ray generation target.

例えばスパッタリングターゲットはスパッタリング中に
表面が高温に加熱されるために黒鉛が使用され、その反
対側に冷却効率の良い銅が使用されている。また、スパ
ッタリング・スピードを速くするためには優れた耐熱性
が要求される。上記複合材1は、こうしたスパッタリン
グターゲットとして充分使用に耐える耐熱性を有してい
る。
For example, a sputtering target uses graphite because its surface is heated to a high temperature during sputtering, and copper, which has good cooling efficiency, is used on the opposite side. Furthermore, excellent heat resistance is required to increase the sputtering speed. The composite material 1 has sufficient heat resistance to be used as such a sputtering target.

また上記複合材1は、長波長の炭素の特性X線を得るた
めのターゲットとしても好適である。X線ターゲットは
黒鉛側に電子線が照射される時に温度が数百℃まで上昇
するために、その反対側は水冷等によって冷却する必要
がある。しかもターゲットは高速回転させられているた
め、高い接合強度が必要となる。これらの要求を上記複
合材1は満足することができる。
The composite material 1 is also suitable as a target for obtaining long wavelength characteristic X-rays of carbon. When the graphite side of the X-ray target is irradiated with an electron beam, the temperature rises to several hundred degrees Celsius, so the opposite side needs to be cooled with water or the like. Moreover, since the target is rotated at high speed, high bonding strength is required. The composite material 1 can satisfy these requirements.

第2図は本発明の第2実施例を示し、この複合材1は外
径が200 mのリング状に形成されている。
FIG. 2 shows a second embodiment of the invention, in which the composite material 1 is formed into a ring shape with an outer diameter of 200 m.

その積層構造は第1実施例と同様であるが、黒鉛2の厚
さは7m、銅3の厚さは41M1.インサート材4.5
の厚さはそれぞれ1履である。第1実施例で述べたと同
様に、第1のインサート材4は、チタン(またはバナジ
ウム等)からなり、第2のインサート材5はモリブデン
(またはタングステン等)からなる。また、図示してい
ないが黒鉛2と銅3およびインサート材4.5の間には
、第1実施例と同様の硬ろう材6.7.8が介在されて
いる。
The laminated structure is the same as that of the first embodiment, but the thickness of the graphite 2 is 7 m, and the thickness of the copper 3 is 41 M1. Insert material 4.5
The thickness of each is one shoe. As described in the first embodiment, the first insert material 4 is made of titanium (or vanadium, etc.), and the second insert material 5 is made of molybdenum (or tungsten, etc.). Further, although not shown, a hard brazing material 6.7.8 similar to that of the first embodiment is interposed between the graphite 2, the copper 3, and the insert material 4.5.

この実施例では直径200 mと大形のスパッタリング
ターゲットであるにもかかわらず、高い耐熱性を示し、
従来品の2.5倍のエネルギーをスパッタリング時に内
筒しても全く問題を生じることなく使用でき、被スパツ
タリング物への高性能の成膜が可能であった。
Although this example is a large sputtering target with a diameter of 200 m, it exhibits high heat resistance.
It was possible to use 2.5 times the energy of the conventional product in the inner tube during sputtering without causing any problems, and it was possible to form a high-performance film on the object to be sputtered.

なお上記各実施例では硬ろう付げによって各部材を接合
するようにしているが、本発明はa%湯温度下行なわれ
る拡散接合によって黒鉛2と銅3およびインサート材4
.5を接合する場合にも同様に適用できる。
In each of the above embodiments, each member is joined by hard brazing, but in the present invention, graphite 2, copper 3, and insert material 4 are joined by diffusion bonding at a temperature of a% hot water.
.. The same can be applied to the case of joining 5.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、黒鉛と鋼を硬ろう付けや拡散接合で接
合した場合に冷却過程で黒鉛にクラックが生じることを
防止でき、実用的な大きさの黒鉛と銅からなる複合材が
得られる。この複合材は耐熱性に浸れかつ接合強度が高
く、しかも真空雰囲気中で使用されても不純物ガスを発
生しないため、スパッタリングターゲットやX線発生用
ターゲットとして優れた性能を発揮する。
According to the present invention, when graphite and steel are joined by hard brazing or diffusion bonding, cracks can be prevented from occurring in the graphite during the cooling process, and a composite material made of graphite and copper of a practical size can be obtained. . This composite material has excellent heat resistance and high bonding strength, and does not generate impurity gases even when used in a vacuum atmosphere, so it exhibits excellent performance as a sputtering target or an X-ray generation target.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す複合材の断面図、第
2図は本発明の第2実施例を示す複合材の断面図である
。 1・・・複合材、2・・・黒鉛、3・・・銅、4・・・
第1のインサート材、5・・・第2のインサート材、6
,7゜8・・・硬ろう材。 出願人代理人 弁理士 鈴江武彦 1棧合1オ 第1図 第2図
FIG. 1 is a cross-sectional view of a composite material showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a composite material showing a second embodiment of the present invention. 1... Composite material, 2... Graphite, 3... Copper, 4...
First insert material, 5... Second insert material, 6
,7゜8... Hard brazing material. Applicant's Representative Patent Attorney Takehiko Suzue 1.1 O. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 黒鉛と銅との間に互いに熱膨張率の異なる金属からなる
2枚のインサート材を厚み方向に重ねて介在させ、黒鉛
側に位置する第1のインサート材はその線膨張係数が銅
の線膨張係数よりも小さくかつ黒鉛の線膨張係数よりも
大きい金属からなり、また銅側に位置する第2のインサ
ート材はその線膨張係数が黒鉛の線膨張係数と同等もし
くは黒鉛の線膨張係数よりも小さくかつ上記第1のイン
サート材の線膨張係数よりも小さい金属からなり、これ
ら2種類のインサート材を介して上記黒鉛と銅を硬ろう
付けまたは拡散接合によって互いに結合させたことを特
徴とする黒鉛と銅からなる複合材。
Two insert materials made of metals with different coefficients of thermal expansion are interposed between graphite and copper, stacked in the thickness direction, and the first insert material located on the graphite side has a linear expansion coefficient that is equal to that of copper. The second insert material is made of a metal that is smaller than the coefficient of linear expansion and larger than the coefficient of linear expansion of graphite, and the second insert material located on the copper side has a coefficient of linear expansion that is equal to or smaller than the coefficient of linear expansion of graphite. Graphite and copper are made of a metal having a coefficient of linear expansion smaller than that of the first insert material, and the graphite and copper are bonded to each other by hard brazing or diffusion bonding via these two types of insert materials. A composite material made of copper.
JP61315494A 1986-12-26 1986-12-26 Composite material consisting of graphite and copper Expired - Lifetime JPH07100358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61315494A JPH07100358B2 (en) 1986-12-26 1986-12-26 Composite material consisting of graphite and copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61315494A JPH07100358B2 (en) 1986-12-26 1986-12-26 Composite material consisting of graphite and copper

Publications (2)

Publication Number Publication Date
JPS63165132A true JPS63165132A (en) 1988-07-08
JPH07100358B2 JPH07100358B2 (en) 1995-11-01

Family

ID=18066045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61315494A Expired - Lifetime JPH07100358B2 (en) 1986-12-26 1986-12-26 Composite material consisting of graphite and copper

Country Status (1)

Country Link
JP (1) JPH07100358B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039037A (en) * 2007-08-09 2009-02-26 Yanmar Co Ltd Combine
US9536851B2 (en) * 2014-09-05 2017-01-03 Infineon Technologies Ag Preform structure for soldering a semiconductor chip arrangement, a method for forming a preform structure for a semiconductor chip arrangement, and a method for soldering a semiconductor chip arrangement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187546A (en) * 1984-03-06 1985-09-25 株式会社東芝 Graphite-copper joining member and manufacture thereof
JPS61183180A (en) * 1985-02-06 1986-08-15 株式会社東芝 Hot load resistant composite structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187546A (en) * 1984-03-06 1985-09-25 株式会社東芝 Graphite-copper joining member and manufacture thereof
JPS61183180A (en) * 1985-02-06 1986-08-15 株式会社東芝 Hot load resistant composite structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039037A (en) * 2007-08-09 2009-02-26 Yanmar Co Ltd Combine
US9536851B2 (en) * 2014-09-05 2017-01-03 Infineon Technologies Ag Preform structure for soldering a semiconductor chip arrangement, a method for forming a preform structure for a semiconductor chip arrangement, and a method for soldering a semiconductor chip arrangement

Also Published As

Publication number Publication date
JPH07100358B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
EP0135937B1 (en) Method of bonding alumina to metal
US3652237A (en) Composite brazing alloy of titanium, copper and nickel
JPS63165132A (en) Composite material consisting of graphite and copper
JPH0680873B2 (en) Circuit board
JPH0959770A (en) Target for sputtering and its production
JPS62167041A (en) Composite material consisting of graphite and metal
GB1145575A (en) A metallic laminate of enhanced fracture toughness
US5855313A (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPS6153174A (en) Buffer material for bonding ceramic
JPS62204936A (en) Composite material consisting of graphite and metal
JPS60231471A (en) Metal ceramic composite body
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JPS6278167A (en) Bonded body of ceramic tungsten or molybdenum
JPH069906B2 (en) Composite material consisting of graphite and copper or copper alloy
JPH0672779A (en) Method for joining carbon member
JPS60256787A (en) Ceramics lined furnace wall body and manufacture thereof
JPS61136969A (en) Method of bonding sialon and metal
JPH0469594B2 (en)
JPH0142914B2 (en)
JPS62204937A (en) Composite material consisting of graphite and copper or copper alloy
JPS6272577A (en) Alumina-metal heat stress alleviation joint
JPS5935074A (en) Ceramic sheet
JPS62130843A (en) Metallic ceramics joining body
JPS6174788A (en) Joined body of metal
JPS62146625A (en) Manufacture of composite material consisting of metal and graphite

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term