JPS61183180A - Hot load resistant composite structure - Google Patents

Hot load resistant composite structure

Info

Publication number
JPS61183180A
JPS61183180A JP2106785A JP2106785A JPS61183180A JP S61183180 A JPS61183180 A JP S61183180A JP 2106785 A JP2106785 A JP 2106785A JP 2106785 A JP2106785 A JP 2106785A JP S61183180 A JPS61183180 A JP S61183180A
Authority
JP
Japan
Prior art keywords
composite
copper
graphite
intermediate layer
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2106785A
Other languages
Japanese (ja)
Inventor
辰彦 松本
深沢 美治
福原 由雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2106785A priority Critical patent/JPS61183180A/en
Publication of JPS61183180A publication Critical patent/JPS61183180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、プラズマ発生装置などにおいて、直接的に、
高熱流束負荷を受ける部材として用いられるグラフアイ
) (C)−銅(Cu )系の耐高熱負荷複合構造体に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field of the invention] The present invention provides a plasma generation device that directly
This invention relates to a graphite (C)-copper (Cu)-based high heat load resistant composite structure that is used as a member that receives high heat flux loads.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にプラズマ発生装置の不純物除去板、プラズマ位置
制御部材など高温下で高熱流束負荷を受ける部品は、直
接、高熱流束負荷を受ける表面部分の部材と、負荷され
た熱を効果的に除去して全体的に冷却する部材とを接合
した複合構造体となっている。この複合構造体は、一般
に表面部材が、耐熱性、耐スパッタ性、熱伝導性および
スノ臂ツタされてプラズマ中に不純物とし【混入した場
合のプラズマからの輻射損失などの観点からグラファイ
トが用いられている。
In general, parts that are subjected to high heat flux loads at high temperatures, such as impurity removal plates and plasma position control members of plasma generators, are directly exposed to surface parts that are subjected to high heat flux loads, and the loaded heat is effectively removed. It is a composite structure in which parts are joined together for overall cooling. Graphite is generally used as a surface material for this composite structure from the viewpoints of heat resistance, sputter resistance, thermal conductivity, and radiation loss from the plasma when dust is mixed in as an impurity in the plasma. ing.

また冷却部分の部材としては、熱伝導性に優れているこ
とから銅もしくは銅合金が一般に用いられている。
Copper or a copper alloy is generally used as a material for the cooling part because of its excellent thermal conductivity.

このようなグラファイト−銅複合構造体における問題点
は、グラファイトの熱膨張率が、例えば6.5X10 
 K”−(20〜600℃)で、銅の熱膨張率が14.
7X10  K−(20〜600℃)と、両者の間に大
きな差があることである。このため、接合形成時や使用
中に熱負荷を受けて、温度が上昇したとき、両部材の接
合部に大きな熱応力が発生する問題がある。
The problem with such a graphite-copper composite structure is that the coefficient of thermal expansion of graphite is, for example, 6.5×10
K"-(20 to 600°C), the coefficient of thermal expansion of copper is 14.
7×10 K-(20-600°C), and there is a large difference between the two. For this reason, there is a problem in that when the temperature rises due to heat load during bond formation or during use, large thermal stress is generated at the bonded portion of both members.

一般に、このような複合構造体の接合方法としては、デ
ルト締めなどの機械的方法と、ろう付け、拡散接合など
の冶金的方法とがある。
Generally, methods for joining such composite structures include mechanical methods such as delt tightening, and metallurgical methods such as brazing and diffusion bonding.

前者の機械的な接合方法の場合には、接合部の形状2間
隔などを考慮して両部材間の熱膨張差を逃がし、熱応力
の発生を避けることは可能であるが、反面、両部材間の
密着度が良好でないため、両部材間の熱伝導が良くなく
、効果的な冷却が行なえない。またグラファイトは脆い
ため強くデルトなとで締付けることができず、密着度が
低く、冷却作用が十分得られない。そのため、例えばプ
ラズマ発生装置において、プラズマディスラプションな
どが発生して過大な入熱が生じた場合には、表面部材の
グラファイトの表面温度が異常に上昇し、その結果、表
面の昇華や、表面クラックなどが発生し、損傷に至るこ
とが多い。
In the case of the former mechanical joining method, it is possible to release the difference in thermal expansion between the two parts by taking into consideration the spacing between the two parts of the joint part, and to avoid the generation of thermal stress. Since the degree of adhesion between the two members is not good, heat conduction between the two members is not good, and effective cooling cannot be performed. Furthermore, since graphite is brittle, it cannot be tightened strongly with a delt, and the degree of adhesion is low, making it impossible to obtain a sufficient cooling effect. Therefore, for example, in a plasma generator, if excessive heat input occurs due to plasma disruption, the surface temperature of the graphite of the surface member will rise abnormally, and as a result, surface sublimation or surface Cracks often occur, leading to damage.

一方、後者の冶金的接合方法は、両部材の密着性に優れ
ているので、熱の除去が効果的に行なわれて円滑な冷却
作用を示すが、温度上昇して熱膨張差が大きくなると、
接合面に熱応力が発生する。
On the other hand, the latter metallurgical joining method has excellent adhesion between both parts, so heat is effectively removed and a smooth cooling effect is achieved.However, as the temperature rises and the difference in thermal expansion increases,
Thermal stress occurs on the joint surface.

特に、間欠的な運転モードをとるトカマク型ゾラズマ発
生装置においては、熱応力は時間的に変動し、更にこれ
に加えてプラズマによる電磁力も重畳されることにより
、接合強度の弱い部分や、接合部に近接したグラファイ
ト部分にクラックを生じることがある。このようなりラ
ックを生じた部分では、熱伝達効率が劣化し、更に上述
と同様にグラファイト表面の昇華やクラックなどの損傷
に至る問題がありた。
In particular, in tokamak-type Zolazma generators that operate in an intermittent mode, thermal stress fluctuates over time, and in addition to this, electromagnetic force due to plasma is also superimposed, resulting in areas with weak bond strength and Cracks may occur in the graphite parts in close proximity to the graphite. In such a racked portion, the heat transfer efficiency deteriorates, and there is also the problem of damage such as sublimation and cracking of the graphite surface as described above.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消し、接合部やその近傍における
熱応力の発生を小さく抑え、しかも熱伝達が良好で冷却
□作用に優れたグ:7ファイトー銅系耐高熱負荷複合構
造体を提供することを目的とするものである。
The present invention eliminates the above-mentioned drawbacks, and provides a G:7 phyto-copper-based high heat load resistant composite structure that suppresses the occurrence of thermal stress at the joint and its vicinity, and has good heat transfer and excellent cooling action. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明者らは、両部材間の熱膨張差に起因する問題点く
着目し、両部材間の熱膨張差を低減せしめると共に、熱
伝導性が良好でしかも、高温中での使用にも耐える中間
層を介在させることにより、本発明の耐高熱負荷複合構
造体を開発したものである。
The present inventors have focused on the problems caused by the difference in thermal expansion between the two members, and have created a product that reduces the difference in thermal expansion between the two members, has good thermal conductivity, and can withstand use at high temperatures. The high heat load resistant composite structure of the present invention was developed by interposing an intermediate layer.

即ち、本発明はグラファイト部材と、銅もしくは銅合金
部材との間に、C−Cu複合体、もしくはW−Cu複合
体、またはMo −Cu複合体からなる中間層を介在し
て一体に接合したことを特徴とするものである。
That is, in the present invention, a graphite member and a copper or copper alloy member are integrally joined by interposing an intermediate layer made of a C-Cu composite, a W-Cu composite, or a Mo-Cu composite. It is characterized by this.

本発明において、グラファイト部材としては、通常、板
状のグラファイトが用いられる。
In the present invention, plate-shaped graphite is usually used as the graphite member.

また本発明において銅部材としては、Cu単独の他、C
u−Ag合金、Cu−Zn合金、Cu−Zr合金など、
強度と熱伝導性を兼ね備えたCu合金が用いられ、これ
らは通常、板状に形成され、内部に水冷用の通水路が設
けられている。
Further, in the present invention, as the copper member, in addition to Cu alone, C
u-Ag alloy, Cu-Zn alloy, Cu-Zr alloy, etc.
A Cu alloy that has both strength and thermal conductivity is used, and these are usually formed into a plate shape, with water cooling channels provided inside.

本発明においてグラファイト部材と銅部材との間に介在
させる中間層としては、C−Cu複合体層1.もしくは
W−Cu複合体層、またはMo −Cu複合体oj6.
る。
In the present invention, the intermediate layer interposed between the graphite member and the copper member includes the C-Cu composite layer 1. or W-Cu composite layer, or Mo-Cu composite oj6.
Ru.

これら複合体の中間層の第1の特徴は熱膨張係数が大き
く異なるグラファイトと銅の中間の熱膨張係数を有する
ことである。更に第2の特徴としては、中間層の構成部
材にCuを含むことから、熱伝導性が良好であり、また
第3の特徴としては、高温中での使用にも耐えることが
できることから、上記複合体が最も効果的である。
The first characteristic of the intermediate layer of these composites is that it has a coefficient of thermal expansion intermediate between that of graphite and copper, which have very different coefficients of thermal expansion. Furthermore, the second feature is that the intermediate layer contains Cu, so it has good thermal conductivity, and the third feature is that it can withstand use at high temperatures. Complexes are the most effective.

また両部材間に介在させる中間層は1層忙限らず、組成
の異なる2層以上、複数層でも良い。
Further, the intermediate layer interposed between the two members is not limited to one layer, but may be two or more layers or multiple layers having different compositions.

この場合、各中間層を形成する複合体層の組成を調整し
、グラファイト側に位置する中間層は、熱膨張係数がグ
ラファイトと銅の中間にありてグラファイトに近いもの
を用いる。また銅側に位置する中間層は、熱膨張係数が
グラファイトと銅の中間にあって銅に近いものを用いる
ことにより、接合部における熱膨張差を段階的に変化さ
せて、大きな熱応力の発生を防止することができる。
In this case, the composition of the composite layer forming each intermediate layer is adjusted, and the intermediate layer located on the graphite side has a coefficient of thermal expansion between that of graphite and copper, and is close to that of graphite. In addition, the intermediate layer located on the copper side is made of a material whose coefficient of thermal expansion is between that of graphite and copper, and is close to that of copper, thereby gradually changing the difference in thermal expansion at the joint and preventing the generation of large thermal stress. It can be prevented.

次に本発明の複合構造体の製造方法について説明する。Next, a method for manufacturing a composite structure of the present invention will be explained.

先ず中間層の製造方法として、C−Cu複合体は、例え
ば、出発原料としてポリアクリロニトリル、セルローズ
、ピッチなどを用い、高温で炭化処理して得られるカー
ボン繊維に1蒸着法。
First, as a manufacturing method for the intermediate layer, the C-Cu composite is deposited, for example, by a single vapor deposition method on carbon fiber obtained by carbonizing at high temperature using polyacrylonitrile, cellulose, pitch, etc. as starting materials.

化学蒸着法、無電解メッキ法、あるいは電解メッキ法忙
より銅を被覆し、得られたCu被&C繊維をクロス状に
織り、それを積層して熱圧処理を加えてC−Cu複合体
を得ることができる。また別の方法としては、カーボン
繊維を加工してフェルト状とし、そこに銅粉末をプラズ
マ溶射してC−Cu複合体を作ることもできる。
Coating copper using chemical vapor deposition, electroless plating, or electrolytic plating, weaving the resulting Cu-coated &C fibers in a cross shape, stacking them and applying heat-pressure treatment to form a C-Cu composite. Obtainable. Alternatively, a C--Cu composite can be made by processing carbon fiber into a felt shape and plasma spraying copper powder thereon.

W−Cu複合体の場合は、タングステン粉を圧粉し、低
温で焼結して多孔質のタングステン焼結体を製造し、こ
れに溶融鋼を含浸せしめてW−Cu複合体を得ることが
できる。また別の方法としては、タングステン粉と銅粉
を混合、圧粉し、銅の融点近傍の温度で焼結する方法で
も良いe Mo −Cu複合体の製造方法は、上記のW−Cu複合
体の場合と同じでタングステン粉をモリブデン粉に代え
て用いれば良い。
In the case of a W-Cu composite, it is possible to produce a porous tungsten sintered body by compacting tungsten powder and sintering it at a low temperature, and then impregnating it with molten steel to obtain a W-Cu composite. can. Another method is to mix tungsten powder and copper powder, press the powder, and sinter it at a temperature near the melting point of copper.e The method for producing the Mo-Cu composite is the same as the above-mentioned W-Cu composite. As in the case of , tungsten powder can be used instead of molybdenum powder.

なお、C,W、MoおよびCuの配合比は、適宜必要と
する熱膨張率に合せて選定すれば良く、また組合せ成分
が同じ複合体であっても、その配合比の異なる複合体を
複数層重ねた中間層をグラファイト部材と銅部材との間
に介在させても良い。
The blending ratio of C, W, Mo, and Cu may be selected appropriately according to the required coefficient of thermal expansion. Even if the composites have the same combination of components, multiple composites with different blending ratios may be used. A stacked intermediate layer may be interposed between the graphite member and the copper member.

またグラファイト部材と銅部材との間に、上記複合体の
中間層を介在させて一体に接合する方法としては、ろう
付は法や拡散接合法を用いて行なう。ろう付は法を用い
る場合には、中間層相互間および中間層と銅部材との接
合には、Niろう、 AuろうtAKろうp Cuろ5
などを用いることができ、グラファイト部材と中間層と
の接合には、例えば重量%で4.5チTl−26,7チ
Cu −68゜8チAgろうなど、Tiを含有するろう
材が好適である。
Further, as a method for integrally joining the graphite member and the copper member with the intermediate layer of the composite interposed therebetween, a brazing method or a diffusion bonding method is used. When brazing is used, Ni solder, Au solder, AK solder, Cu solder, etc. are used to bond between the intermediate layers and between the intermediate layer and the copper member.
For bonding the graphite member and the intermediate layer, a brazing material containing Ti, such as 4.5% Tl-26, 7% Cu-68°8% Ag, is suitable. It is.

また一体化させるろう何工程では、ろう付は温度に差の
ある場合、高温度を要する部材から先に接合して、順次
一体化し、また全体のろう付は温度が、はぼ同じものは
、全体を積層して重ね、一定温度でろう付げして全体を
一度に接合する方法が良い。
In addition, in the brazing process for integration, if there is a difference in brazing temperature, the parts that require high temperature are joined first and then integrated in order, and the brazing temperature is the same for all parts, A good method is to laminate the whole thing, overlap it, and braze it at a constant temperature to join the whole thing at once.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例について説明する。 Examples of the present invention will be described below.

(実施例1) ポリアクリロニトリル繊維を炭化処理して得られたカー
ボン繊維に銅を蒸着し、次いで銅の電解メッキを施して
Cu被覆C繊維を作成し、得られた繊維をクロス状に織
り、これらを積層して熱圧処理を加えて、厚さ2m+で
炭素含有量42体積チのC−Cu複合体を得た。次いで
このC−Cu複合体を中間層とし、この片側に、重量%
で465%Ti−26,7%Cu−68,8%Agのろ
う材薄板を介して、厚さ10箇の等方性グラファイト板
(比重1.79.20〜600℃の平均熱膨張係数7.
0×1o−6x−1)を置いた。またC−Cu複合体中
間層の反対側の面には、厚さ25雛で、内径10mの水
冷用の通水路を内部に形成した純銅板をAgろうの薄板
を介して置き、全体に500 、!i’/cm2の荷重
を加え、真空中で840℃、20分間の熱処理を行って
一体に接合した。
(Example 1) Copper was vapor-deposited on carbon fiber obtained by carbonizing polyacrylonitrile fiber, and then electroplated with copper to create Cu-coated C fiber, and the obtained fiber was woven in a cross shape, These were laminated and subjected to heat-pressure treatment to obtain a C--Cu composite with a thickness of 2 m+ and a carbon content of 42 vol. This C-Cu composite is then used as an intermediate layer, and one side of the C-Cu composite is coated with % by weight.
10 isotropic graphite plates (specific gravity 1.79.20~600℃, average thermal expansion coefficient 7. ..
0x1o-6x-1). In addition, on the opposite side of the C-Cu composite intermediate layer, a pure copper plate with a thickness of 25 mm and a water cooling passageway of 10 m in inner diameter was placed through a thin plate of Ag solder, and the total thickness was 500 mm. ,! A load of i'/cm2 was applied, and heat treatment was performed at 840° C. for 20 minutes in a vacuum to join them together.

(実施例2) 多孔質タングステン焼結体に溶融鋼を含浸して、銅含有
量30重量%のW−Cu複合体を形成し、これから厚さ
2■の板材を切り出した。次いで、とのW−Cu複合体
を中間層として、この片側にTi −Cu−Ag系ろう
の薄板を介して厚さ10mのグラファイト板を置き、中
間層の反対側に、実施例1と同様の通水路を形成した厚
さ25日の0.3重量%Agを含む、Cu合金を、Ag
ろ5の薄板を介して置き、全体に50017cm2の荷
重を加えて、真空中で840℃、20分間の熱処理を行
なって一体に接合し、複合構造体を得た。
(Example 2) A porous tungsten sintered body was impregnated with molten steel to form a W-Cu composite having a copper content of 30% by weight, and a plate material with a thickness of 2 cm was cut from the W-Cu composite. Next, a 10 m thick graphite plate was placed on one side of the W-Cu composite with a thin plate of Ti-Cu-Ag wax as an intermediate layer, and the same as in Example 1 was placed on the other side of the intermediate layer. Ag
It was placed through the thin plate of filter 5, a load of 50,017 cm2 was applied to the whole, and heat treatment was performed in vacuum at 840° C. for 20 minutes to bond them together to obtain a composite structure.

(実施例3) 多孔質モリブデン焼結体に溶融鋼を含浸して、銅含有i
25重量%および、40重量%の2種類のMo −Cu
複合体を製造し、それより厚さ1m+の板材を夫々切り
出した。
(Example 3) A porous molybdenum sintered body was impregnated with molten steel to form a copper-containing i
Two types of Mo-Cu, 25% by weight and 40% by weight
A composite was manufactured, and plates each having a thickness of 1 m+ were cut out from it.

実施例1と同様に水冷用の通水路を形成した厚さ25m
の純銅板の上に、Niろう薄板を介してCu含含有量4
0童童チMo −Cu複合体中間層を置き、更にその上
にN1ろ5薄板を介してCu含有量25重量%のMo−
Cu複合体中間層を置いて、2層構造とし、その上から
50017cm2の圧力を加えて、950℃、20分間
熱処理を行って一体に接合した。全体を冷却後、Cu含
有量25重量%のMo−Cu複合体中間層の上に、更に
Tl −Cu −Ag系ろう材の薄板を介して厚さ10
mのグラファイト板を重ね、上方より50097cm2
の圧力を加え・て、840℃、20分間の熱処理を行な
って全体を一体に接合し、複合構造体を得た。
A thickness of 25 m with a water cooling channel formed in the same way as in Example 1.
The copper content is 4.
A Mo-Cu composite intermediate layer was placed, and a Mo-Cu composite layer with a Cu content of 25% was placed on top of the intermediate layer through an N1 thin plate.
A Cu composite intermediate layer was placed to form a two-layer structure, and a pressure of 50,017 cm2 was applied from above, and heat treatment was performed at 950° C. for 20 minutes to bond them together. After cooling the whole, a thin plate of Tl-Cu-Ag brazing filler metal is placed on top of the Mo-Cu composite intermediate layer with a Cu content of 25% by weight to a thickness of 10% by weight.
Stack m graphite plates, 50097 cm2 from above
The whole was joined together by heat treatment at 840° C. for 20 minutes to obtain a composite structure.

(比較例) 実施例1と同様の厚さ10+mのグラファイト板と、通
水路を形成した厚さ25簡の純銅板とを、Tl−Cu−
Ag系ろう材の薄板を介して重ね合せ、500 yzに
罵の荷重で、840℃、20分間の熱処理を真空中で行
なりて接合した。
(Comparative example) A graphite plate with a thickness of 10+m similar to that in Example 1 and a pure copper plate with a thickness of 25 meters with a water passage formed therein were
They were stacked on top of each other with thin plates of Ag-based brazing material interposed therebetween, and heat treated at 840° C. for 20 minutes under a load of 500 yz for 20 minutes in a vacuum to bond them.

以上4種類の複合構造体について、銅部材側の通水路に
冷却水(入口温度20℃、流*5J115)’)を流し
ながら、グラファイト板の表面に、電子ビームにより5
00W/crn2の熱流束を60秒間加え、30秒間休
止する加熱−冷却を250回繰り返す高熱流束負荷サイ
クル試験を行なった。
Regarding the above four types of composite structures, while cooling water (inlet temperature 20°C, flow *5J115)') was flowing through the passageway on the copper member side, the surface of the graphite plate was exposed to 50% by electron beam.
A high heat flux load cycle test was conducted in which heating-cooling was repeated 250 times by applying a heat flux of 00 W/crn2 for 60 seconds and pausing for 30 seconds.

この試験後、試験片の接合部およびその近傍でのクラッ
クの発生状態を調べ、その結果を次表に示した。
After this test, the occurrence of cracks in and around the joints of the test pieces was examined, and the results are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る耐高熱負荷複合構造体
によれば、グラファイト部材と銅部材との間に、両者の
中間の熱膨張率を有し、しかも高温に耐える中間層を一
体に介在させて、熱応力を緩和しているので、反復する
高熱流束負荷を受けても接合部やその近傍におけるクラ
ックの発生がなく、シかも密着性に優れていると共に、
中間層の熱伝導性が良好であるので効果的な冷却を行な
うことができるなで顕著な効果を有するものである。
As explained above, according to the high heat load resistant composite structure of the present invention, an intermediate layer having a thermal expansion coefficient intermediate between the graphite member and the copper member and capable of withstanding high temperatures is integrally interposed between the graphite member and the copper member. Since the thermal stress is alleviated, there is no cracking at the joint or its vicinity even when subjected to repeated high heat flux loads, and it has excellent adhesion.
Since the intermediate layer has good thermal conductivity, it has a remarkable effect in that it can perform effective cooling.

Claims (2)

【特許請求の範囲】[Claims] (1)グラファイト部材と、銅もしくは銅合金部材との
間にC−Cu複合体、もしくはW−Cu複合体、または
Mo−Cu複合体からなる中間層を介在して一体に接合
してなることを特徴とする耐高熱負荷複合構造体。
(1) A graphite member and a copper or copper alloy member are integrally joined with an intermediate layer made of a C-Cu composite, a W-Cu composite, or a Mo-Cu composite interposed between the graphite member and the copper or copper alloy member. A high heat load resistant composite structure featuring:
(2)中間層が、組成の異なる二種以上の複合体で構成
されていることを特徴とする特許請求の範囲第1項記載
の耐高熱負荷複合構造体。
(2) The high heat load resistant composite structure according to claim 1, wherein the intermediate layer is composed of two or more composites having different compositions.
JP2106785A 1985-02-06 1985-02-06 Hot load resistant composite structure Pending JPS61183180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2106785A JPS61183180A (en) 1985-02-06 1985-02-06 Hot load resistant composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2106785A JPS61183180A (en) 1985-02-06 1985-02-06 Hot load resistant composite structure

Publications (1)

Publication Number Publication Date
JPS61183180A true JPS61183180A (en) 1986-08-15

Family

ID=12044538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2106785A Pending JPS61183180A (en) 1985-02-06 1985-02-06 Hot load resistant composite structure

Country Status (1)

Country Link
JP (1) JPS61183180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165132A (en) * 1986-12-26 1988-07-08 日本発条株式会社 Composite material consisting of graphite and copper
JP2019502251A (en) * 2016-09-06 2019-01-24 ザ グッドシステム コーポレーション Heat dissipation plate material for high output elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165132A (en) * 1986-12-26 1988-07-08 日本発条株式会社 Composite material consisting of graphite and copper
JP2019502251A (en) * 2016-09-06 2019-01-24 ザ グッドシステム コーポレーション Heat dissipation plate material for high output elements

Similar Documents

Publication Publication Date Title
JP5698947B2 (en) Heat sink for electronic device and method for manufacturing the same
TWI633637B (en) Exothermic plate and manufacturing method thereof, and semiconductor package and semiconductor module having the same
JPH0233111B2 (en)
CN106825583A (en) A kind of tungsten and low activation stainless steel nanometer gradient composite connecting method
JP6443568B2 (en) Bonding material, bonding method and bonding structure using the same
WO2015085650A1 (en) Method for diffusion welding w-ti alloy target material assembly
CN102489813A (en) Vacuum active brazing process of molybdenum-copper alloys and stainless steel
US4598025A (en) Ductile composite interlayer for joining by brazing
JP2012091975A (en) Method for manufacturing joined body of ceramic material and metallic material
JP4226900B2 (en) Deposition source manufacturing method
JPH06268117A (en) Heat radiating substrate for semiconductor device and its manufacture
WO2016185408A2 (en) Brazing filler
JP6786090B2 (en) Heat dissipation plate material
JPS61183180A (en) Hot load resistant composite structure
JPH1180858A (en) Composite material and its production
JP3302714B2 (en) Ceramic-metal joint
WO2023008565A1 (en) Copper/ceramic bonded body and insulated circuit board
JPS60203436A (en) High heat-load-resistant composite structure
JPH0226880A (en) Method for brazing graphite to metal
JPS604050A (en) High heat-resistant load member
JPH0677365A (en) Radiation board material
WO2023008562A1 (en) Copper/ceramic bonded body and insulated circuit board
JPS59141393A (en) Brazing filler material
JP7299141B2 (en) Composite board and its manufacturing method, and circuit board and its manufacturing method
CN110977239B (en) Gold-copper-based brazing filler metal and welding method thereof