JPS63165057A - Production of cylinder - Google Patents
Production of cylinderInfo
- Publication number
- JPS63165057A JPS63165057A JP31452186A JP31452186A JPS63165057A JP S63165057 A JPS63165057 A JP S63165057A JP 31452186 A JP31452186 A JP 31452186A JP 31452186 A JP31452186 A JP 31452186A JP S63165057 A JPS63165057 A JP S63165057A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- self
- alloy
- centrifugal casting
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 73
- 239000000956 alloy Substances 0.000 claims abstract description 73
- 238000009750 centrifugal casting Methods 0.000 claims abstract description 28
- 229910018487 Ni—Cr Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 10
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 claims description 6
- 150000001247 metal acetylides Chemical class 0.000 claims description 6
- 229910000684 Cobalt-chrome Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 3
- 239000010952 cobalt-chrome Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 238000002844 melting Methods 0.000 abstract description 11
- 230000008018 melting Effects 0.000 abstract description 11
- 238000005260 corrosion Methods 0.000 abstract description 10
- 230000007797 corrosion Effects 0.000 abstract description 10
- 239000008187 granular material Substances 0.000 abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 239000010953 base metal Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229920006351 engineering plastic Polymers 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
「発明の目的」
(産業上の利用分野)
本発明は、耐食性や耐厚耗性に優れたシリンダを製造す
るのに利用されるシリンダの製造方法に関し、例えばエ
ンジニアリングプラスチックスやファインセラミックス
の射出成形機および押…機などの構成部品である高耐食
性および/または高耐摩耗性が要求されるシリンダを製
造するのに利用されるシリンダの製造方法に関するもの
である。Detailed Description of the Invention Object of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a cylinder that is used to manufacture cylinders with excellent corrosion resistance and abrasion resistance. The present invention relates to a method for manufacturing cylinders that are used to manufacture cylinders that are required to have high corrosion resistance and/or high wear resistance and are components of injection molding machines and press machines for manufacturing ceramics and fine ceramics.
(従来の技術)
エンジニアリングプラスチックスの射出成形機および押
出機などの構成部品であるシリンダは、従来その素材と
して窒化鋼が主に使用されてきた。(Prior Art) Cylinders, which are component parts of injection molding machines and extrusion machines for engineering plastics, have conventionally been mainly made of nitrided steel.
しかしながら、近年においては、ガラス朦維。However, in recent years, glass fibers have become popular.
炭素繊維などの強化用繊維や、アルミナ、ジルコニアな
どの耐摩繊維および粒子などからなる充填材を混入した
エンジニアリングプラスチックスの採用が増加してきて
いるため、上記の窒化鋼では耐摩耗性や耐食性などの面
において不十分なものとなってきている。The use of engineering plastics containing reinforcing fibers such as carbon fiber, wear-resistant fibers such as alumina and zirconia, and fillers made of particles is increasing, so the nitrided steel mentioned above has improved wear resistance and corrosion resistance. It has become inadequate in many aspects.
そこで、このような不具合を解消するため、耐摩耗性や
耐食性に優れたパイメタリックのシリンダが採用される
ようになってきた。In order to solve these problems, pie metallic cylinders, which have excellent wear and corrosion resistance, have come to be used.
第5図(a)〜(d)はパイメタリックシリンダの一般
的な製造工程を示す図であって、まず、例えば炭素鋼や
クロム令モリブデン鋼などの構造用鋼からなる丸棒母材
21(第5図(a)参照)の中心に、機械切削によって
ストレート状の中心孔22をあけることによりシリンダ
組体23を作製しく第5図(b)参照)、次いでシリン
ダ組体23の中にニッケル金クロム系あるいはコバルト
・クロム系などの合金に少量のB、St 、Cなどの合
金成分を添加した自溶性合金(融点=900−1100
℃)からなる塊状または粉末状等の粉粒体24を封入し
く第5図(c)参照)、両端を閉塞して内部を不活性雰
囲気にした状態で1100〜1200℃に加熱し、内部
の自溶性合金からなる粉粒体24を溶融させる。FIGS. 5(a) to 5(d) are diagrams showing the general manufacturing process of a pi-metallic cylinder. First, a round bar base material 21 ( The cylinder assembly 23 is manufactured by mechanically cutting a straight center hole 22 in the center of the cylinder (see FIG. 5(a)). Self-fusing alloys (melting point = 900-1100
(see Figure 5(c)), and heat it to 1100-1200°C with both ends closed to create an inert atmosphere inside. The powder 24 made of a self-fusing alloy is melted.
次に、シリンダ組体23を回転装置に取り付けて回転さ
せ、溶融状態の自溶性合金を遠心鋳造によりシリンダ組
体23の内面に密着させ、冷却後に均一厚さの肉盛層2
5を形成する(第5図(d)参照)、そして、この肉盛
層25の表面は欠陥が多いので、切削加工を施すことに
よってそれらの欠陥を除去し、さらに研磨仕上げを行っ
て、エンジニアリングプラスチックスの射出を形機や押
出機の構成部品であるシリンダ26としていた。Next, the cylinder assembly 23 is attached to a rotating device and rotated, and the molten self-fusing alloy is closely attached to the inner surface of the cylinder assembly 23 by centrifugal casting, and after cooling, a build-up layer 2 of uniform thickness is formed.
5 (see FIG. 5(d)), and since the surface of this build-up layer 25 has many defects, those defects are removed by cutting, and then polished and finished, resulting in an engineering finish. The cylinder 26, which is a component of a molding machine or an extrusion machine, was used to inject plastics.
(発明が解決しようとする問題点)
このような従来のシリンダ26では、その内面に、ニッ
ケル・クロム系あるいはコバルト・クロム系などの合金
に少量のB、Si 、Cなどの合金成分を添加した自溶
性合金からなる肉盛層25が形成されているため、耐食
性には優れているものの、充填材を混入したエンジニア
リングプラスチックスやファインセラミックスの射出成
形機などのシリンダとして使用した場合には、いまだ耐
摩耗性が十分でないという問題点を有していた。(Problems to be Solved by the Invention) In such a conventional cylinder 26, a small amount of alloy components such as B, Si, and C are added to a nickel-chromium alloy or a cobalt-chromium alloy on its inner surface. Although the built-up layer 25 made of a self-fusing alloy has excellent corrosion resistance, it is still difficult to use when used as a cylinder in an injection molding machine for engineering plastics or fine ceramics that contain fillers. The problem was that the wear resistance was insufficient.
そこで、このような耐摩耗性をさらに改善するために、
WC,NbCなどの炭化物やCr2Bなどの硼化物を自
溶性合金中に多量に添加することも考えられなくはない
が、この場合、シリンダ23を構成する母材21と、肉
盛層25を構成する自溶性合金との間で十分に合金化さ
せるためには、自溶性合金の融点を母材の融点よりも4
00〜600℃程度低くする必要がある。それゆえ、自
溶性合金の硬さおよび耐摩耗性を向上させるために上記
の炭化物や硼化物を多量に添加しようとしても、これら
炭化物および硼化物の融点はかなり高いものであると共
に比重の大きなものであるため、遠心鋳造後には炭化物
および硼化物が母材側(外周側)に集中する傾向となる
ことから、母材21と肉盛層25との境界面において十
分に合金化させることができず、それゆえ肉盛層25の
最表面における硬さおよび耐摩耗性はさほど向上しない
とともに、母材21と肉盛層25との間での密着性に劣
ったものになって剥離を生じやすいものになるという問
題点があった。Therefore, in order to further improve such wear resistance,
Although it is possible to add a large amount of carbides such as WC and NbC or borides such as Cr2B to the self-fusing alloy, in this case, the base material 21 constituting the cylinder 23 and the overlay layer 25 constituting the In order to achieve sufficient alloying with the self-fluxing alloy, the melting point of the self-fusing alloy must be set at 4° below the melting point of the base metal.
It is necessary to lower the temperature by about 00 to 600°C. Therefore, even if large amounts of the above-mentioned carbides and borides are added to improve the hardness and wear resistance of self-fusing alloys, the melting points of these carbides and borides are quite high, and the specific gravity is large. Therefore, after centrifugal casting, carbides and borides tend to concentrate on the base metal side (outer circumferential side), so they cannot be sufficiently alloyed at the interface between the base metal 21 and the built-up layer 25. Therefore, the hardness and wear resistance of the outermost surface of the built-up layer 25 do not improve much, and the adhesion between the base material 21 and the built-up layer 25 becomes poor, and peeling easily occurs. There was a problem with it becoming a thing.
そのほか、塊状または粉末状等の粉粒体24をシリンダ
組体23の内部に封入する(第5図(C)参照)場合に
、その嵩密度はせいぜい3〜4.5程度であるため、溶
融後の体積は1/2〜1/3ぐらいとなってしまうこと
から、肉厚の大きい肉盛層25を形成させたいシリンダ
26の場合や中心孔22の形状が同一口径のストレート
状でないシリンダ26の場合には従来の方法では均一厚
さの肉盛層25を構成することが困難であるという問題
点を有していた。In addition, when granular material 24 in the form of lumps or powder is sealed inside the cylinder assembly 23 (see FIG. 5(C)), the bulk density is approximately 3 to 4.5 at most, so the melting The subsequent volume will be about 1/2 to 1/3, so in the case of a cylinder 26 in which a thick built-up layer 25 is desired to be formed, or a cylinder 26 in which the shape of the center hole 22 is not straight with the same diameter. In this case, the conventional method had a problem in that it was difficult to form a build-up layer 25 of uniform thickness.
(発明の目的)
本発明は、上述した従来の問題点に着目してなされたも
ので、耐食性に優れているのはもちろんのこと耐摩耗性
にも優れている肉盛層を強固に形成したシリンダを製造
することが可能であり、また、肉厚の大きな肉盛層を形
成したシリンダや、ストレート状でない凹および/また
は画部分あるいはテーパ一部分などを有するシリンダ内
面において均一厚さの肉盛層を形成したシリンダを製造
することが可能であるシリンダの製造方法を提供するこ
とを目的としているものであ、る。(Object of the Invention) The present invention has been made by focusing on the above-mentioned problems of the conventional technology. It is possible to manufacture cylinders, and it is also possible to manufacture cylinders with a thick build-up layer, or a build-up layer with a uniform thickness on the inner surface of a cylinder that has a concave and/or image part or a tapered part that is not straight. It is an object of the present invention to provide a method for manufacturing a cylinder that is capable of manufacturing a cylinder in which a cylinder is formed.
[発明の構成]
(問題点を解決するための手段)
本発明によるシリンダの製造方法は、自溶性合金を遠心
鋳造によりシリンダ内面に肉盛してシリンダを製造する
に際し、自溶性合金を複数回に分けて各々遠心鋳造によ
りシリンダ内面に積層して肉盛するようにしたことを特
徴としているものである。[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a cylinder according to the present invention is such that when manufacturing a cylinder by overlaying a self-fusing alloy on the inner surface of the cylinder by centrifugal casting, the self-fusing alloy is applied multiple times. It is characterized by being divided into two parts, each of which is laminated and overlaid on the inner surface of the cylinder by centrifugal casting.
本発明の一実施態様によるシリンダの製造方法は、自溶
性合金を遠心鋳造によりシリンダ内面に肉盛りしてシリ
ンダを製造するに際し、ニッケル・クロム系あるいはコ
バルト・クロム系などの合金に少量のB、Si 、Cな
どの合金成分を添加した自溶性合金を遠心鋳造によりシ
リンダ内面に肉盛したのち、前記自溶性合金と同じかも
しくは異なる自溶性合金にW 、 N b 、 T a
、 V 、 T iなどの炭化物形成元素の炭化物お
よびOr、Fe。In a method for manufacturing a cylinder according to an embodiment of the present invention, when manufacturing a cylinder by building up a self-fusing alloy on the inner surface of the cylinder by centrifugal casting, a small amount of B is added to an alloy such as nickel-chromium or cobalt-chromium. After a self-fusing alloy to which alloying components such as Si and C are added is overlaid on the inner surface of the cylinder by centrifugal casting, W, N b , and T a are added to the self-fusing alloy that is the same as or different from the above-mentioned self-fusing alloy.
, V, Ti, and other carbide-forming elements such as Or, Fe.
Ni 、Goなどの硼化物形成元素の硼化物のうちから
選ばれる1種以上の耐摩成分を含む耐摩性自溶性合金を
遠心鋳造によりシリンダ内面にさらに積層して肉盛する
ようにしたことを特徴とするものである。A wear-resistant self-fluxing alloy containing one or more wear-resistant components selected from borides of boride-forming elements such as Ni and Go is further layered and overlaid on the inner surface of the cylinder by centrifugal casting. That is.
第1図(a)〜(f)は本発明の一実施態様によるシリ
ンダの製造方法を工程順に示す図であって、まず1例え
ば炭素鋼やクロム・モリブデン鋼などの構造用鋼からな
る丸棒母材1(第1図(a)参照)の中心に、機械切削
によってストレート状の中心孔2をあけることによりシ
リンダ組体3を作製しく第1図(b)参照)、次いでシ
リンダ組体3の中心孔2の内部にニッケルφクロム系あ
るいはコバルト・クロム系などの合金に少量のB、Sf
、Cなどの合金成分を添加した自溶性合金(融点:
900〜1100℃)からなる塊状または粉末状等の粉
粒体4を封入しく第1図(C)参照)、両端を閉塞して
内部を非酸化性雰囲気にした状態で1100〜1200
℃に加熱し、内部の自溶性合金からなる粉粒体4を溶融
させる。FIGS. 1(a) to 1(f) are diagrams illustrating a method for manufacturing a cylinder according to an embodiment of the present invention in the order of steps. The cylinder assembly 3 is manufactured by mechanically cutting a straight center hole 2 in the center of the base material 1 (see FIG. 1(a)) (see FIG. 1(b)), and then the cylinder assembly 3 Inside the center hole 2, a small amount of B or Sf is added to an alloy such as nickelφchromium or cobalt-chromium.
, self-fluxing alloys containing alloying components such as C (melting point:
900 to 1100°C) in the form of lumps or powder (see Figure 1 (C)), with both ends closed to create a non-oxidizing atmosphere inside.
℃ to melt the powder 4 made of a self-fusing alloy inside.
次に、シリンダ組体3を回転装置に取り付けて回転させ
、溶融状態の自溶性合金を遠心鋳造によりシリンダ組体
3の内面に密着させたまま東回させ、冷却後に均一厚さ
の第1肉盛層5を形成する(第1図(d)参照)、この
とき、第1肉感層5はシリンダ組体3の内面と合金化し
た状態で密着形成されている。Next, the cylinder assembly 3 is attached to a rotating device and rotated, and the molten self-fusing alloy is centrifugally cast while being in close contact with the inner surface of the cylinder assembly 3, and after cooling, a first wall of uniform thickness is formed. At this time, the first fleshy layer 5 is formed in close contact with the inner surface of the cylinder assembly 3 in an alloyed state.
続いて、一端を開放状態にしたのち中心孔2の中に、前
記自溶性合金と同一もしくは異なる自溶性合金ニW 、
N b 、 T a 、 V 、 T iなどの炭化
物形成元素の炭化物およびCr、Fe、Ni、G。Subsequently, after leaving one end open, a self-fusing alloy (W), which is the same as or different from the above-mentioned self-fusing alloy, is inserted into the center hole 2.
Carbides of carbide forming elements such as Nb, Ta, V, Ti and Cr, Fe, Ni, G.
などの硼化物形成元素の硼化物のうちから選ばれる1種
以上の耐摩成分をlθ〜70重量%程度含む耐摩性自溶
性合金からなる塊状または粉末状等の粉粒体6を封入し
く第1図(e)参照)、両端を閉塞して内部を非酸化性
雰囲気にした状態で1100〜1200℃に加熱し、内
部の自溶性合金からなる粉粒体6を溶融させる。A first granular material 6 in the form of lumps or powder made of a wear-resistant self-fluxing alloy containing about lθ to 70% by weight of one or more wear-resistant components selected from borides of boride-forming elements such as (See Figure (e)), both ends are closed to create a non-oxidizing atmosphere inside and heated to 1100 to 1200°C to melt the powder 6 made of a self-fusing alloy inside.
引続いて、シリンダ組体3を回転装置に取り付けて回転
させ、溶融状態の自溶性合金および耐摩成分を遠心鋳造
により前記第1肉盛層5に密着させたまま凝固させ、冷
却後に均一厚さの第2肉盛層7を形成する(第1図(f
)参照)、このとき、上記耐摩成分は自溶性合金よりも
比重が大きいため、前記耐摩成分は第1肉盛層5側に集
まった状態となっている。なお、耐摩性自溶性合金から
なる粉粒体6を溶融させた場合、第1肉感層5の表面部
分をも溶融する可能性はある、がシリンダ組体3の内面
には第1肉感層5の一部が合金化して残留しているため
、溶融しても問題はなく、この第1肉感層5の存在によ
って、第2肉盛、層7は耐摩成分を含んでいたとしても
高い密着性をもって形成される。Subsequently, the cylinder assembly 3 is attached to a rotating device and rotated, and the molten self-fusing alloy and the wear-resistant component are solidified while being in close contact with the first overlay layer 5 by centrifugal casting, and after cooling, a uniform thickness is obtained. (FIG. 1(f)
)) At this time, since the wear-resistant component has a higher specific gravity than the self-fusing alloy, the wear-resistant component is concentrated on the first built-up layer 5 side. Note that when the powder 6 made of wear-resistant self-fluxing alloy is melted, there is a possibility that the surface portion of the first sensual layer 5 will also be melted; Since a part of the layer remains alloyed, there is no problem even if it is melted, and due to the presence of this first fleshy layer 5, the second overlay, layer 7, has high adhesion even if it contains wear-resistant components. It is formed with.
そして、この第2肉盛層7の表面は欠陥が多いので、切
削加工を施すことによって前記欠陥を除去し、さらに研
磨仕上げを行って、エンジニアリングプラスチックスや
ファインセラミックス等の射出成形機や押出機の構成部
品であるシリンダ8とする。Since the surface of this second overlay layer 7 has many defects, the defects are removed by cutting, and the surface is polished and finished in an injection molding machine or an extrusion machine for engineering plastics, fine ceramics, etc. The cylinder 8 is a component of the cylinder 8.
本発明の他の実施態様によるシリンダの製造方法は、自
溶性合金を遠心鋳造によりシリンダ内面に肉盛してシリ
ンダを製造するに−際し、ニッケル・クロム系あるいは
コバルト・クロム系などの合金に少量のB、Si 、C
などの合金成分を添加した自溶性合金を遠心鋳造により
シリンダ内面に肉盛したのち、前記自溶性合金と同じか
もしくは異なる自溶性合金を遠心鋳造によりシリンダ内
面にさらに積層して肉盛するようにしたことを特徴とす
るものである。In a method for manufacturing a cylinder according to another embodiment of the present invention, when manufacturing a cylinder by overlaying a self-fusing alloy on the inner surface of the cylinder by centrifugal casting, an alloy such as a nickel-chromium alloy or a cobalt-chromium alloy is used. Small amount of B, Si, C
After applying a self-fusing alloy to the inner surface of the cylinder by centrifugal casting, a self-fusing alloy that is the same as or different from the self-fusing alloy is further laminated to the inner surface of the cylinder by centrifugal casting. It is characterized by the fact that
7JIJ4図(a)〜(g)は本発明の他の実施態様に
よるシリンダの製造方法を工程順に示す図であって、ま
ず、例えば炭素鋼やクロム・モリブデン鋼などの構造用
鋼からなる丸棒母材11(第4図(a)参照)の中心に
、機械切削によって両端の開口径が異なる中心孔12を
あけることによりシリンダ組体13を作製しく第4図(
b)参照)、次いでシリンダ組体13の中心孔12の内
部にニッケル・クロム系あるいはコバルト・クロム系な
どの合金に少量のB、St 、Cなどの合金成分を添加
した自溶性合金(融点: 900〜1100℃)からな
る塊状または粉末状等の粉粒体14を封入しく第4図(
C)参照)、両端を閉塞して内部を非酸化性雰囲気にし
た状態で1100〜1200℃に加熱し、内部の自溶性
合金からなる粉粒体14を溶融させる。7JIJ4 Figures (a) to (g) are diagrams showing a method for manufacturing a cylinder according to another embodiment of the present invention in the order of steps. First, a round bar made of structural steel such as carbon steel or chromium-molybdenum steel is The cylinder assembly 13 is manufactured by mechanically cutting a center hole 12 with different opening diameters at both ends in the center of the base material 11 (see FIG. 4(a)).
b)), then a self-fusing alloy (melting point: Figure 4 (
C)), both ends are closed to create a non-oxidizing atmosphere inside and heated to 1100 to 1200°C to melt the powder 14 made of a self-fusing alloy inside.
次に、シリンダ組体13を回転装置に取り付けて回転さ
せ、溶融状態の自溶性合金を遠心鋳造によりシリンダ組
体13の内面に密着させたまま凝固させ、中心孔12に
おける開口径の大きな部位(第4図左側の部位)に第1
肉盛暦15を形成する(第4図(d)参照)、このとき
、第1肉盛層15はシリンダ組体13の大開口径側の内
面と合金化した状態で密着形成されている。Next, the cylinder assembly 13 is attached to a rotating device and rotated, and the molten self-fusing alloy is solidified while being in close contact with the inner surface of the cylinder assembly 13 by centrifugal casting. Part 1 on the left side of Figure 4)
When the overlay layer 15 is formed (see FIG. 4(d)), the first overlay layer 15 is formed in close contact with the inner surface of the cylinder assembly 13 on the large opening diameter side in an alloyed state.
続いて、一端を開放状態にしたのち中心孔12の中に、
前記自溶性合金と同一もしくは異なる自溶性合金からな
る塊状または粉末状等の粉粒体16を封入しく第4図(
e)参照)、両端を閉塞して内部を非酸化性雰囲気にし
た状態で1100〜1200”0に加熱し、内部の自溶
性合金からなる粉粒体16を溶融させる。Next, after leaving one end open, the center hole 12 is filled with
A granular material 16 in the form of a lump or powder made of a self-fusing alloy that is the same as or different from the above-mentioned self-fusing alloy is enclosed.
(see e)), both ends are closed to create a non-oxidizing atmosphere inside and heated to 1100 to 1200''0 to melt the powder 16 made of a self-fusing alloy inside.
続いて、シリンダ組体13を回転装置に取り付けて回転
させ、溶融状態の自溶性合金を遠心鋳造により前記第1
肉感層15および小開口径側の中心孔12の内面に密着
させたまま凝固させ、冷却後に第2肉感層17を形成す
る(第4図(f)参照)、なお、第2肉感層17を形成
するための自溶性合金を溶融させた場合、第1肉感暦1
5の部分を溶融する可能性はあるが、シリンダ組体13
の内面には第1肉盛層15の一部が合金化して残留して
いるため、溶融しても問題はなく、この第1肉感層15
の存在によって、第2肉感層17はストレート状に形成
される。Subsequently, the cylinder assembly 13 is attached to a rotating device and rotated, and the molten self-fusing alloy is centrifugally cast into the first
The sensuous layer 15 and the inner surface of the center hole 12 on the small diameter side are solidified, and after cooling, the second sensual layer 17 is formed (see FIG. 4(f)). When the self-fusing alloy is melted to form the first sensual calendar 1
Although there is a possibility that the part 5 may be melted, the cylinder assembly 13
Since a part of the first overlay layer 15 is alloyed and remains on the inner surface, there is no problem even if it melts, and this first overlay layer 15
Due to the presence of , the second flesh-sensitive layer 17 is formed in a straight shape.
次に、前記第2肉盛層17および第1肉盛層15に対し
て切削加工を施すことによって所定形状の大開口径部分
と小間口径部分とを有する中心孔18aに形成し、さら
に、研磨仕上げを行って内面に均一厚さで肉盛層19が
形成された所望形状のシリンダ18とする。Next, the second build-up layer 17 and the first build-up layer 15 are cut to form a center hole 18a having a predetermined shape with a large opening diameter portion and a booth diameter portion, and then polished and finished. By doing this, a cylinder 18 having a desired shape with a built-up layer 19 formed with a uniform thickness on the inner surface is obtained.
(実施例1)
この実施例1では第1図に示した工程に従って実施した
。(Example 1) This Example 1 was carried out according to the steps shown in FIG.
まず、クロム・モリブデン鋼(JIS SCM)より
なる丸棒母材(第1図(L)参照)の中心に、機械加工
によってストレート状の中心孔2をあけてシリンダ組体
3を作製しく第1図(b)参照)、次いでシリンダ組体
3の中心孔2の内部にN i −Co −Cr −S
i −B系の自溶性合金からなる粉粒体4を3.5kg
封入しく第1図(c)参照)、両端を閉塞して内部を不
活性雰囲気にした状態で約1150℃に加熱して、内部
の自溶性合金からなる粉粒体4を溶融させた。First, a straight center hole 2 is machined in the center of a round bar base material (see Fig. 1 (L)) made of chromium molybdenum steel (JIS SCM) to fabricate the cylinder assembly 3. (see figure (b)), then N i -Co -Cr -S is added inside the center hole 2 of the cylinder assembly 3.
3.5 kg of powder 4 made of i-B type self-fusing alloy
After sealing (see FIG. 1(c)), it was heated to about 1150° C. with both ends closed to create an inert atmosphere inside, and the powder 4 made of a self-fusing alloy inside was melted.
次に、シリンダ組体3を回転装置に取り付けて回転させ
、溶融状態の自溶性合金を遠心鋳造によりシリンダ組体
3の内面に密着させたまま凝固させ、冷却後に均一厚さ
の第1肉感層5を形成した(第1図(d)参照)。Next, the cylinder assembly 3 is attached to a rotating device and rotated, and the molten self-fusing alloy is solidified by centrifugal casting while being in close contact with the inner surface of the cylinder assembly 3. After cooling, a first sensuous layer with a uniform thickness is formed. 5 (see FIG. 1(d)).
続いて、一端を開放状態にしたのち中心孔2の中に、N
i−Co−Cr−3i−B系の自溶性合金にNbCを5
0重量%添加した粉粒体6を2.5kg封入しく第1図
(8)参照)1両端を閉塞して内部を不活性雰囲気にし
た状態で約1150〜1200℃に加熱して前記粉粒体
6を溶融させた。Next, after leaving one end open, insert N into the center hole 2.
Adding NbC to i-Co-Cr-3i-B self-fluxing alloy
2.5 kg of the powder 6 containing 0% by weight was sealed (see Fig. 1 (8)) 1 with both ends closed to create an inert atmosphere inside and heated to about 1150 to 1200°C to form the powder. Body 6 was melted.
続いて、シリンダ組体3を回転装置に取り付けて回転さ
せ、溶融状態の自溶性合金およびNbCを遠心鋳造によ
り前記第1肉感層5に密着させたまま凝固させ、冷却後
に均一厚さの第2肉感層7を形成させた(第1図(f)
参照)。Next, the cylinder assembly 3 is attached to a rotating device and rotated, and the molten self-fusing alloy and NbC are solidified by centrifugal casting while being in close contact with the first sensual layer 5, and after cooling, a second layer of uniform thickness is formed. A fleshy layer 7 was formed (Fig. 1(f)
reference).
次いで、前記第1および第2肉盛層5,7の部分におけ
る硬さおよび表面からの硬さ変化を調べたところ、第1
表(ただし、HRCにより測定)および第2図(ただし
、Hvにより測定)に示す結果であった。Next, when the hardness of the first and second build-up layers 5 and 7 and the change in hardness from the surface were investigated, it was found that the first
The results were shown in the table (measured by HRC) and FIG. 2 (measured by Hv).
(比較例1)
この比較例1では第5図に示した工程に従って実施した
。(Comparative Example 1) Comparative Example 1 was carried out according to the steps shown in FIG.
まず、クロム・モリブデン鋼(J I SSCM)より
なる丸棒母材(第5図(a)参照)の中心に、機械加工
によってストレート状の中心孔22をあけてシリンダ組
体23を作製しく第5図(b)参照)、次いでシリンダ
組体23の中心孔22の内部にNt−Co−Cr−3i
−B系の自溶性合金からなる粉粒体24を3.5kg
封入しく第5図(C)参照)、両端を閉塞して内部を不
活性雰囲気にした状態で約1150℃に加熱して、内部
の自溶性合金からなる粉粒体24を溶融させた。First, a straight center hole 22 is machined in the center of a round bar base material (see Fig. 5(a)) made of chromium molybdenum steel (JI SSCM) to fabricate the cylinder assembly 23. 5(b)), then Nt-Co-Cr-3i is placed inside the center hole 22 of the cylinder assembly 23.
-3.5 kg of powder 24 made of B-based self-fusing alloy
After sealing (see FIG. 5(C)), it was heated to about 1150° C. with both ends closed to create an inert atmosphere inside, and the powder 24 made of a self-fusing alloy inside was melted.
次に、シリンダ組体23を回転装置に取り付けて回転さ
せ、溶融状態の自溶性合金を遠心鋳造によりシリンダ組
体23の内面に密着させたまま凝固させ、冷却後に均一
厚さの肉感層25を形成した(第5図(d)参照)。Next, the cylinder assembly 23 is attached to a rotating device and rotated, and the molten self-fusing alloy is solidified while being in close contact with the inner surface of the cylinder assembly 23 by centrifugal casting, and after cooling, a fleshy layer 25 with a uniform thickness is formed. (See FIG. 5(d)).
次いで、前記肉感層25の部分における硬さを調べたと
ころ、同じく第1表(ただし、HRCにより測定)に示
す結果であった。Next, the hardness of the flesh-sensitive layer 25 was examined, and the results were also shown in Table 1 (measured by HRC).
(比較例2)
この比較例2では、前記比較例1において使用したNi
−Co−Cr−5i −B系の自溶性合金に、5重量%
のNbCを添加した粉粒体24を用いたほかは比較例1
と同様にして肉盛層25を形成させた。(Comparative Example 2) In this Comparative Example 2, the Ni used in Comparative Example 1 was
-Co-Cr-5i -B-based self-fluxing alloy, 5% by weight
Comparative Example 1 except that powder 24 to which NbC was added was used.
The built-up layer 25 was formed in the same manner as above.
次いで、前記肉盛層25の部分における硬さおよび表面
からの硬さ変化を調べたところ、第1表(ただし、HR
Cにより測定)および第3図(ただし、Hvにより測定
)に示す結果であった。Next, the hardness of the built-up layer 25 and the change in hardness from the surface were investigated, and the results were as shown in Table 1 (however, HR
The results were as shown in Figure 3 (measured by Hv) and Figure 3 (measured by Hv).
第2図に示すように、本発明の実施例1では、第2肉盛
層7中に含まれる耐摩成分(N b C)は第1肉盛層
5との境界部付近に集中しており、母材との間には第1
肉盛層5があると共に、母材との間で合金化されている
ため、母材から肉盛層にかけての硬さが大きいレベルに
あり且つ硬さ変化がさほど急激ではなく、かつ゛また、
密着性にも著しく優れたものとなっており、仕上げ加工
を行ったのちには高硬度の表面を形成できることが確か
められた。As shown in FIG. 2, in Example 1 of the present invention, the wear-resistant component (N b C) contained in the second build-up layer 7 is concentrated near the boundary with the first build-up layer 5. , there is a first
Since there is a build-up layer 5 and it is alloyed with the base metal, the hardness from the base metal to the build-up layer is at a high level, and the change in hardness is not very rapid, and
The adhesion was also extremely excellent, and it was confirmed that a highly hard surface could be formed after finishing.
これに対して、比較例1では耐摩成分を含んでいないた
め硬さが低く、比較例2では第3図にも示すように耐摩
成分が母材の近傍に集中しているとともに母材との合金
化がなされていないため、母材から肉盛層にかけての硬
さが著しく急激に変化しており、かつまた、母材との密
着性にも劣ったものになっていることが確かめられた。On the other hand, in Comparative Example 1, the hardness is low because it does not contain wear-resistant components, and in Comparative Example 2, as shown in Figure 3, the wear-resistant components are concentrated in the vicinity of the base material, and the hardness is low. It was confirmed that due to the lack of alloying, the hardness from the base metal to the overlay layer changed significantly and rapidly, and the adhesion to the base metal was also poor. .
(実施例2)
この実施例2では第4図に示した工程に従って実施した
。(Example 2) Example 2 was carried out according to the steps shown in FIG.
マス、クロム・モリブデン鋼(JIS
SCM)よりなる丸棒母材11(第4図(a)参照)の
中心に、機械加工によって両端の開口径が異なる中心孔
12をあけることによりシリンダ組体13を作製しく第
4図(b)参照)、次いでシリンダ組体13の中心孔1
2の内部にNi−Co−Cr−3i −B系の自溶性合
金からなる粉粒体14を3.5kg封入しく第4図(C
)参照)、両端を閉塞して内部を不活性雰囲気にした状
態で約1150.”0に加熱して、内部の自溶性合金か
らなる粉粒体14を溶融させた。A cylinder assembly 13 is formed by machining a center hole 12 with different opening diameters at both ends in the center of a round bar base material 11 (see Fig. 4(a)) made of mass, chromium molybdenum steel (JIS SCM). (see FIG. 4(b)), then open the center hole 1 of the cylinder assembly 13.
Figure 4 (C
), approximately 1150 mm with both ends closed and an inert atmosphere inside. It was heated to 0 to melt the internal powder 14 made of a self-fusing alloy.
次に、シリンダ組体13を回転装置に取り付けて回転さ
せ、溶融状態の自溶性合金を遠心鋳造によりシリンダ組
体13の中心孔12のうち大開口径側部分に密着させた
まま凝固させて第1肉盛層15を形成した(第4図(d
)参照)。Next, the cylinder assembly 13 is attached to a rotating device and rotated, and the molten self-fusing alloy is solidified by centrifugal casting while remaining in close contact with the large diameter side portion of the center hole 12 of the cylinder assembly 13. A built-up layer 15 was formed (Fig. 4(d)
)reference).
続いて、一端を開放状態にしたのち中心孔12の中に、
N i −Co−Cr−S i −B系の自溶性合金よ
りなる粉粒体16を2.5kg封入しく第4図(e)参
照)、両端を閉塞して内部を不活性雰囲気にした状態で
約1150℃に加熱して前記粉粒体16を溶融させた。Next, after leaving one end open, the center hole 12 is filled with
2.5 kg of granular material 16 made of a self-fusing alloy of N i -Co-Cr-S i -B system is enclosed (see Fig. 4(e)), and both ends are closed to create an inert atmosphere inside. The powder and granular material 16 was melted by heating to about 1150°C.
続いて、シリンダ組体13を回転装置に取り付けて回転
させ、溶融状態の自溶性合金を前記第1肉盛層15およ
び中心孔12の小開口径部分に密着させたまま凝固させ
、冷却後にほぼ均一厚さの第2肉盛層17を形成させた
(第4図(f)参照)。Subsequently, the cylinder assembly 13 is attached to a rotating device and rotated to solidify the molten self-fluxing alloy while keeping it in close contact with the first build-up layer 15 and the small opening diameter portion of the center hole 12, and after cooling, the self-fusing alloy is solidified. A second overlay layer 17 having a uniform thickness was formed (see FIG. 4(f)).
次に、前記第2肉感層17および第1肉盛層15に対し
て切削加工を施すことによって所定形状の大開口径部分
と小開口径部分とを有する中心孔18aに形成し、さら
に研磨仕上げ加工を行って、内面に耐食性合金よりなる
肉盛層19を均一に形成したシリンダ18を得た(第4
図(g)参照)。Next, the second fleshy layer 17 and the first overlay layer 15 are cut to form a center hole 18a having a predetermined shape with a large opening diameter portion and a small opening diameter portion, and then polished and finished. By doing this, a cylinder 18 was obtained in which a build-up layer 19 made of a corrosion-resistant alloy was uniformly formed on the inner surface (No. 4
(See figure (g)).
[発明の効果]
以上説明してきたように、本発明によれば、自溶性合金
を遠心鋳造によりシリンダ内面に肉盛してシリンダを製
造するに際し、自溶性合金を複数回に分けて各々遠心鋳
造によりシリンダ内面に積層して肉盛するようにしたか
ら、耐食性に優れているのはもちろんのこと、耐摩耗性
にも優れている肉感層を高い密着強度により強固に形成
させたシリンダを製造することが可能であり、また、肉
厚の大きな肉感層を形成したシリンダやストレート状で
ない凹および/または曲部分もしくはテーパ一部分を有
するシリンダ内面において均一厚さの肉盛層を形成した
シリンダを製造することが可能であるという非常に優れ
た効果がもたらされる。[Effects of the Invention] As described above, according to the present invention, when producing a cylinder by overlaying a self-fusing alloy on the inner surface of a cylinder by centrifugal casting, the self-fusing alloy is centrifugally cast in multiple steps. By laminating and overlaying on the inner surface of the cylinder, we are able to manufacture cylinders that have not only excellent corrosion resistance, but also have a strong fleshy layer with excellent wear resistance due to high adhesion strength. In addition, it is possible to manufacture cylinders in which a thick fleshy layer is formed, or cylinders in which a built-up layer of uniform thickness is formed on the inner surface of a cylinder that has a concave and/or curved portion or a tapered portion that is not straight. The very good effect that it is possible to achieve is brought about.
第1図(a)〜(f)は本発明の一実施態様によるシリ
ンダの製造工程を順次示す説明図、第2図は本発明の実
施例1により製造したシリンダの内面における硬さ変化
を調べた結果を示すグラフ、第3図は比較例2により製
造したシリンダの内面における硬さ変化を調べた結果を
示すグラフ、第4図(a)〜(g)は本発明の他の実施
態様によるシリンダの製造工程を順次示す説明図、第5
図(a)〜(d)は従来例によるシリンダの製造工程を
順次示す説明図である。
1,11・・・丸棒母材、
2.12・・・中心孔、
3.13・・・シリンダ組体、
4.14・・・粉粒体、
s 、 i s、・・・第1肉感層、
6.16・・・粉粒体、
7.17・・・第2肉盛層、
8.18・・・シリンダ。FIGS. 1(a) to (f) are explanatory diagrams sequentially showing the manufacturing process of a cylinder according to an embodiment of the present invention, and FIG. 2 is an examination of changes in hardness on the inner surface of a cylinder manufactured according to Example 1 of the present invention. FIG. 3 is a graph showing the results of examining the hardness change on the inner surface of the cylinder manufactured according to Comparative Example 2. FIGS. Explanatory diagram showing the manufacturing process of the cylinder sequentially, No. 5
Figures (a) to (d) are explanatory diagrams sequentially showing the manufacturing process of a cylinder according to a conventional example. 1, 11... Round bar base material, 2.12... Center hole, 3.13... Cylinder assembly, 4.14... Powder, s, is,... 1st Sensitive layer, 6.16...Powder material, 7.17...Second overlay layer, 8.18...Cylinder.
Claims (3)
してシリンダを製造するに際し、自溶性合金を複数回に
分けて各々遠心鋳造によりシリンダ内面に積層して肉盛
することを特徴とするシリンダの製造方法。(1) When producing a cylinder by overlaying a self-fusing alloy on the inner surface of a cylinder by centrifugal casting, the self-fusing alloy is layered and overlaid on the inner surface of the cylinder in multiple steps each time by centrifugal casting. How to manufacture cylinders.
してシリンダを製造するに際し、ニッケル・クロム系あ
るいはコバルト・クロム系などの合金に少量のB、Si
、Cなどの合金成分を添加した自溶性合金を遠心鋳造に
よりシリンダ内面に肉盛したのち、前記自溶性合金と同
じかもしくは異なる自溶性合金にW、Nb、Ta、V、
Tiなどの炭化物およびCr、Fe、Ni、Coなどの
硼化物のうちから選ばれる1種以上の耐摩成分を含む耐
摩性自溶性合金を遠心鋳造によりシリンダ内面にさらに
積層して肉盛することを特徴とする特許請求の範囲第(
1)項に記載のシリンダの製造方法。(2) When producing a cylinder by overlaying a self-fusing alloy on the inner surface of the cylinder by centrifugal casting, small amounts of B, Si, etc. are added to the nickel-chromium or cobalt-chromium alloy.
, C, etc. is added to the inner surface of the cylinder by centrifugal casting, and then W, Nb, Ta, V,
A wear-resistant self-fluxing alloy containing one or more wear-resistant components selected from carbides such as Ti and borides such as Cr, Fe, Ni, and Co is further laminated and overlaid on the inner surface of the cylinder by centrifugal casting. Characteristic Claim No. (
1) A method for manufacturing the cylinder described in item 1).
してシリンダを製造するに際し、ニッケル・クロム系あ
るいはコバルト・クロム系などの合金に少量のB、Si
、Cなどの合金成分を添加した自溶性合金を遠心鋳造に
よりシリンダ内面に肉盛したのち、前記自溶性合金と同
じかもしくは異なる自溶性合金を遠心鋳造によりシリン
ダ内面にさらに積層して肉盛することを特徴とする特許
請求の範囲第(1)項に記載のシリンダの製造方法。(3) When manufacturing cylinders by overlaying self-fusing alloys on the inner surface of cylinders by centrifugal casting, small amounts of B, Si, etc. are added to alloys such as nickel-chromium or cobalt-chromium.
A self-fusing alloy to which alloy components such as , C, etc. are added is deposited on the inner surface of the cylinder by centrifugal casting, and then a self-fusing alloy that is the same as or different from the above-mentioned self-fusing alloy is further laminated and deposited on the inner surface of the cylinder by centrifugal casting. A method for manufacturing a cylinder according to claim (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31452186A JPS63165057A (en) | 1986-12-26 | 1986-12-26 | Production of cylinder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31452186A JPS63165057A (en) | 1986-12-26 | 1986-12-26 | Production of cylinder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63165057A true JPS63165057A (en) | 1988-07-08 |
Family
ID=18054283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31452186A Pending JPS63165057A (en) | 1986-12-26 | 1986-12-26 | Production of cylinder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63165057A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010099693A (en) * | 2008-10-23 | 2010-05-06 | Sumitomo Heavy Ind Ltd | Method for producing wear resistant lining layer and composite cylinder |
-
1986
- 1986-12-26 JP JP31452186A patent/JPS63165057A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010099693A (en) * | 2008-10-23 | 2010-05-06 | Sumitomo Heavy Ind Ltd | Method for producing wear resistant lining layer and composite cylinder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3204173B1 (en) | Method for manufactured a rolling mill roll by laser cladding | |
US5593726A (en) | Hot isostatic pressing process for applying wear and corrosion resistant coatings | |
US4276096A (en) | Method for producing hard metal bodies of increased wear resistance | |
AU2001258982B2 (en) | Iron-base alloy containing chromium-tungsten carbide and a method of producing it | |
JPS63162801A (en) | Manufacture of screw for resin processing machine | |
SE463466B (en) | PRESS ROLL FOR USE IN A PAPER MACHINE AND PROCEDURE FOR MANUFACTURE OF SUCH A PRESS ROLL | |
JP2002510361A (en) | Surface abrasion resistant sintered machine parts and method of manufacturing the same | |
US4851267A (en) | Method of forming wear-resistant material | |
US4430389A (en) | Composite cylinder and casting alloy for use therein | |
GB2157600A (en) | Producing continuous-casting moulds | |
JPS61183430A (en) | Screw superior in resistances to wear and corrosion for injection molding machine and its manufacture | |
DK158957B (en) | COMPOSITION MATERIALS INCLUDING A CARBID MATERIAL, ITS MANUFACTURING AND USE | |
JPS63165057A (en) | Production of cylinder | |
JPS61186406A (en) | Nozzle for injection molding machine having excellent resistance to wear and corrosion and its production | |
JP3301441B2 (en) | Composite cylinder for high-temperature and high-pressure molding | |
JPH02129451A (en) | Manufacture of single cam made of casting material | |
JPS6036857B2 (en) | Cylindrical, cylindrical wear-resistant castings and their manufacturing method | |
JP3814054B2 (en) | Composite roll and method for producing the same | |
KR101149787B1 (en) | Manufacturing method of molds and dies which have multi-layers by thermal spraying | |
JP3301442B2 (en) | Composite cylinder for high-temperature and high-pressure molding | |
JPH02190465A (en) | Parts having complicated shape and its production | |
JPH0270051A (en) | Formation of wear resistant structure of sliding part for injection molding machine | |
JPH04187746A (en) | Composite cylinder having lining layer constituted of corrosion resistant and wear resistant sintered alloy | |
JPS5838219B2 (en) | Method for manufacturing cast steel parts with wear resistance on the surface layer | |
JP2620297B2 (en) | Nozzle for injection molding machine |