DK158957B - COMPOSITION MATERIALS INCLUDING A CARBID MATERIAL, ITS MANUFACTURING AND USE - Google Patents

COMPOSITION MATERIALS INCLUDING A CARBID MATERIAL, ITS MANUFACTURING AND USE Download PDF

Info

Publication number
DK158957B
DK158957B DK364581A DK364581A DK158957B DK 158957 B DK158957 B DK 158957B DK 364581 A DK364581 A DK 364581A DK 364581 A DK364581 A DK 364581A DK 158957 B DK158957 B DK 158957B
Authority
DK
Denmark
Prior art keywords
carbide
steel
matrix
sintering
composite material
Prior art date
Application number
DK364581A
Other languages
Danish (da)
Other versions
DK364581A (en
DK158957C (en
Inventor
Nicholas Makrides
William Max Stoll
Original Assignee
Kennametal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26874678&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK158957(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kennametal Inc filed Critical Kennametal Inc
Publication of DK364581A publication Critical patent/DK364581A/en
Publication of DK158957B publication Critical patent/DK158957B/en
Application granted granted Critical
Publication of DK158957C publication Critical patent/DK158957C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

DK 158957 BDK 158957 B

Opfindelsen angår et kompositmateriale af den art, der er angivet i krav l's indledning, en fremgangsmåde til fremstilling af dette materiale, hvilken fremgangsmåde er af den art, der er angivet i krav 5's indledning, samt anven-5 delsen af kompositmaterialet i slidbestandige værktøjer.The invention relates to a composite material of the kind set forth in the preamble of claim 1, a method of making this material which is of the kind set forth in the preamble of claim 5, and to the use of the composite material in wear resistant tools.

Siden 1940 er slidbestandige dele til nedslidningstilbøjelige værktøjer og udstyr blevet fremstillet af cementerede car bidlegeringer bestående af en findispergeret hård-carbidfase baseret på metaller valgt fra grupperne IVB, VB 10 og VIB i det periodiske system, cementeret med cobalt eller nikkel eller begge dele. Når de er fremstillet ved sammenpresning af fintformalede pulvere, efterfulgt af sintring i flydende fase til opnåelse af konsolidering, har de cementerede carbidlegeringer mikrostrukturer, der er karakteri-15 stiske ved hårdcarbidkorn, der almindeligvis befinder sig i området fra 1 til 15 μπι.Since 1940, wear-resistant parts for wear-prone tools and equipment have been made of cemented carbide alloys consisting of a finely dispersed hard-carbide phase based on metals selected from groups IVB, VB 10 and VIB of the periodic system, cemented with cobalt or nickel or both. When prepared by compression of finely ground powders, followed by liquid phase sintering to achieve consolidation, the cemented carbide alloys have microstructures characteristic of hard carbide grains, generally in the range of 1 to 15 μπι.

Anvendelsen af jern eller stål som bindingsmaterialer har vist sig at være vanskelig, eftersom den findelte tilstand og den store specifikke overflade af de dispergerede 20 hårde faser fremmer dannelsen af forholdsvis skøre, binære indskuds legeringer af wolfram og jern med carbon, hvorved andelen af det frie bindingsrumfang formindskes, og det sintrede legeme bliver skørt i større eller mindre grad, afhængigt af den præcision, der overholdes med hensyn til sammen-25 sætningen og sintringsparametrene, og afhængigt af de tilsætninger af frit carbon, der anvendes til tilfredsstillelse af affiniteten mellem jern og carbon.The use of iron or steel as bonding materials has been found to be difficult since the finely divided state and the large specific surface of the dispersed 20 hard phases promote the formation of relatively brittle, binary insert alloys of tungsten and iron with carbon, the volume of bond is reduced and the sintered body is brittle to a greater or lesser extent, depending on the precision observed with respect to the composition and sintering parameters, and depending on the free carbon additions used to satisfy the affinity between iron and carbon.

Til forskel fra cobalt og nikkel danner jern et stabilt carbid, Fe3C, og har større tilbøjelighed til dannelse 30 af skøre binære carbider end cobalt- eller nikkelbindingsmaterialer. Carbonoverførsel fra den hårde carbidfase eller de hårde carbidfaser til jern fremmes ved tilstedeværelsen af den flydende eller plastiske tilstand af et jern- eller stålbindemiddel under sintring i flydende tilstand, udført 35 ved temperaturer nær ved, ved eller over bindemidlets smeltepunkt .Unlike cobalt and nickel, iron forms a stable carbide, Fe3C, and is more likely to form brittle binary carbides than cobalt or nickel bonding materials. Carbon transfer from the hard carbide phase (s) to iron is promoted by the presence of the liquid or plastic state of an iron or steel binder during liquid sintering, carried out at temperatures near, at or above the melting point of the binder.

22

DK 158957 BDK 158957 B

I den senere tid er anvendelige slidbestandige dele blevet fremstillet ved støbning af en flydende stålsmelte eller en støbej ernssmelte i et fremstillet lag af forholdsvis grove partikler, f.eks. sintret, cementeret carbid med en 5 kornstørrelse fra ca. 3,2 mm til ca. 4,8 mm.More recently, wear-resistant parts have been made by casting a liquid steel melt or a cast melt in a manufactured layer of relatively coarse particles, e.g. sintered, cemented carbide with a 5 grain size from approx. 3.2 mm to approx. 4.8 mm.

Fremgangsmåden ifølge den foreliggende opfindelse adskiller sig fra smelte-stålstøbemetoden ifølge US patentskrifterne nr. 4.024.902 og 4.140.170 og fra smelte-støbe-jernsmetoden ifølge US patentskrift nr. 4.119.454 ved to ho-10 vedfaktorer: (1) et kompakt pulver af stål eller jern og grafit indeholdende dispergerede partikler af sintret, cementeret carbid, eller et antal stykker dimensioneret sintret, cementeret carbid, eller primære, uformalede, makrokrystal-linske carbidkrystaller sintres ved en temperatur under smel-15 tetemperaturen for stål eller støbejern, og (2) i stedet for anvendelsen af matrix-legeringssmeltetemperaturer til opnåelse af legeringstæthed benyttes der høje sammenpresningsenhedstryk, både før og efter sintring, hvorved man undgår ødelæggelse af de dispergerede hårdfasepartikler ved dekom-20 ponering, smeltning eller carbondiffusionsreaktioner.The method of the present invention differs from the melt steel casting method of U.S. Patent Nos. 4,024,902 and 4,140,170 and from the melt cast iron method of U.S. Patent No. 4,119,454 by two main factors: (1) a compact powder of steel or iron and graphite containing dispersed particles of sintered, cemented carbide, or a number of pieces of dimensioned sintered, cemented carbide, or primary, non-milled, macrocrystalline carbide crystals sintered at a temperature below the melting temperature of steel or cast iron, and (2) instead of the use of matrix alloy melting temperatures to achieve alloy density, high compressive unit pressures are used, both before and after sintering, thereby avoiding destruction of the dispersed hard phase particles by decomposition, melting or carbon diffusion reactions.

Støberimetoder mangler også de velkendte økonomiske fordele, der er særpræget for pulvermetallurgiske metoder, især når der skal fremstilles et meget stort antal slidbestandige dele med enten lille eller tyndt tværsnit. På grund 25 af de nødvendigvis forholdsvis høje behandlingstemperaturer-og flydeenhedsgraden kan der også dannes overskydende mængder af uønskede binære carbider til trods for anvendelsen af forholdsvis grove carbidpartikler med lille overfladeareal.Casting methods also lack the well-known economic advantages that are characteristic of powder metallurgical methods, especially when a very large number of wear-resistant parts of either small or thin cross-section are to be produced. Due to the necessarily relatively high treatment temperatures and flow rates, excess amounts of undesirable binary carbides can also be formed, despite the use of relatively coarse small surface area carbide particles.

Eftersom både den konventionelle pulvermetallurgiske 30 metode til presning og sintring af fintformalede, stål-cementerede carbidpulvere og metoder, der involverer udstøbning af flydende stål eller flydende støbejern i partikelformet, cementeret carbid, der i forvejen er anbragt i forme, resulterer i de i det foregående beskrevne problemer, er det øn-35 skeligt at udvikle en metode, ved hvilken en stål-cementeret hårdcarbid-legering kan fremstilles i det væsentlige fri for 3Since both the conventional powder metallurgical method of pressing and sintering of finely ground, steel-cemented carbide powders and methods involving casting of liquid steel or liquid cast iron in particulate cemented carbide previously placed in molds result in the foregoing described problems, it is desirable to develop a method by which a steel-cemented hard carbide alloy can be prepared substantially free of 3

DK 158957 BDK 158957 B

binære indskudslegeringer af jern og wolfram med carbon, og ved hvilken den dispergerede hårdcarbidfase er fri for grænsef ladearealdekomponering, smeltning eller termisk revnedannelse og er fast bundet i en stålmatrix, der i det væsentlige 5 er fri for makroporøsitet.binary iron and tungsten binary deposit alloys in which the dispersed hard carbide phase is free of interface charge decomposition, melting or thermal cracking and is firmly bound in a steel matrix substantially free of macroporosity.

Formålet med opfindelsen er altså at angive og fremstille et materiale, der har dispergeret hårdcarbidmateriale fast og vedhængende bundet i en metallisk matrix, ved pul-vermetallurgisk teknik med hensyn til sammenpresning og høj-10 temperatur- og højtryksdiffusionsbindingf hvilket materiale er i det væsentlige ikke-maskinbearbejdeligt og har tilstrækkelig slagstyrke til at være egnet til anvendelse som f.eks. sikkerhedsplader og komponenter i hængelåse.Accordingly, the object of the invention is to provide and prepare a material which has dispersed hard carbide material firmly and adherently bonded in a metallic matrix, by powder metallurgical technique in compression and high temperature and high pressure diffusion bonding, which material is substantially non-ferrous. machine machinable and has sufficient impact strength to be suitable for use as e.g. safety plates and components in padlocks.

Fra DE offentliggørelsesskrift nr. 2.722.271 kendes 15 der en fremgangsmåde til fremstilling af et kompositmateri-ale, ved hvilken der anvendes en udgangsblanding af titancar-bidpulver og en stålmatrix. Blandingen koldpresses og vakuum-sintres derpå ved 1375°C, idet sintringen synes at være en sintring i flydende fase. Det dannede materiale varmpresses 20 derefter ved 1275°C.From DE-Publication No. 2,722,271 there is known a process for preparing a composite material using an initial mixture of titanium carbide powder and a steel matrix. The mixture is cold-pressed and then vacuum-sintered at 1375 ° C, with the sintering appearing to be a liquid phase sintering. The resulting material is then hot pressed at 1275 ° C.

Som det fremgår af det følgende, anvender man ved fremgangsmåden ifølge den foreliggende opfindelse en sintring ved en temperatur, ved hvilken stålet ikke er flydende, og det sintrede materiale underkastes ikke nogen varmpresning 25 ved 1275°C. Hertil kommer, at der ifølge DE offentliggørelsesskriftet er tale om et lagdelt kompositmateriale med sektioner med forskelligt carbidindhold, medens materialet fremstillet ifølge opfindelsen har en metallisk matrix støbt omkring f.eks. en wolframcarbid-stål-bestanddel.As can be seen from the following, the method of the present invention uses a sintering at a temperature at which the steel is not liquid and the sintered material is not subjected to any hot pressing 25 at 1275 ° C. In addition, according to the DE publication publication, it is a layered composite material with different carbide content sections, while the material made according to the invention has a metallic matrix molded around e.g. a tungsten carbide steel component.

30 I DE offentliggørelsesskrift nr. 2.630.932 er der an givet to eksempler på et hårdt kompositmateriale alene og et tredie eksempel på et kompositmateriale med kun carbidpar-tikler i en stålmatrix. Eksempel 1 vedrører kun dannelsen af et kompositmateriale af cementeret carbid og stålpulver.30 In DE Publication 2,630,932, two examples of a hard composite material alone and a third example of a composite material containing only carbide particles in a steel matrix are given. Example 1 relates only to the formation of a composite material of cemented carbide and steel powder.

35 Eksempel 2 vedrører dannelsen ved sintring af en lagstruktur, hvor det første lag indeholder en blanding af carbid og stål- 4Example 2 relates to the formation of sintering a layer structure, the first layer containing a mixture of carbide and steel.

DK 158957 BDK 158957 B

pulver, og hvor det andet distinkte lag indeholder stålpulver. Eksempel 3 vedrører dannelsen af en struktur, ved hvilken støbt diwolframcarbid knuses og anbringes i en form, hvorpå stål støbes omkring carbidet. Der er i dette skrift 5 ikke tale om, at et wolframcarbid-stålmatrix-kompositmateri-ale indlejres i og bindes til en anden metallisk matrix.powder, and where the second distinct layer contains steel powder. Example 3 relates to the formation of a structure by which molded diwolfram carbide is crushed and placed in a mold on which steel is molded around the carbide. In this specification 5, there is no mention that a tungsten carbide-steel matrix composite material is embedded in and bonded to another metallic matrix.

I US patentskrift nr. 2.731.711 beskrives fremstillingen af cementeret carbid, og der er ikke tale om et komposit-materiale som det ifølge opfindelsen, dvs. et kompositmate-10 riale omfattende stål-cementeret carbid bundet til en metallisk matrix. Ifølge patentskriftet anvendes der kuglemølle-formaling og sintring i flydende fase; såfremt en sådan teknik blev anvendt i forbindelse med den foreliggende opfindelse, ville dannelsen af den uønskede eta-fase forøges.U.S. Patent No. 2,731,711 discloses the manufacture of cemented carbide and is not a composite material such as that of the invention, i.e. a composite material comprising steel-cemented carbide bonded to a metallic matrix. According to the patent, ball mill milling and liquid phase sintering are used; if such a technique was used in connection with the present invention, the formation of the undesirable eta phase would be increased.

15 I US patentskrift nr. 4.101.318 er der tale om frem stilling af et kompositmateriale af korn af et monocarbid, baseret i det væsentlige på en hexagonal fast opløsning (Mo,W)C indlejret i et bindemiddel (30-80 vægt-%) af en varmbearbejdelig stållegering. Udgangspulveret indeholder 20 bindemiddel og carbider og indeholder fortrinsvis chrom og vanadium og vådformales til forøgelse af jernpulverets sintringsaktivitet. Pulverblandingen sintres ved en temperatur, der ikke er højere end den, ved hvilken der dannes eta-fase.US Patent No. 4,101,318 discloses the preparation of a composite material of a monocarbide grain, based essentially on a hexagonal solid solution (Mo, W) C embedded in a binder (30-80% by weight). ) of a hot-workable steel alloy. The starting powder contains 20 binder and carbides and preferably contains chromium and vanadium and is ground to increase the sintering activity of the iron powder. The powder mixture is sintered at a temperature not higher than that at which eta phase is formed.

Den cementerede carbidbestanddel anbringes i en form, og et 25 støbeligt lavtlegeret stål støbes omkring carbidbestanddelen.The cemented carbide component is placed in a mold and a castable low alloy steel is cast around the carbide component.

Ifølge dette patentskrift reguleres dannelsen af eta-fase ved hjælp af den kemiske sammensætning. Ifølge den foreliggende opfindelse undgås kuglemølleformaling af det cementerede carbidpulver, medens der ifølge patentskriftet 30 anvendes vådformaling, og ifølge den foreliggende opfindelse anvendes der en sintringsteknik i fast tilstand, medens der ifølge patentskriftet anvendes en sintringstemperatur, der afhænger af den kemiske sammensætning.According to this patent, the formation of eta phase is regulated by the chemical composition. According to the present invention, ball mill milling of the cemented carbide powder is avoided while wet milling is used according to patent 30, and according to the present invention a solid sintering technique is used, while according to the patent a sintering temperature which depends on the chemical composition is used.

Ved opfindelsen afhjælpes således en række ulemper 35 ved den nævnte kendte teknik, og det angivne formål opnås.Thus, the invention alleviates a number of disadvantages of the prior art and the stated object is achieved.

55

DK 158957 BDK 158957 B

Kompositmaterialet ifølge opfindelsen, der som nævnt er af den art, der er angivet i krav l's indledning, er ejendommeligt ved, at carbidmaterialets kornstørrelse er 0,04--0,08 mm, og at grænsefladen mellem carbidmaterialet og ma-5 trixen ikke er tykkere end 50 jum, fortrinsvis 0-40 μπι, og i det væsentlige er fri for eta-carbider, og at carbidmaterialet eventuelt er forsynet med en metalbelægning, som danner en stærk og vedhæftende binding mellem carbidmaterialet og matrixen, idet carbidmaterialet og matrixmaterialet er ens-10 artet sammenblandet uden væsentlig kornstørrelsesreduktion, hvorhos grænsefladen er dannet ved sintring af den homogene blanding ved en temperatur under den, ved hvilken stålet i det mindste er delvis flydende.The composite material according to the invention, as mentioned in the preamble of claim 1, is characterized in that the grain size of the carbide material is 0.04-0-0.08 mm and that the interface between the carbide material and the matrix is not thicker than 50 µm, preferably 0-40 μπι, and substantially free of eta carbides, and the carbide material optionally provided with a metal coating which forms a strong and adherent bond between the carbide material and the matrix, the carbide material and the matrix material being similar -10 species intermixed without significant grain size reduction, the interface formed by sintering the homogeneous mixture at a temperature below that at which the steel is at least partially liquid.

Fremgangsmåden ifølge opfindelsen, der som nævnt er 15 af den art, der er angivet i krav 5's indledning, er ejendommelig ved, at der anvendes carbidpartikler med en partikelstørrelse i området 0,04-0,08 mm, og at sintringsbehandlingen udføres ved en temperatur under den, ved hvilken stålet i det mindste er delvis flydende.The process of the invention, as mentioned, is of the kind set forth in the preamble of claim 5, characterized in that carbide particles having a particle size in the range of 0.04-0.08 mm are used and that the sintering treatment is carried out at a temperature. below it, at which the steel is at least partially liquid.

20 Fremgangsmåden ifølge opfindelsen omfatter således f .eks. forening og blanding af sintrede, cementerede wolfram-carbidpartikler eller primære, uformalede, makrokrystallinske (dvs. svarende til mere end 400 mesh) wolframcarbidkrystaller med en matrix af jern- og grafitpulvere eller stålpulver, 25 kold isostatisk presning af materialet i en for-formnings--form til en ønsket form, dernæst sintring i fast tilstand ved en forholdsvis lav temperatur, specielt ved en temperatur under stålets smeltetemperatur, fortrinsvis mellem 1037°C og 1232°C, og derpå varm isostatisk presning (HIP) af det 30 sintrede legeme ved en temperatur godt under stålets smeltepunkt til opnåelse af endelig sammentrykning eller tæt-hedsforøgelse. Der dannes en diffusionsbinding mellem de hårde carbidpartikler og det omgivende stålpulver, der holder de slidbestandige hårdcarbidpartikler på plads.Thus, the method of the invention comprises e.g. combining and blending sintered cemented tungsten carbide particles or primary, unpainted, macrocrystalline (i.e., more than 400 mesh) tungsten carbide crystals with a matrix of iron and graphite or steel powders, cold isostatic pressing of the material into a preform. -form to a desired shape, then sintering in solid state at a relatively low temperature, especially at a temperature below the steel melting temperature, preferably between 1037 ° C and 1232 ° C, and then hot isostatic pressing (HIP) of the sintered body at a temperature well below the melting point of the steel to obtain final compression or tightness increase. A diffusion bond is formed between the hard carbide particles and the surrounding steel powder that holds the wear-resistant hard carbide particles in place.

66

DK 158957 BDK 158957 B

En kritisk faktor ved den foreliggende opfindelse er højtrykssammenpresning (eller -tæthedsforøgelse), såvel kold som varm, til undgåelse af proces temperatur er, der frembringer flydende tilstand af stålbindingsfasen og dermed 5 fremmer de ovennævnte, uønskede reaktioner mellem stålbindingsmaterialet og hård, dispergeret fase. Teknikken forbedres i denne henseende ved anvendelsen af en hård dispergeret partikel eller -partikler med lille specifikt overfladeareal. Fremgangsmåden frembyder også et signifikant 10 fremskridt i produktionsevnen ved fremstillingen af stål-car-bid-sliddele med forholdsvis ringe størrelse eller med tyndt tværsnit eller kompliceret form, sammenlignet med de metoder, der er beskrevet i d^ i det foranstående nævnte USA-patent-skrifter, hvor smeltet stål eller smeltet støbejern hældes 15 ud i en form, der i- forvejen er fyldt med partikler af cementeret carbid.A critical factor of the present invention is high pressure compression (or density increase), both cold and hot, to avoid process temperature which produces liquid state of the steel bonding phase and thus promotes the aforementioned undesirable reactions between the steel bonding material and hard, dispersed phase. The technique is improved in this regard by the use of a hard dispersed particle or particles with small specific surface area. The process also provides a significant advancement in production capability in the manufacture of relatively small size steel or carbide wear parts, of thin cross-section or complicated shape, as compared to the methods described in the aforementioned United States Patent Specifications. , in which molten steel or molten cast iron is poured into a form already filled with particles of cemented carbide.

Endvidere er såvel kemisk kontrol som fleksibilitet med hensyn til sammensætningen af matrix-legeringen overlegen i forhold til smeltemstal-støbemetoder. Undgåelsen af de høje 20 behandlingstemperaturer, der kræves til smeltning og udhæld-ning af stål eller støbejern giver bedre støbeform-økonomi, idet formene kan genanvendes, og bedre økonomi med hensyn til matrix-metaller, der ikke giver hældetab og omkostninger til recirkulation. Fremgangsmåden ifølge opfindelsen er vel-25 egnet til dannelse af dele, der skal modstå såvel kraftigt slibende slidkræfter som slagpåvirkningskræfter. Fremgangsmåden er ideelt egnet til fremstilling af slidbestandige dele og skæreværktøjer til udstyr til formål i landbruget, vej-og motorvejskonstruktion og -vedligeholdelse, knusning, 30 findeling, udgravning og behandling. Eftersom slidbestan-digheden af de produkter, der fremstilles ved denne fremgangsmåde, er så høj, at de er praktisk taget ikke-maskin-bearbejdelige, er de også ideelt egnede til anvendelse som sikkerhedsplader i pengeskabe eller -bokse. Denne slidbestan-35 dighed i kombination med disse materialers slagfasthed gør dem også egnede til anvendelse i hængelåse.Furthermore, both chemical control and flexibility with respect to the composition of the matrix alloy are superior to molten casting methods. The avoidance of the high 20 processing temperatures required for smelting and pouring steel or cast iron provides better mold economy as molds can be reused and better economics with respect to matrix metals which do not result in pour loss and recirculation costs. The process of the invention is well suited for forming parts which are to withstand both abrasive abrasive and impact forces. The process is ideally suited for the manufacture of abrasion resistant parts and cutting tools for equipment for agricultural purposes, road and highway construction and maintenance, crushing, grinding, excavation and treatment. Since the wear resistance of the products produced by this process is so high as to be practically non-machinable, they are also ideally suited for use as safety plates in safes or boxes. This durability in combination with the impact resistance of these materials also makes them suitable for use in padlocks.

77

DK 158957 BDK 158957 B

Opfindelsens natur vil fremgå mere tydeligt af den følgende, detaljerede beskrivelse i forbindelse med tegningen, på hvilken fig. 1 viser et mikrofoto ved 1500 ganges forstørrelse 5 udvisende en cementeret carbidpartikel med et cobaltbinde-middel indlejret i og bundet til en konsolideret stålpulver-matrix, fig. 2 viser et perspektivbillede i tværsnit af en slidbestandig plade med cementerede carbid-indsatser indlej-10 ret i og bundet til en konsolideret stålpulvermatrix, og fig. 3 viser et tværsnit af en del af et skæreværktøj med cementeret carbidknop indlejret i og bundet til en konsolideret stålpulvermatrix.The nature of the invention will become more apparent from the following detailed description of the drawings, in which: FIG. Figure 1 shows a micrograph at 1500x magnification 5 showing a cemented carbide particle with a cobalt binder embedded in and bonded to a consolidated steel powder matrix; 2 is a cross-sectional perspective view of a wear-resistant plate with cemented carbide inserts embedded in and bonded to a consolidated steel powder matrix; and FIG. 3 shows a cross section of a portion of a cemented carbide knob cutting tool embedded in and bonded to a consolidated steel powder matrix.

Forlegeret stålmatrixpulver, eller en blanding af 15 jernpulver og grafitpulver, indeholdende 20 til 70 vægtprocent af den færdige blanding sammenbringes og blandes med fra 30 til 80 vægtprocent hårdcarbidpartikler af W, Ti, Ta,Alloyed steel matrix powder, or a mixture of 15 iron and graphite powders containing 20 to 70% by weight of the finished mixture is combined and mixed with from 30 to 80% by weight hard carbide particles of W, Ti, Ta,

Nb eller Zr, V, Hf, Mo, B, Si, Cr, eller en blanding af disse, enten som sintrede, cementerede carbidpartikler eller 20 som primære, ucementerede, usintrede, uformalede carbidkry-staller. Der sættes ca. 3% naphtha eller andet flydende car-bonhydrid til pulverblandingen under sammenblandingen til hindring af segregering af carbidpartikler med højere densitet under sammenblanding og fyldning af formen, især når 25 den dispergerede, hårde fase er sammensat af hårdcarbidpartikler, der er grovere end ca. 250 jum.Nb or Zr, V, Hf, Mo, B, Si, Cr, or a mixture thereof, either as sintered, cemented carbide particles or 20 as primary, uncemented, unsintered, non-milled carbide crystals. There are set approx. 3% naphtha or other liquid hydrocarbon for the powder mixture during mixing to prevent segregation of higher density carbide particles during mixing and filling of the mold, especially when the dispersed hard phase is composed of hard carbide particles coarser than about 10 250 µm.

I tilfælde af dispergerede hårdfasepartikler, der er finere end ca. 250 /zm, kan der anvendes paraffinvoks eller et andet fast smøremiddel såsom zinkstearat, fordi muligheden 30 for komponent-partikel-segregering under sammenblanding derved formindskes.In the case of dispersed hard phase particles finer than approx. 250 µm, paraffin wax or other solid lubricant such as zinc stearate may be used, thereby reducing the possibility of component-particle segregation during mixing.

Derefter pakkes matrixpulveret indeholdende den dispergerede, hårde carbidfase i en for-formnings-form fremstillet af polyurethan eller et andet elastomert plastmateriale.Then, the matrix powder containing the dispersed hard carbide phase is packaged in a preformed mold made of polyurethane or other elastomeric plastic material.

35 Stålpulvere med forskellige kemiske sammensætninger, f.eks. carbonstål, legeret stål eller rustfrit stål i pulverform,35 Powders of steel with various chemical compositions, e.g. carbon steel, alloy steel or stainless steel in powder form,

DK 158957 BDK 158957 B

s eller grundstof pulvere, f.eks. af jern, kobber eller nikkel, kan også pakkes i den samme form sammen med den sammensatte hoved-stålpulver-carbid-blanding, på ethvert ønsket sted, stødende op til og i kontakt med legemet indeholdende den 5 dispergerede hårdcarbidfase, eller omgivende legemet, eller indesluttende en dimensioneret, sintret og cementeret car-bidindsats. Den pakkede form med et passende udformet dæksel tillukkes derpå og anbringes i en gummipose eller -ballon, som dernæst evakueres, tillukkes og presses isostatisk, for-10 trinsvis ved et tryk på ca. 2450 kg/cm2, men ikke under ca.s or elemental powders, e.g. of iron, copper or nickel, may also be packed in the same form together with the composite master-steel powder carbide mixture, at any desired location, adjacent to and in contact with the body containing the dispersed hard carbide phase, or the surrounding body, or including a dimensioned, sintered and cemented carbide insert. The packaged mold with a suitably designed cover is then sealed and placed in a rubber bag or balloon which is then evacuated, sealed and pressed isostatically, preferably at a pressure of approx. 2450 kg / cm2, but not less than approx.

700 kg/cm2.700 kg / cm 2.

Den kompakte pulver-for-form fjernes derpå fra formen og opvarmes i vakuum eller i en beskyttende eller reducerende gasatmosfære, f.eks. hydrogen, til en temperatur under smel-15 tepunktet for stålmatrixen, fortrinsvis mellem 1037°C og 1149°C, imellem 20 og 90 minutter.The compact powder form is then removed from the mold and heated in vacuo or in a protective or reducing gas atmosphere, e.g. hydrogen, to a temperature below the melting point of the steel matrix, preferably between 1037 ° C and 1149 ° C, between 20 and 90 minutes.

En alternativ for-formnings-metode består i pakning af den sammensatte blanding, der indeholder fortrinsvis flydende carbonhydrid, f.eks. naphtha, fortrinsvis 7 vægtpro-20 cent, og methylcellulose, fortrinsvis 0,5 vægtprocent, som presnings-smøremiddel og bindemiddel i grøn tilstand, i en stål-for-formnings-form.An alternative preforming method consists in packing the composite mixture containing preferably liquid hydrocarbon, e.g. naphtha, preferably 7% by weight, and methylcellulose, preferably 0.5% by weight, as pressing lubricant and green binder, in a steel preform.

Den grønne for-form lufttørres derpå ved stuetemperatur i formen, fjernes derefter fra formen og anbringes i 25 en gummipose, som dernæst evakueres og tillukkes, klar til kold isostatisk sammenpresning som foran beskrevet.The green preform is then air dried at room temperature in the mold, then removed from the mold and placed in a rubber bag which is then evacuated and closed, ready for cold isostatic compression as described above.

Kompakte materialer, der således er sintret i den faste tilstand, bibeholder nogen porøsitet. Krympningen under sintring overstiger ikke 1%. Det har imidlertid vist sig, at 30 den tæthedsforøgelse, der opnås ved isostatisk sammenpresning under højt tryk, efterfulgt af sintring som ovenfor beskrevet, er tilstrækkelig til eliminering af ethvert forbindende porenetværk, og at de sintrede legemer derfor opfylder betingelserne for effektiv endelig tæthedsforøgelse 35 ved kendte varme isostatiske pressemetoder (HIP).Compact materials thus sintered in the solid state retain some porosity. The shrinkage during sintering does not exceed 1%. However, it has been found that the density increase achieved by high pressure isostatic compression, followed by sintering as described above, is sufficient for the elimination of any interconnecting pore network and that the sintered bodies therefore meet the conditions for effective final density increase 35 at known hot isostatic pressing methods (HIP).

99

DK 158957 BDK 158957 B

Varm isostatisk presning til den foreliggende opfindelses formål udføres i en indifferent atmosfære, fortrinsvis ved fra 870°C til 1260°C, eller ved enhver temperatur under smeltetemperaturen for stålet, i fra 20 til 90 minutter ved 5 et minimumstryk på ca. 700 kg/cm2, men fortrinsvis ved et tryk på ca. 1050 kg/cm2 i 60 minutter. Lige så vigtigt er det, at der dannes et legeringslag ved grænsefladerne mellem cementerede carbidpartikler og stålmatrix. Denne grænseflade-legeringsbinding, der først dannes under sintring og 10 senere forøges under varm isostatisk presning, består af et tyndt grænseareal mellem f.eks. en 0,75%Js carbonstålmatrix og dispergerde, cobalt-cementerede cartUdpartikler i et størrelsesområde fra 3,2 mm til 4,8 mm. Bindingen er typisk mindre end 40 μιη tyk og ikke mere end 50 tyk. Grænsefla-15 de-bindingslegeringen er under disse betingelser principielt sammensat af cobalt og jern. Bindingsdannelsen bliver betydningsfuld, især når den hårde, dispergerede fase består af forholdsvis grove partikler, fordi disse er tilbøjelige til at trække sig ud, såfremt de ikke er sikkert forankrede i 20 matr ixleger ingen.Hot isostatic pressing for the purposes of the present invention is carried out in an inert atmosphere, preferably at from 870 ° C to 1260 ° C, or at any temperature below the steel melting temperature, for from 20 to 90 minutes at a minimum pressure of approx. 700 kg / cm 2, but preferably at a pressure of approx. 1050 kg / cm 2 for 60 minutes. Equally important is the formation of an alloy layer at the interfaces between cemented carbide particles and steel matrix. This interface alloy bond, first formed during sintering and later increased during hot isostatic pressing, consists of a thin interface between e.g. a 0.75% Js carbon steel matrix and dispersed, cobalt-cemented cartridge particles ranging in size from 3.2 mm to 4.8 mm. The bond is typically less than 40 μιη thick and no more than 50 thick. The interface alloy bond under these conditions is basically composed of cobalt and iron. The bond formation becomes significant, especially when the hard, dispersed phase consists of relatively coarse particles, because these tend to pull out if they are not securely anchored in 20 matrices.

Cementerede wolframcarbid-partikelstørrelser, der udgør den dispergerede hårde fase, vælges fra det brede størrelsesområde fra 2,5 mesh til 100 mesh: (U.S. Sieve Series), idet foretrukne størrelsesområder er -12+20 mesh, 25 -6+12 mesh og -4+6 mesh. Specifikt udvalgte størrelsesområder kan frembringes ved kendte metoder til knusning og udvælgelse af størrelse af sintrede, cementerede carbid-værktøjskom-ponenter, og hvilke legeringer er mere almindelige på basis af et cobalt- eller nikkel-cementeret wolframcarbid (WC), til 30 tider også indeholdende Tic, TaC eller NbC eller kombinationer af disse hårdcarbider.Cemented tungsten carbide particle sizes constituting the dispersed hard phase are selected from the wide size range from 2.5 mesh to 100 mesh: (US Sieve Series), with preferred size ranges being -12 + 20 mesh, 25 -6 + 12 mesh and - 4 + 6 mesh. Specifically selected size ranges can be produced by known methods for crushing and selecting the size of sintered cemented carbide tool components, and which alloys are more common on the basis of a cobalt or nickel cemented tungsten carbide (WC), including 30 times containing Tic, TaC or NbC or combinations of these hard carbides.

Et yderligere nyttigt aspekt ved fremgangsmåden ifølge opfindelsen er påføringen af et overtræk af en legering eller et metal, fortrinsvis Corson-bronze eller nikkel, på over-35 fladerne af en dimensioneret, sintret, cementeret wolframcarbid- indsats med udvalgt form og størrelse, eller et antal 10A further useful aspect of the method of the invention is the application of a coating of an alloy or metal, preferably Corson bronze or nickel, to the surfaces of a dimensioned, sintered, cemented tungsten carbide insert of selected shape and size, or a number 10

DK 158957 BDK 158957 B

sådanne indsatser, som derpå indlejres i et stål- eller jern-grafit-matrixpulver på udvalgte steder i en for-form-nings-form, inden den fyldte form sammentrykkes isostatisk.such inserts, which are then embedded in a steel or iron-graphite matrix powder at selected locations in a pre-forming mold, before the filled mold is compressed isostatically.

Det anvendte overtræk af Corson-bronze kan have en af de i 5 tabel I angivne nominelle sammensætninger:The Corson bronze coating used may have any of the nominal compositions listed in Table I:

Tabel 1Table 1

Corson-bronze-sammensætninger A DCorson Bronze Compositions A D

10 2,5 vægtprocent Ni 10 vægtprocent Mn 0,6 vægtprocent Si 4 vægtprocent Co 0,25 vægtprocent Mn 86 vægtprocent Cu rest Cu 15 Efter kold isostatisk sammenpresning og under påføl gende sintring og varm isostatisk presning af det kompakte carbid-stål danner overtrækket på det cementerede carbid-legeme autogent en diffusionsbinding til forøgelse af den bindingsstyrke, med hvilken dimensionerede, cementerede 20 carbidlegemer holdes i matrixen. Ved denne metode kan et cementeret carbidlegeme, eller et antal deraf, med specifik form og< størrelse erstatte en dispergeret, hård carbidfase af partikelformet natur, og derved danne et slidbestandigt legeme eller et værktøj til skæring eller boring i metal 25 eller klippeformationer.10 2.5% by weight Ni 10% by weight Mn 0.6% by weight Si 4% by weight Co 0.25% by weight Mn 86% by weight Cu residual Cu 15 After cold isostatic compression and with subsequent sintering and hot isostatic pressing of the compact carbide steel, the coating forms on the cemented carbide body autogenously provides a diffusion bond to increase the bond strength with which sized, cemented 20 carbide bodies are retained in the matrix. In this method, a cemented carbide body, or a number thereof, of specific shape and size can replace a dispersed, hard carbide phase of particulate nature, thereby forming a wear-resistant body or tool for cutting or drilling in metal or rock formations.

Det bemærkes, at de forholdsvis lave behandlingstempe-raturer, der anvendes ved fremgangsmåden ifølge den foreliggende opfindelse, i tilfælde, hvor der anvendes stålmatrix-pulversammensætninger, som ikke binder godt til partikler 30 af en dispergeret hårdcarbidfase,' kan'resultere i en utilstrækkelig bindingsstyrke ved matrix-carbidpartikel-græn-sefladen. I sådanne tilfælde, f.eks. når der anvendes legeringsstålpulvere, som vides at være mindre sintringsdygtige ved de forholdsvis lave sintringstemperaturer i fast til-35 stand, der anvendes ved fremgangsmåden ifølge opfindelsen, har det vist sig at være fordelagtigt at for-overtrækkeIt is noted that the relatively low processing temperatures used in the process of the present invention in cases where steel matrix powder compositions which do not bind well to particles 30 of a dispersed hard carbide phase can result in an insufficient bond strength at the matrix-carbide particle interface. In such cases, e.g. when alloy steel powders which are known to be less sintering at the relatively low solid-state sintering temperatures used in the process of the invention have been found to be advantageous in coating

XIXI

DK 158957 BDK 158957 B

hårdcarbidpartiklerne med nikkel eller kobber, f.eks. ved kendte processer såsom elektrofri metalovertrækning eller ved vakuum-dampfaseovertrækning. Nikkelovertræk, der således er påført hårdcarbidfraktionen, der er dispergeret, inden 5 blandingen, har vist sig at forbedre carbidpartikel-bin-dingsstyrken. En sådan for-overtrækning af hårdcarbidpartiklerne vil også være fordelagtig, når der anvendes pulvere af rustfrit stål.the nickel or copper hard carbide particles, e.g. by known processes such as electro-free metal coating or by vacuum-vapor phase coating. Nickel coatings thus applied to the hard carbide fraction dispersed prior to mixing have been shown to improve the carbide particle bond strength. Such pre-coating of the hard carbide particles will also be advantageous when using stainless steel powders.

En yderligere og nyttig del af den ovenfor beskrevne 10 metode er inkorporeringen af en dispergeret hårdcarbidfase i et stål- eller jern-grafit-pulver, der er komprimeret, bestående af uformalede makrokrystallinske carbidkrystaller i størrelsesområdefraktioner mellem 60 og 400 mesh (U.S. Sieve Series), og i foretrukne områder, f.eks. -60+100 mesh, 15 -80+200 mesh eller -150+325 mesh, i stedet for og erstattende partikler af cementeret carbid. Fremgangsmåden ifølge opfindelsen til sammensætning og dannelse af makrostrukturerede, cementerede carbidmaterialer er nøjagtigt som beskrevet i det foranstående.A further and useful part of the above described method is the incorporation of a dispersed hard carbide phase into a compressed steel or iron graphite powder consisting of non-milled macrocrystalline carbide crystals in size ranges between 60 and 400 mesh (US Sieve Series), and in preferred areas, e.g. -60 + 100 mesh, 15 -80 + 200 mesh or -150 + 325 mesh, instead of and replacing cemented carbide particles. The process of the invention for the composition and formation of macrostructured cemented carbide materials is exactly as described above.

20 Den anvendte, forholdsvis lave behandlingstemperatur resulterer i en makrostruktur, der i det væsentlige er fri for skøre dobbeltcarbider af jern og wolfram (eta-fase) og grov porøsitet. Tendensen for i flydende fase sintrede, mi-krostrukturerede, cementerede wolframcarbidlegeringer, hvor 25 der anvendes f.eks. et stålbindemiddel i stedet for det sædvanlige cobaltbindemiddel, til udvikling af skøre faser af eta-typen er velkendt. Det antages, at undgåelsen af sintring i flydende fase og den deraf følgende undgåelse af carbon-overførsel, som en sådan fremgangsmåde fremmer, 30 samt den unikt lille specifikke overflade af de uformalede makrokrystallinske carbidpartikler, der udgør en del af den dispergerede, hårde fase, er essentiel for den heldige dannelse af de tofasede stål-carbid-makrostrukturer, som fremstilles ved denne metode. Det vil forstås, at sintring 35 i flydende fase som her omtalt betyder sintring ved en temperatur, ved hvilken stålbindemidlet er i det mindste par- 12The relatively low treatment temperature used results in a macrostructure substantially free of brittle iron and tungsten (eta phase) double carbides and coarse porosity. The tendency of liquid phase sintered, microstructured cemented tungsten carbide alloys, where e.g. a steel binder instead of the usual cobalt binder for developing eta-type brittle phases is well known. It is believed that the avoidance of liquid phase sintering and the consequent avoidance of carbon transfer promoted by such a process, as well as the uniquely small specific surface of the non-milled macrocrystalline carbide particles which form part of the dispersed hard phase, is essential for the successful formation of the two-phase steel carbide macrostructures produced by this method. It will be appreciated that liquid phase sintering 35 as mentioned herein means sintering at a temperature at which the steel binder is at least par.

DK 158957 BDK 158957 B

tielt flydende. Undgåelsen af sintring i flydende fase ifølge den foreliggende opfindelse gælder derfor ikke ethvert metal eller enhver legering med lavere smeltepunkt, f.eks. kobber eller Corson-bronze, der kan tilsættes som et pulver eller 5 et overtræk til fremme af sanmenbinding eller tæthedsforø-gelse, og som tilsigtet kan blive flydende under sintring eller varm isostatisk presning.quite fluid. Therefore, the avoidance of liquid phase sintering according to the present invention does not apply to any metal or alloy having a lower melting point, e.g. copper or Corson bronze which can be added as a powder or a coating to promote seam bonding or density enhancement and which may be intentionally liquefied during sintering or hot isostatic pressing.

Anvendelsen af uformalede, makrokrystallinske hård-carbidkrystaller som en dispergeret hård fase er en foretruk-10 ken udførelsesform for fremgangsmåden ifølge opfindelsen som et effektivt middel til opretholdelse af en hård fase med lille specifik overflade. Det bemærkes dog, at i det væsentlige bindemiddel-fri, hårde aggregater af finere eller formalede hårde car bider kan anvendes på den nævnte måde.The use of non-milled, macrocrystalline hard-carbide crystals as a dispersed hard phase is a preferred embodiment of the process of the invention as an effective means of maintaining a hard phase of small specific surface. However, it is noted that substantially binder-free, hard aggregates of finer or ground hard car bites can be used in the aforementioned manner.

15 Et betydningsfuldt aspekt ved de ovennævnte, makro- strukturerede legemer er undgåelsen af kuglemølleformaling eller anden findeling af matrix-carbid-pulverblandingerne, eller af hvert af disse to materialer hver for sig, forud for kold isostatisk sammenpresning, sintring og HIP. Den 20 tidligere anvendte praksis, der i vid udstrækning er blevet betragtet som essentiel til opnåelse af gode, kommercielt anvendelige, cementerede carbidstrukturer, fører til forøget reaktion mellem carbider og jern-baserede matrixpulvere med deraf følgende dannelse af skøre dobbeltcarbider. Undgåelsen 25 af pulverformaling medfører også en omkostningsnedsættelse.An important aspect of the aforementioned macrostructured bodies is the avoidance of ball mill milling or other comminution of the matrix carbide powder mixtures, or of each of these two materials separately, prior to cold isostatic compression, sintering and HIP. The 20 practices previously used, which have been widely considered essential to obtain good, commercially usable, cemented carbide structures, lead to increased reaction between carbides and iron-based matrix powders, resulting in the formation of brittle double carbides. The avoidance of powder milling also results in a cost reduction.

Ved fremgangsmåden ifølge opfindelsen kan der anvendes ethvert af de makrokrystallinske carbider eller kombinationer eller faste opløsninger deraf, specifikt WC, TiC, TaC eller NbC, der alle udviser den lille specifikke overflade og an-30 gulære, blokformige former, der er typiske for disse grovkrystallinske mono- og binære carbider. Det er kendt, at primære, makrokrystallinske carbidmaterialer kan formales fint sammen med cobalt eller nikkel til dannelse af cementerede carbidmikrostrukturer ved sintring i flydende fase i 35 temperaturområdet fra 1315°C til 1538°C, hvor de resulterende, dispergerede hårdcarbidfaser typisk ligger mellem 1 μιη 13In the process of the invention, any of the macrocrystalline carbides or combinations or solid solutions thereof can be used, specifically WC, TiC, TaC or NbC, all of which exhibit the small specific surface and annular, block-shaped forms typical of these coarse crystalline mono- and binary carbides. It is known that primary macrocrystalline carbide materials can be finely ground together with cobalt or nickel to form cemented carbide microstructures upon liquid phase sintering in the temperature range from 1315 ° C to 1538 ° C, with the resulting dispersed hard carbide phases typically being between 1 μιη 13

DK 158957 BDK 158957 B

og ca. 10 /m. Fremgangsmåden ifølge opfindelsen resulterer i modsætning hertil i dispergerede, enkelte makrokrystal-linske carbidkorn i størrelsesområder udvalgt mellem de meget grovere yderpunkter fra 250 μια til ca. 40 μια.and approx. 10 / m. In contrast, the process of the invention results in dispersed single macrocrystalline linear carbide grains in size ranges selected from the much coarser extremes from 250 μια to ca. 40 μια.

5 Opfindelsen illustreres nærmere i de følgende eksemp ler.The invention is further illustrated in the following examples.

Eksempel 1Example 1

Slidbestandige skærespidser fremstilles til anvendelse 10 i roterende sukkerrørsskæremaskiner. Der fremstilles en ensartet sammenblandet blanding indeholdende ca. 55 vægtprocent ca. 3,3 mm til ca. 4,8 mm cobalt-cementerede wolframcarbid--granuler, ca. 44,67 vægtprocent -100 mesh atomiseret jernpulver og 0,33 vægtprocent -325 mesh grafitpulver. Under 15 sammenblandingen tilsættes der 5 vægtprocent naphtha til nedsættelse til et minimum af segregeringen af de cementerede carbidpartikler med højere densitet. Den fugtige blanding komprimeres manuelt i en elastomer polyurethan-formhulhed med den ønskede værktøjsform, idet der dimensioneres under 2 0 hensyn til kold isostatisk pulverkomprimering plus 1% sintrings-krympning. Efter kold isostatisk komprimering ved ca. 2450 kg/cm2 fjernes den komprimerede for-form fra formen og vakuumsintres ved ca. 1093°C i 60 minutter, hvorpå det sintrede legeme presses isostatisk ved ca. 1232°C i 60 minut-25 ter ved et tryk på ca. 1050 kg/cm2 under helium.Wear-resistant cutting tips are made for use in rotary sugar cane cutting machines. A uniformly mixed mixture is prepared containing approx. 55% by weight approx. 3.3 mm to approx. 4.8 mm cobalt-cemented tungsten carbide - granules, approx. 44.67 wt% -100 mesh atomized iron powder and 0.33 wt% -325 mesh graphite powder. During the mixing, 5% by weight of naphtha is added to reduce to a minimum the segregation of the higher density cemented carbide particles. The moist mixture is manually compressed into an elastomeric polyurethane mold cavity with the desired tool shape, dimensioning under cold isostatic powder compression plus 1% sintering shrinkage. After cold isostatic compression at approx. 2450 kg / cm 2, the compressed preform is removed from the mold and vacuum sintered at approx. 1093 ° C for 60 minutes, then the sintered body is isostatically pressed at approx. 1232 ° C for 60 minutes at a pressure of approx. 1050 kg / cm 2 under helium.

Metallografisk undersøgelse viser en matrixstruktur sammensat af hovedsageligt perlit og lidt ferrit, der er typisk for konventionelt, langsomt afkølet 0,75%'s carbonstål med lav porøsitet. De cementerede carbid-matrix-grænseflader 30 er optaget af bånd med en bredde på ca. 5 μια af en legering, der menes hovedsageligt at være sammensat af jern og cobalt.Metallographic examination shows a matrix structure composed of mainly perlite and some ferrite, which is typical of conventional, slowly cooled 0.75% low porosity carbon steel. The cemented carbide-matrix interfaces 30 are occupied by bands having a width of approx. 5 μια of an alloy believed to be composed mainly of iron and cobalt.

De cementerede carbiddispergerede partikler viser sig upåvirkede af termisk revnedannelse, og der findes ingen tegn på opløsning, smeltning eller dekomponering af den disper-35 gerede carbidfase ved eller nær ved grænsefladerne, idet disse grænseflader er skarpe, bortset fra den ovennævnte 14The cemented carbide dispersed particles are unaffected by thermal cracking, and there is no evidence of dissolution, melting or decomposition of the dispersed carbide phase at or near the interfaces, these interfaces being sharp except for the above-mentioned 14

DK 158957 BDK 158957 B

jern-cobalt-legerings-diffusionszone. Der iagttages ingen potentielt skadelige koncentrationer af eta-fase. Testlegemer bøjes manuelt over en dorn ved hamring ved stuetemperatur og viser sig at have høj modstandsdygtighed mod slagbelast-5 ning og at være i det væsentlige fri for skøre brud.iron-cobalt alloy diffusion zone. No potentially harmful concentrations of eta phase are observed. Test bodies are manually bent over a mandrel by hammering at room temperature and are found to have high impact resistance and to be substantially free of brittle fractures.

På tegningen viser fig. 1 et mikrofoto af et typisk areal i et materiale fremstillet ifølge eksempel 1, men med den undtagelse, at sintringen udføres ved ca. 1150°C. Et cobalt-cementeret wolframcarbid-granulat 40 er vist metallur-10 gisk bundet til et ulegeret carbonstål med en hovedsageligt perlittisk struktur 50 ved hjælp af en diffusionszone 45 indeholdende jern og cobalt. Dif fus ions zonen 45 er ca. 3 jum tyk.In the drawing, FIG. 1 is a micrograph of a typical area of a material made according to Example 1, but with the exception that the sintering is carried out at approx. 1150 ° C. A cobalt-cemented tungsten carbide granule 40 is shown metallurgically bonded to an alloyed carbon steel having a substantially perlittic structure 50 by means of an iron and cobalt diffusion zone 45. Dif fusion zone 45 is approx. 3 inches thick.

15 Eksempel 2Example 2

Der fremstilles en slidbestandig kvadratisk plade på ca. 2580 cm2 med en tykkelse på ca. 9,6 mm og bestående af 60 vægtprocent uformalet -60+100 mesh makrokrystallinsk WC cementeret med 40 vægtprocent 0,75%'s C-stål indeholdende 20 2 vægtprocent Cu. En ensartet tørblandet blanding af -60+100 mesh makrokrystallinske WC-krystaller, -325 mesh grafitpulver, -100 mesh jernpulver og -325 mesh kobberpulver tørblandes uformalet til en ensartet blanding og fugtes derpå ved blanding med flydende naphtha og methylcellulose svarende 25 til henholdsvis 7% og 0,5 vægtprocent af den tørre blanding, og pakkes dernæst i en stål-præform-støbeform til en fast, grøn pladeform med dimensioner svarende til ca. 102% af den ønskede endelige dimension.A wear-resistant square plate of approx. 2580 cm2 with a thickness of approx. 9.6 mm and consisting of 60% by weight of unpainted -60 + 100 mesh macrocrystalline WC cemented with 40% by weight 0.75% C-steel containing 20% by weight Cu. A uniform dry blend of -60 + 100 mesh macrocrystalline WC crystals, -325 mesh graphite powder, -100 mesh iron powder and -325 mesh copper powder is dry blended non-milled to a uniform mixture and then wetted by mixing with liquid naphtha and methyl cellulose corresponding to 25 and 7, respectively. % and 0.5% by weight of the dry mixture, and then packed in a steel preform mold to a solid, green plate mold with dimensions corresponding to approx. 102% of the desired final dimension.

Efter lufttørring i formen ved stuetemperatur fjernes 30 det sammenpressede legeme fra formen, anbringes i en gummipose og behandles yderligere ved kold isostatisk komprimering, sintring og HIP som beskrevet i eksempel 1. Metallo-grafisk undersøgelse viser en makrostruktur af makrokrystallinsk WC jævnt dispergeret i en stålmatrix. Der iagttages 35 et 5 ^m tykt bindingslag af ukendt sammensætning med WC-græn- 15After air drying in the mold at room temperature, the compressed body is removed from the mold, placed in a rubber bag and further treated by cold isostatic compression, sintering and HIP as described in Example 1. Metallographic examination shows a macrostructure of macrocrystalline WC evenly dispersed in a steel matrix. . A 5 µm thick bond layer of unknown composition with WC boundary is observed

DK 158957 BDK 158957 B

sefladerne. Disse grænseflader er fri for skøre, binære car-bidfaser og revnedannelser.sefladerne. These interfaces are free of brittle, binary carbide phases and cracking.

Eksempel 3 5 Der fremstilles et sammensat slidbestandigt legeme af stål med dimensionerne ca. 38,1 mm x 38,1 mm x 38,1 mm (terningform), omfattende en dimensioneret plade af sintret, cementeret 5 vægtprocents cobalt-wolfram-carbid, idet man hensigtsmæssigt indlejrer den dimensionerede plade af sin-10 tret, cementeret, carbid i det grønne pulver inden iso-kom-primeringen således, at dens ydre overflade er i plan med den ydre overflade af stålterningen. Der fremstilles en tør, uformalet blanding indeholdende 97,25 vægtprocent -100 mesh atomiseret jernpulver, 2 vægtprocent -325 mesh Cu-pulver og 15 0,75 vægtprocent grafit, og der blandes derpå med naphtha og methylcellulose svarende til henholdsvis 5 og 0,3 vægtprocent af den tørre blanding. Denne pakkes derefter i en elastomer form, hvorpå en kvadratisk ca. 645 mm2 plade med en tykkelse på ca, 6,4 mm af sintret cementeret carbid pres-20 ses ned i jernpulverblandingen således, at de ydre overflader er kongruente.Example 3 A composite wear resistant body of steel having the dimensions of approx. 38.1 mm x 38.1 mm x 38.1 mm (cube form), comprising a dimensioned plate of sintered, cemented 5 percent by weight cobalt-tungsten carbide, suitably embedding the dimensioned plate of sintered, cemented, carbide in the green powder prior to iso-priming such that its outer surface is flush with the outer surface of the steel cube. A dry, unpainted mixture containing 97.25 wt% -100 mesh atomized iron powder, 2 wt% -325 mesh Cu powder and 0.75 wt% graphite is prepared and then mixed with naphtha and methyl cellulose corresponding to 5 and 0.3 respectively. % by weight of the dry mixture. This is then packed in an elastomeric form, upon which a square approx. A 645 mm2 sheet having a thickness of about 6.4 mm of sintered cemented carbide is pressed into the iron powder mixture so that the outer surfaces are congruent.

Formen anbringes efter tillukning i en gummipose, evakueres, forsegles og komprimeres isostatisk på dette punkt, fjernes fra formen, sintres og komprimeres varmt og 25 isostatisk som i eksempel 1. Metallografisk undersøgelse viser, at den i forvejen anbragte, sintrede carbidplade er bundet gennem en 5 μπι grænseflade-bindingsfase til den stål-matrix, der omgiver den på tre sider, og at hele strukturen viser sig at være fejlfri og fri for revner.The mold is placed after closure in a rubber bag, evacuated, sealed and compressed isostatically at this point, removed from the mold, sintered and compacted hot and isostatically as in Example 1. Metallographic examination shows that the pre-installed sintered carbide plate is bonded through a 5 μπι interface bonding phase to the steel matrix surrounding it on three sides and that the entire structure turns out to be flawless and crack free.

3 0 Fig. 2 viser en slidplade 20 fremstillet på den måde, der er beskrevet i dette eksempel, dog med den undtagelse, at der er indlejret tre i stedet for én carbidindsats(er) 30 i pladen 20 således, at en overflade 45 af hver indsats 30 er i praktisk taget samme plan som den arbejdende ende 35 40 af værktøjet 20. Det bemærkes, at grænsefladebindingen 35 er praktisk taget ensartet og kontinuerlig og danner en 16FIG. 2 shows a wear plate 20 made in the manner described in this example, with the exception that three instead of one carbide insert (s) 30 are embedded in the plate 20 such that a surface 45 of each insert 30 is in substantially the same plane as the working end 35 40 of the tool 20. It is noted that the interface bond 35 is practically uniform and continuous, forming a 16

DK 158957 BDK 158957 B

sej og vedhængende binding mellem det cementerede carbid og den konsoliderede carbonstål- og kobbermatrix 25.tough and adherent bonding between the cemented carbide and the consolidated carbon steel and copper matrix 25.

Til visse anvendelser, der involverer slid, kan man, afhængigt af den korroderende natur af det miljø, hvori slid-5 pladen anvendes, med fordel erstatte de jern-, carbon- og kobberpulvere, der anvendes i dette eksempel, med pulvere af rustfrit stål eller legeret stål.For certain applications involving abrasion, depending on the corrosive nature of the environment in which the abrasive plate is used, the iron, carbon and copper powders used in this example can be replaced with stainless steel powders. or alloy steel.

Fig. 3 viser et tværsnit i en anden udførelsesform for et værktøj ifølge opfindelsen. Dette værktøj 1 kan frem-10 stilles i det væsentlige som beskrevet i eksempel 3, men med den undtagelse, at den cementerede carbid-indsats 5 får lov at have sin arbejdende ende 2 strækkende sig udad og ud over stållegemet 10 i værktøjet 1. Som vist i denne figur er indsatsen 5 bundet til stållegemet 10 ved hjælp af en dif-15 fusionszone 15, der er dannet ved interdiffusion af cobalt fra indsatsen 5 og jern fra stållegemet 10 under højtemperatur- og højtryks-sintringsoperationerne.FIG. 3 shows a cross section in another embodiment of a tool according to the invention. This tool 1 can be made substantially as described in Example 3, but with the exception that the cemented carbide insert 5 is allowed to have its working end 2 extending outwards and beyond the steel body 10 in the tool 1. As shown in this figure, the insert 5 is bonded to the steel body 10 by means of a diffusion fusion zone 15 formed by the interdiffusion of cobalt from the insert 5 and iron from the steel body 10 during the high temperature and high pressure sintering operations.

Claims (7)

1. Kompositmateriale omfattende 30-80 vægtprocent af et carbidmateriale såsom wolframcarbid, titancarbid, tantal- 5 carbid, niobiumcarbid, zirconiumcarbid, vanadiumcarbid, hafniumcarbid, chromcarbid, borcarbid, siliciumcarbid eller blandinger af disse carbider eller deres faste opløsninger og cementerede blandinger, og 20-70 vægtprocent af et matrix-materiale omfattende stål, stål og jern, stål og kobber 10 samt stål og nikkel, idet carbidmaterialet er indlejret i og bundet til matrixen, kendetegnet ved, at car-bidmaterialets kornstørrelse er 0,04-0,08 mm, og at grænsefladen mellem carbidmaterialet og matrixen ikke er tykkere end 50 μια, fortrinsvis 0-40 μιη, og i det væsentlige er fri 15 for eta-carbider, og at carbidmaterialet eventuelt er forsynet med en metalbelægning, som danner en stærk og vedhæftende binding mellem carbidmaterialet og matrixen, idet carbidmaterialet og matrixmaterialet er ensartet sammenblandet uden væsentlig kornstørrelsesreduktion, hvorhos grænse-20 fladen er dannet ved sintring af den homogene blanding ved en temperatur under den, ved hvilken stålet i det mindste er delvis flydende.A composite material comprising 30-80% by weight of a carbide material such as tungsten carbide, titanium carbide, tantalum carbide, niobium carbide, zirconium carbide, vanadium carbide, hafnium carbide, chromium carbide, boron carbide, silicon carbide or mixtures of these carbides and mixtures thereof or mixtures thereof 70% by weight of a matrix material comprising steel, steel and iron, steel and copper 10, and steel and nickel, the carbide material being embedded in and bonded to the matrix, characterized in that the grain size of the carbide material is 0.04-0.08 mm and that the interface between the carbide material and the matrix is no thicker than 50 μια, preferably 0-40 μιη, and is substantially free of eta carbides, and that the carbide material is optionally provided with a metal coating which forms a strong and adhesive bond. between the carbide material and the matrix, the carbide material and the matrix material being uniformly admixed without substantial grain size reduction, wherein s interface is formed by sintering the homogeneous mixture at a temperature below that at which the steel is at least partially liquid. 2. Kompositmateriale ifølge krav 1, i hvilket carbid-25 materialet er en cementeret blanding med cobalt som bindemiddel, kendetegnet ved, at grænsefladen indeholder jern og cobalt og har en tykkelse på 0-40 μιη.Composite material according to claim 1, in which the carbide material is a cemented mixture with cobalt as a binder, characterized in that the interface contains iron and cobalt and has a thickness of 0-40 μιη. 3. Kompositmateriale ifølge krav 1 eller 2, k e n-30 detegnet ved, at carbidmaterialet indeholder wolframcarbid. 1 Kompositmateriale ifølge krav 1-3, kendetegnet ved, at stålet er et legeret stål eller rustfrit 35 stål. DK 158957 BComposite material according to claim 1 or 2, characterized in that the carbide material contains tungsten carbide. Composite material according to claims 1-3, characterized in that the steel is an alloy steel or stainless steel. DK 158957 B 5. Fremgangsmåde til fremstilling af et komposit-materiale ifølge krav 1-4 ved blanding af ståldannende pulver og hårde carbidpartikler til dannelse af en homogen blanding, som koldpresses til dannelse af en kompakt for-form, som 5 derefter sintres ved højt tryk og forhøjet temperatur, kendetegnet ved, at der anvendes carbidpartikler med en partikelstørrelse i området 0,04-0,08 mm, og at sintringsbehandlingen udføres ved en temperatur under den, ved hvilken stålet i det mindste er delvis flydende. 10A process for preparing a composite material according to claims 1-4 by mixing steel forming powder and hard carbide particles to form a homogeneous mixture which is cold pressed to form a compact preform which is then sintered at high pressure and elevated temperature, characterized in that carbide particles having a particle size in the range 0.04-0.08 mm are used and the sintering treatment is carried out at a temperature below that at which the steel is at least partially liquid. 10 6. Fremgangsmåde ifølge krav 5, kendetegnet ved, at de hårde carbidpartikler for-overtrækkes med en metalbelægning inden blandingen med de ståldannende pulvere. 15Process according to claim 5, characterized in that the hard carbide particles are pre-coated with a metal coating prior to mixing with the steel forming powders. 15 7. Fremgangsmåde ifølge krav 5 eller 6, kendetegnet ved, at tæthedsforøgelsen af den kompakte forform udføres ved diffusionsbinding ved sintring af den sammenpressede for-form ved en temperatur under 1375°C og under 20 smeltetemperaturen for stålet til opnåelse af mindst mulig sammenhængende porøsitet i for-formen, hvorpå man isostatisk presser for-formen ved et tryk over 700 kg/cm2 ved en temperatur mellem 870°C og stålets smeltetemperatur.Process according to claim 5 or 6, characterized in that the density increase of the compact preform is carried out by diffusion bonding by sintering the compressed preform at a temperature below 1375 ° C and below the melting temperature of the steel to obtain as little coherent porosity as possible. The preform is then isostatically pressed to the preform at a pressure above 700 kg / cm 2 at a temperature between 870 ° C and the steel melting temperature. 8. Anvendelse af et kompositmateriale ifølge krav 1- 4. slidbestandige værktøjer.Use of a composite material according to claims 1-4 wear-resistant tools.
DK364581A 1980-08-18 1981-08-17 COMPOSITION MATERIALS INCLUDING A CARBID MATERIAL, ITS MANUFACTURING AND USE DK158957C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17880580A 1980-08-18 1980-08-18
US17880580 1980-08-18
US25545381A 1981-04-20 1981-04-20
US25545381 1981-04-20

Publications (3)

Publication Number Publication Date
DK364581A DK364581A (en) 1982-02-19
DK158957B true DK158957B (en) 1990-08-06
DK158957C DK158957C (en) 1991-01-21

Family

ID=26874678

Family Applications (1)

Application Number Title Priority Date Filing Date
DK364581A DK158957C (en) 1980-08-18 1981-08-17 COMPOSITION MATERIALS INCLUDING A CARBID MATERIAL, ITS MANUFACTURING AND USE

Country Status (14)

Country Link
EP (1) EP0046209B1 (en)
KR (1) KR850001553B1 (en)
AU (1) AU553481B2 (en)
CA (1) CA1188136A (en)
DE (1) DE3175299D1 (en)
DK (1) DK158957C (en)
ES (2) ES504800A0 (en)
FI (1) FI72753C (en)
IE (1) IE52094B1 (en)
IL (1) IL63549A (en)
MX (1) MX157680A (en)
NO (1) NO159773C (en)
NZ (1) NZ197962A (en)
PT (1) PT73531B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE453649B (en) * 1984-11-09 1988-02-22 Santrade Ltd TOOLS IN THE FORM OF A COMPONENT BODY CONSISTING OF A CORE AND A HOLE
DK165775C (en) * 1985-07-18 1993-06-14 Teknologisk Inst PROCEDURE FOR MANUFACTURING A SLOT FOR A EQUIPMENT
SE462182B (en) * 1986-09-01 1990-05-14 Sandvik Ab PROCEDURE FOR PREPARING A PROTECTIVE PLATE IN COMPOUND EXECUTIVE SUCH AS SPLIT PROTECTOR, COMPOUND ARM
DE4321143A1 (en) * 1993-06-25 1995-01-05 Saar Hartmetall & Werkzeuge Composite body, consisting of materials with different thermal and mechanical properties
DE4340652C2 (en) * 1993-11-30 2003-10-16 Widia Gmbh Composite and process for its manufacture
DE19855422A1 (en) 1998-12-01 2000-06-08 Basf Ag Hard material sintered part with a nickel- and cobalt-free, nitrogen-containing steel as a binder of the hard material phase
DE19912721C1 (en) * 1999-03-20 2000-08-10 Simon Karl Gmbh & Co Kg Sintered metal milling disk production process comprises positioning of cutter inserts in metal powder filled in a pressing die cavity
EP1453627A4 (en) * 2001-12-05 2006-04-12 Baker Hughes Inc Consolidated hard materials, methods of manufacture, and applications
US6854527B2 (en) 2002-04-08 2005-02-15 Kennametal Inc. Fracture resistant carbide snowplow and grader blades
WO2019109098A1 (en) * 2017-12-01 2019-06-06 Milwaukee Electric Tool Corporation Wear resistant tool bit
USD921468S1 (en) 2018-08-10 2021-06-08 Milwaukee Electric Tool Corporation Driver bit
CN113232380B (en) * 2021-04-30 2023-03-28 咸阳职业技术学院 High-strength high-toughness layered intercommunicated structure steel-bonded hard alloy and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB530639A (en) * 1938-06-16 1940-12-17 Meutsch Voigtlaender & Co Process for the production of articles provided with coatings or insets of hard metal
CH215453A (en) * 1939-07-24 1941-06-30 Krupp Ag An object that consists of a hard metal body and a base and can be used as an implement or tool.
SE333437B (en) * 1969-03-03 1971-03-15 Asea Ab
DE2722271C3 (en) * 1977-05-17 1979-12-06 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf Process for the production of tools by composite sintering
GB2007720B (en) * 1977-09-27 1982-08-18 Nippon Tungsten Cemented carbide layer
DE2916709A1 (en) * 1979-04-25 1980-10-30 Krebsoege Gmbh Sintermetall Tools using cutters made of hard materials - where cutter is bonded to tool shank or carrier by powder metallurgy, esp via isostatic pressing of the shank

Also Published As

Publication number Publication date
IL63549A (en) 1983-12-30
ES8301433A1 (en) 1982-12-01
KR850001553B1 (en) 1985-10-17
IL63549A0 (en) 1981-11-30
NO812781L (en) 1982-02-19
NO159773B (en) 1988-10-31
EP0046209B1 (en) 1986-09-10
FI812533L (en) 1982-02-19
ES514551A0 (en) 1983-10-16
IE811872L (en) 1982-02-18
PT73531B (en) 1982-11-03
DK364581A (en) 1982-02-19
FI72753C (en) 1987-07-10
NZ197962A (en) 1985-05-31
FI72753B (en) 1987-03-31
AU7368081A (en) 1982-02-25
NO159773C (en) 1989-02-08
AU553481B2 (en) 1986-07-17
ES504800A0 (en) 1982-12-01
KR830006460A (en) 1983-09-24
DE3175299D1 (en) 1986-10-16
PT73531A (en) 1981-09-01
CA1188136A (en) 1985-06-04
EP0046209A1 (en) 1982-02-24
DK158957C (en) 1991-01-21
ES8400271A1 (en) 1983-10-16
IE52094B1 (en) 1987-06-10
MX157680A (en) 1988-12-09

Similar Documents

Publication Publication Date Title
US5543235A (en) Multiple grade cemented carbide articles and a method of making the same
US5778301A (en) Cemented carbide
EP1216314B1 (en) Low thermal conductivity hard metal
US8052765B2 (en) Contoured PCD and PCBN for twist drill tips and end mills and methods of forming the same
US5482670A (en) Cemented carbide
JP5607524B2 (en) Cemented carbide with ultra-low thermal conductivity
US6663688B2 (en) Sintered material of spheroidal sintered particles and process for producing thereof
CN103189155B (en) Method for preparing sintered combined body
KR20080046597A (en) Method of making a sintered body, a powder mixture and a sintered body
DK158957B (en) COMPOSITION MATERIALS INCLUDING A CARBID MATERIAL, ITS MANUFACTURING AND USE
DK162881B (en) PROCEDURE FOR MANUFACTURING A TIGHT, Wear-Resistant Formula
GB2074609A (en) Metal binder in compaction of metal powders
JPS61502901A (en) New composite ceramic with improved toughness
KR102103376B1 (en) Cemented carbide and its manufacturing method
KR100700197B1 (en) Process for Manufacturing Sintered Materials Containing Cobalt Component
CA1171249A (en) Silicon carbide composite and process for production
JPH0133542B2 (en)
KR101935386B1 (en) Method for preventing preform of reinforcements for pressure-impregnation from floating and mold for preventing floating
JP7425872B2 (en) Polycrystalline diamond with iron-containing binder
US4661155A (en) Molded, boron carbide-containing, sintered articles and manufacturing method
US20230059163A1 (en) Additive manufacturing techniques and applications thereof
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
CA1178424A (en) Silicon carbide composite and process for production
JPS6119593B2 (en)
CS208275B1 (en) Alloy for binding diamond containing particles

Legal Events

Date Code Title Description
PBP Patent lapsed