JPS63162042A - Catalyst for contact combustion - Google Patents

Catalyst for contact combustion

Info

Publication number
JPS63162042A
JPS63162042A JP61308559A JP30855986A JPS63162042A JP S63162042 A JPS63162042 A JP S63162042A JP 61308559 A JP61308559 A JP 61308559A JP 30855986 A JP30855986 A JP 30855986A JP S63162042 A JPS63162042 A JP S63162042A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
alumina carrier
alumina
contact combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61308559A
Other languages
Japanese (ja)
Inventor
Kenji Mori
憲二 森
Shigeki Nagamatsu
茂樹 永松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP61308559A priority Critical patent/JPS63162042A/en
Publication of JPS63162042A publication Critical patent/JPS63162042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for contact combustion in which heat resistance is remarkably enhanced, by uniformly depositing palladium to the inside of alumina carrier. CONSTITUTION:The soln. of palladium compd. such as palladium chloride is dropped or injected on/into alumina carrier and impregnated thereinto. Then it is dried and reduced and thereby for example, a catalyst (a) for contact combustion wherein palladium is uniformly deposited to the inside of a spherical alumina carrier is obtained. In such contact combustion reaction that the catalyst is exposed in the atmosphere under high temp. for a long time, this catalyst (a) is extremely excellent in thermal deterioration resistance in comparison with a catalyst (b) deposited with palladium on only the surface of the spherical alumina carrier or a catalyst (c) deposited with palladium to the intermediate layer part of the spherical alumina carrier.

Description

【発明の詳細な説明】 [産業上の利用分野) 本発明は、パラジウムをアルミナ担体内部まで均一に担
持させることにより、耐熱性を向上させた接触燃焼用触
媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for catalytic combustion that has improved heat resistance by uniformly supporting palladium inside an alumina carrier.

〔従来の技術〕[Conventional technology]

接触燃焼用触媒として、一般に、(1)点火温度が低い
こと、(2)燃焼継続に必要な予熱温度が低いこと、(
3)容積燃焼率が高いこと、(4)触媒表面での燃焼が
均一であること、(5)汚染物質の排出量が少ないこと
、(6)多様な燃料が使用可能なこと等の特性が要求さ
れる。
Catalytic combustion catalysts generally have (1) low ignition temperature, (2) low preheating temperature required for continued combustion, (
3) high volumetric combustion rate, (4) uniform combustion on the catalyst surface, (5) low pollutant emissions, and (6) ability to use a variety of fuels. required.

従来、このような特性が要求される接触燃焼用触媒、特
にメタン燃焼用触媒としては、Pd/AJ2 03  
、Pd  /Ti  02  、Pt  /Si  0
2  ・Al2O2、Pj/AJ203等が用いられ、
これら触媒は高い触媒性能を有することが知られている
Conventionally, Pd/AJ2 03 has been used as a catalyst for catalytic combustion, especially for methane combustion, which requires such characteristics.
, Pd /Ti 02 , Pt /Si 0
2 ・Al2O2, Pj/AJ203, etc. are used,
These catalysts are known to have high catalytic performance.

しかし、これらの触媒は、高温下で長時間使用されると
、触媒が熱劣化し、触媒性能が低下するという問題があ
った。
However, when these catalysts are used at high temperatures for long periods of time, they suffer from thermal deterioration, resulting in a decrease in catalyst performance.

この高温下での触媒の熱劣化対策として、アルミナ等の
担体にアルカリ土類や希土類酸化物を添加し、担体の安
定性を向上させる方法等が提案されており、例えば、Y
−アルミナにランタンを添加する方法、Y−アルミナに
バリウムを添加する方法等である。また、活性成分であ
る貴金属の層を耐熱性酸化物で被覆することにより、貴
金属の蒸発を防止して劣化を防止する方法も提案されて
いる(特開昭58−3641号公報)。
As a countermeasure against thermal deterioration of the catalyst at high temperatures, methods have been proposed in which alkaline earth or rare earth oxides are added to a support such as alumina to improve the stability of the support.
- A method of adding lanthanum to alumina, a method of adding barium to Y-alumina, etc. Furthermore, a method has been proposed in which a layer of a noble metal, which is an active ingredient, is coated with a heat-resistant oxide to prevent evaporation of the noble metal and thereby prevent deterioration (Japanese Patent Laid-Open No. 58-3641).

しかしながら、これらのいずれの方法においても高温下
での長時間の使用においては、触媒は熱劣化し、触媒性
能が低下するという問題は避けられなかった。
However, in any of these methods, when used for a long time at high temperatures, the catalyst inevitably deteriorates due to heat and the catalyst performance deteriorates.

このように、高温下で、長期に亘って熱劣化を生ぜず、
実用に供し得る接触燃焼用触媒は未だ得られていない。
In this way, under high temperatures, there will be no thermal deterioration over a long period of time,
A catalyst for catalytic combustion that can be put to practical use has not yet been obtained.

[発明が解決しようとする問題点] 本発明は、上記従来技術の問題点に鑑みてなされたもの
で、高温下での経時の使用による触媒の劣化を防止し、
高い触媒特性を有する接触燃焼用触媒を提供することを
目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned problems of the prior art.
An object of the present invention is to provide a catalyst for catalytic combustion that has high catalytic properties.

[問題点を解決するための手段および作用コ本発明者ら
は、上記目的を達成するために鋭意検討した結果、パラ
ジウムのアルミナ担体上への担持状態を制御することに
より、高温接触燃焼用触媒の熱的劣化挙動を緩和するこ
とができることを見い出し、本発明を完成するに至った
[Means and effects for solving the problem] As a result of intensive studies to achieve the above object, the present inventors have developed a catalyst for high-temperature catalytic combustion by controlling the state of palladium supported on an alumina carrier. It has been discovered that the thermal deterioration behavior of can be alleviated, and the present invention has been completed.

すなわち本発明は、パラジウムをアルミナ担体内部まで
均一に担持させたことを特徴とする接触燃焼用触媒にあ
る。
That is, the present invention resides in a catalytic combustion catalyst characterized in that palladium is uniformly supported inside an alumina carrier.

本発明の接触燃焼用触媒の担体であるアルミナとしては
、特に制限はなく、γ−アルミナのみならず、α−アル
ミナ、β−アルミナ等も用いられる。
The alumina that is the carrier for the catalytic combustion catalyst of the present invention is not particularly limited, and not only γ-alumina but also α-alumina, β-alumina, etc. can be used.

担体であるアルミナに活性成分であるパラジウムを担持
させる方法としては、特に限定されないが、少なくとも
アルミナ担体内部まで均一にパラジウムが担持されてい
ることが必要である。例えばアルミナ担体に塩化パラジ
ウム等のパラジウム化合物の溶液を滴下または注加して
含浸し、次いで乾燥、還元することによって、本発明の
接触燃焼用触媒が得られる。
The method for supporting palladium, which is an active ingredient, on alumina, which is a carrier, is not particularly limited, but it is necessary that palladium is uniformly supported at least to the inside of the alumina carrier. For example, the catalyst for catalytic combustion of the present invention can be obtained by dripping or pouring a solution of a palladium compound such as palladium chloride onto an alumina carrier to impregnate it, followed by drying and reduction.

この触媒の形状は、特に限定されないが、例えば球状、
平板状、多角柱状、ハニカム状等が挙げられる。
The shape of this catalyst is not particularly limited, but for example, spherical,
Examples include flat plate shape, polygonal column shape, and honeycomb shape.

この本発明の接触燃焼用触媒の一例を第1図(a)に示
す。第1図(a)は、球状のアルミナ担体の内部まで活
性成分であるパラジウムを均一に担持させた触媒を示す
断面図である。パラジウムの担持量を一定岱とすると、
一般には、球状のアルミナ担体の表層部にのみパラジウ
ムを担持した第1図(b)に断面が示される触媒または
球状アルミナの中層部までパラジウムを担持した第1図
(C)に断面が示される触媒のほうが、触媒表面の活性
成分の密度が高く、活性が大きいことから、触媒性能が
高いとされている。
An example of the catalytic combustion catalyst of the present invention is shown in FIG. 1(a). FIG. 1(a) is a cross-sectional view showing a catalyst in which palladium, an active ingredient, is uniformly supported inside a spherical alumina carrier. Assuming that the amount of palladium supported is constant,
In general, the cross section of the catalyst is shown in Figure 1 (b) in which palladium is supported only on the surface layer of a spherical alumina carrier, or the cross section is shown in Figure 1 (C) in which palladium is supported up to the middle layer of spherical alumina carriers. Catalysts are said to have higher catalytic performance because the density of active components on the surface of the catalyst is higher and the activity is greater.

しかし、接触燃焼反応のように触媒が高温下の雰囲気に
長時間曝されるような場合には、第1図(a)に示した
担持状態の方が耐熱劣化性に対して効果がある。このよ
うな活性成分であるパラジウムの担持状態による熱的劣
化挙動に対する効果は、これまで知見されていない。
However, in cases where the catalyst is exposed to a high-temperature atmosphere for a long period of time, such as in a catalytic combustion reaction, the supported state shown in FIG. 1(a) is more effective in terms of thermal deterioration resistance. The effect of the supported state of palladium, which is an active ingredient, on thermal deterioration behavior has not been known so far.

[実施例] 以下、実施例、比較例および実験例に基づいて本発明を
さらに具体的に説明する。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples, Comparative Examples, and Experimental Examples.

実施例1 球状アルミナ担体く5履φ、吸水率0.45 CC/g
 ) ioogを5ooccのビーカーに入れてアルミ
ナ担体を振り混ぜながら0.104 mol/ Jの塩
化パラジウム溶液45ccをv温で滴下しながら含浸し
た。しかる後、常法により乾燥器で乾燥し、電気炉にて
水素流通下で250℃、3時間還元してパラジウム含有
量0.5型理%の触媒Aを得た。
Example 1 Spherical alumina carrier 5 mm diameter, water absorption rate 0.45 CC/g
) ioog was placed in a 50cc beaker and the alumina support was impregnated with 45cc of 0.104 mol/J palladium chloride solution dropwise at V temperature while shaking. Thereafter, it was dried in a dryer using a conventional method, and reduced in an electric furnace at 250° C. for 3 hours under flowing hydrogen to obtain catalyst A having a palladium content of 0.5%.

このようにして調製された触媒Aのアルミナ担体上での
パラジウムの分布状態をX線マイクロアナライザー(E
PMA)で測定した結果、パラジウムはアルミナ担体の
全層部に担持されていることがわかった。
The distribution state of palladium on the alumina support of catalyst A prepared in this way was measured using an X-ray microanalyzer (E
As a result of measurement using PMA), it was found that palladium was supported in all layers of the alumina carrier.

比較例1 実施例1の触媒Aの調製で使用したものと同様のアルミ
ナ担体100gを500ccのビーカーに入れ0.41
mol/ Jの硝酸ナトリウム溶液45CCを室温で滴
下しながら含浸した。常法により乾燥し、電気炉にて空
気流通下で500℃、3時間焼成した。この担体に0.
104 mol/Jの塩化パラジウム溶液45CCを実
施例1と同様に滴下しながら含浸した。常法により乾燥
器で乾燥し、電気炉にて水素流通下250℃、3時間還
元して触媒Bを得た。
Comparative Example 1 100 g of alumina support similar to that used in the preparation of catalyst A in Example 1 was placed in a 500 cc beaker and the amount of 0.41
45 CC of mol/J sodium nitrate solution was impregnated dropwise at room temperature. It was dried by a conventional method and fired in an electric furnace at 500° C. for 3 hours under air circulation. This carrier has 0.
45 CC of a 104 mol/J palladium chloride solution was dropped and impregnated in the same manner as in Example 1. The mixture was dried in a dryer using a conventional method, and reduced in an electric furnace at 250° C. under hydrogen flow for 3 hours to obtain catalyst B.

このようにして調製された触媒Bは、E PMAで測定
した結果、パラジウムがアルミナ担体表層部から約11
nIRのところまで担持されていることがわかった。
Catalyst B prepared in this manner was measured by E PMA, and palladium was found to be about 11% from the surface layer of the alumina support.
It was found that it was carried up to the nIR.

比較例2 比較例1の触媒Bの調製で使用したものと同じflII
!Iナトリウム溶液の濃度を1.Omol/Jに変えて
、その45ccを担体アルミナ100gに含浸した。こ
の担体に0.104 mol/Jの塩化パラジウム溶液
45CCを実施例1と同様に滴下しながら含浸して触媒
Cを得た。
Comparative Example 2 Same flII as used in the preparation of catalyst B of Comparative Example 1
! The concentration of sodium I solution is 1. The amount was changed to Omol/J, and 45 cc of the solution was impregnated into 100 g of carrier alumina. This carrier was impregnated with 45 CC of a 0.104 mol/J palladium chloride solution dropwise in the same manner as in Example 1 to obtain catalyst C.

このようにして調製された触媒Cを、E PMAで測定
した結果、パラジウムがアルミナ担体表層部から約0.
2mmのところまで担持されていることがわかった。
As a result of measuring the catalyst C prepared in this manner by E PMA, it was found that palladium was approximately 0.0% palladium from the surface layer of the alumina support.
It was found that the particles were supported up to a depth of 2 mm.

比較例3 実施例1の触tsAの調製で使用したものと同じアルミ
ナ担体100gを200℃に加熱しながら 0.104
mol/Jの塩化パラジウム溶液45ccを含浸し、乾
燥後、電気炉にて水素流通下で250℃、3時間還元し
て触媒りを得た。
Comparative Example 3 While heating 100 g of the same alumina support used in the preparation of tsA in Example 1 to 200°C, 0.104
It was impregnated with 45 cc of a mol/J palladium chloride solution, dried, and then reduced in an electric furnace at 250° C. for 3 hours under hydrogen flow to obtain a catalyst.

このようにして調製された触媒りは、EPMAで測定し
た結果、比較例1の触IBと同様にパラジウムがアルミ
ナ担体表層部から約1Mのところまで担持されているこ
とがわかった。
The thus prepared catalyst was measured by EPMA, and it was found that palladium was supported up to about 1M from the surface layer of the alumina carrier, similar to Comparative Example 1.

実験例 実施例1および比較例1〜3で調製されたA〜Dの各触
媒を電気炉にて800℃および1100℃で24時間熱
処理した。このようにして得られた熱処理触媒を用いて
、下記の条件でメタン燃焼反応を行ない、メタン変換率
50%を得るのに必要な反応温度を評価した。反応条件
としては、メタンガス濃度5.7%、酸素濃度19.8
%、および残部を窒素ガスとし、空間速度を12000
Hr−1で行なった。結果を第1表に示した。
Experimental Examples Each of the catalysts A to D prepared in Example 1 and Comparative Examples 1 to 3 was heat treated in an electric furnace at 800°C and 1100°C for 24 hours. Using the heat-treated catalyst thus obtained, a methane combustion reaction was carried out under the following conditions, and the reaction temperature required to obtain a methane conversion rate of 50% was evaluated. The reaction conditions were a methane gas concentration of 5.7% and an oxygen concentration of 19.8%.
%, and the balance is nitrogen gas, and the space velocity is 12000.
The test was carried out using Hr-1. The results are shown in Table 1.

第1表 第1表の結果より、熱処理に対して安定な活性を示す順
序は、実施例1(触媒A)、比較例1(MiB)、比較
例3(触媒D)、比較例2(触媒C)となった。
Table 1 From the results in Table 1, the order of stable activity against heat treatment is Example 1 (Catalyst A), Comparative Example 1 (MiB), Comparative Example 3 (Catalyst D), and Comparative Example 2 (Catalyst C).

この結果から、本発明の触媒A(実施例1)は、触媒B
〜D(比較例1〜3)に比較して耐熱性に優れているこ
とがわかる。
From this result, catalyst A of the present invention (Example 1) was found to be
It can be seen that the heat resistance is excellent compared to ~D (Comparative Examples 1 to 3).

U発明の効果J 以上説明したように、活性成分であるパラジウムをアル
ミナ担体内部まで均一に担持させた本発明によれば、接
触燃焼用触媒の耐熱性を大幅に向上することができる。
Effects of the Invention J As explained above, according to the present invention in which palladium, which is an active ingredient, is uniformly supported inside the alumina carrier, the heat resistance of the catalyst for catalytic combustion can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>〜(C)は、パラジウムのアルミナ担体へ
の担持状態を示す断面図である。 特許出願人  日  揮  株  式  会  社代理
人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 第1図
Figures 1 (a> to (C)) are cross-sectional views showing the state of palladium supported on an alumina carrier. Patent applicant: JGC Corporation Company representative: Patent attorney: Tatsuo Ito: Patent attorney: Tatsuo Ito Tetsuya Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、パラジウムをアルミナ担体内部まで均一に担持させ
たことを特徴とする接触燃焼用触媒。
1. A catalyst for catalytic combustion characterized by having palladium uniformly supported inside an alumina carrier.
JP61308559A 1986-12-26 1986-12-26 Catalyst for contact combustion Pending JPS63162042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308559A JPS63162042A (en) 1986-12-26 1986-12-26 Catalyst for contact combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308559A JPS63162042A (en) 1986-12-26 1986-12-26 Catalyst for contact combustion

Publications (1)

Publication Number Publication Date
JPS63162042A true JPS63162042A (en) 1988-07-05

Family

ID=17982487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308559A Pending JPS63162042A (en) 1986-12-26 1986-12-26 Catalyst for contact combustion

Country Status (1)

Country Link
JP (1) JPS63162042A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662542A (en) * 1979-10-29 1981-05-28 Osaka Gas Co Ltd Production of catalyst body for combustion
JPS6014938A (en) * 1983-07-06 1985-01-25 Toshiba Corp Combustion catalyst for gas turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662542A (en) * 1979-10-29 1981-05-28 Osaka Gas Co Ltd Production of catalyst body for combustion
JPS6014938A (en) * 1983-07-06 1985-01-25 Toshiba Corp Combustion catalyst for gas turbine

Similar Documents

Publication Publication Date Title
KR940000867B1 (en) Exhaust gas cleaning catalyst and its preparation
EP1742733B1 (en) Production process for an exhaust gas purifying catalyst
KR19980081167A (en) Exhaust catalyst
JPS6377543A (en) Catalyst for purifying exhaust gas
JPH0338250A (en) Exhaust gas purification catalyst
US7632776B2 (en) Exhaust gas purifying catalyst and production process thereof
US5883041A (en) Composite catalyst for purifying exhaust gases from carbon monoxide and organic compounds
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
US5906958A (en) Catalyst for purifying automobile exhausts and method of manufacturing the catalyst
EP1149623B2 (en) Catalyst and process for purifying exhaust gas
JPS60200021A (en) Combustor of gas turbine
JPS60202745A (en) Catalyst for high-temperature combustion
JPS63162042A (en) Catalyst for contact combustion
KR20000057031A (en) Catalytic converter for automotive pollution control, and oxygen-storing cerium complex oxide used therefor
JPH0512021B2 (en)
JP2823251B2 (en) Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst
JPS63104651A (en) Catalyst for purifying exhaust gas
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JPS62282640A (en) Catalyst for purifying exhaust gas
JPH0331396Y2 (en)
JPH10354A (en) Catalyst for purification of exhaust gas and its production
JPS61181538A (en) Catalyst for purifying exhaust gas
JPH09141106A (en) Exhaust gas purifying catalyst
US20230249158A1 (en) Three-way catalytic conversion system for purification treatment of engine exhaust gas and use thereof
JP3826476B2 (en) Exhaust gas purification catalyst and method for producing the same