JPS6316126Y2 - - Google Patents

Info

Publication number
JPS6316126Y2
JPS6316126Y2 JP19769881U JP19769881U JPS6316126Y2 JP S6316126 Y2 JPS6316126 Y2 JP S6316126Y2 JP 19769881 U JP19769881 U JP 19769881U JP 19769881 U JP19769881 U JP 19769881U JP S6316126 Y2 JPS6316126 Y2 JP S6316126Y2
Authority
JP
Japan
Prior art keywords
cylindrical member
permanent magnets
cathode ray
annular permanent
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19769881U
Other languages
Japanese (ja)
Other versions
JPS5898759U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19769881U priority Critical patent/JPS5898759U/en
Publication of JPS5898759U publication Critical patent/JPS5898759U/en
Application granted granted Critical
Publication of JPS6316126Y2 publication Critical patent/JPS6316126Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電磁フオーカス型の陰極線管に関し、
とくにビームのフオーカスおよびセンタの調整を
確実かつ容易に行えるようにしたものである。
[Detailed description of the invention] The invention relates to an electromagnetic focus type cathode ray tube.
In particular, the focus and center of the beam can be adjusted reliably and easily.

電磁フオーカス型の陰極線管では、ビームを絞
る静電フオーカス型のものと異なり、異なつた軌
道を運動した電子が所定の瞬間に所定の一点に集
中することを利用してフオーカスを行う。そのた
め、ビーム反発効果がほとんどなく、本質的に高
解像度を達成することができる。しかも、永久磁
石を利用すれば低消費電力化をもあわせて図るこ
とができる。
Unlike electrostatic focus type cathode ray tubes, which focus the beam, focusing is performed by utilizing the fact that electrons moving in different orbits converge at a predetermined point at a predetermined moment. Therefore, there is almost no beam repulsion effect, and essentially high resolution can be achieved. Moreover, if permanent magnets are used, power consumption can also be reduced.

しかしながら、従前の電磁フオーカス型陰極線
管ではフオーカスの調整、操作性に難点があり、
現在においては主に静電フオーカス型のものが採
用されている。ここでは、まず、このフオーカス
の調整、操作性における不具合につき簡単に考え
ておくこととする。
However, conventional electromagnetic focus type cathode ray tubes have problems with focus adjustment and operability.
At present, the electrostatic focus type is mainly used. Here, we will first briefly consider the problems with focus adjustment and operability.

周知のとおり、磁界レンズ系は光学レンズ系と
イクイバレントであり、ここでも薄いレンズの公
式を用いうる。
As is well known, a magnetic field lens system is equivalent to an optical lens system, and the thin lens formula can be used here as well.

f=1/a+1/b …… 式でfは焦点距離、aは物点距離、bは像点
距離である。物点は陰極レンズ系のクロスオーバ
点を考え得る。磁界レンズ系の焦点距離fは式
で与えられる。
f=1/a+1/b... In the formula, f is the focal length, a is the object point distance, and b is the image point distance. The object point can be thought of as the crossover point of the cathode lens system. The focal length f of the magnetic field lens system is given by the formula.

f=0.0221/V∫ X0B(x)2dx …… 式でVは高圧電圧、B(x)は中心軸上の磁
束密度分布である。それぞれの単位は〔V〕,
〔G〕である。
f=0.0221/V∫ X0 B(x) 2 dx... In the formula, V is the high voltage and B(x) is the magnetic flux density distribution on the central axis. Each unit is [V],
It is [G].

ところで、永久磁石の磁束密度分布を考える
と、アンペアの周回積分の法則から式を得る。
By the way, when considering the magnetic flux density distribution of a permanent magnet, an expression can be obtained from Ampere's law of circular integrals.

-∞B(x)dx=0 …… これを図に示すと第1図のようになり、下がわ
(負がわ)の分布が無限遠まで緩やかに続く。こ
のようなストレー分布は、偏向コイル等に対しノ
イズとなり、またフオーカスのうえでも問題とな
る。したがつて、このようなストレー分布の磁界
では、分布ができるだけ急峻なことがのぞまれ
る。
-∞ B(x)dx=0... If this is shown in a diagram, it will look like Figure 1, where the distribution of the lower edge (negative edge) continues gently to infinity. Such stray distribution causes noise to the deflection coil, etc., and also poses a problem in terms of focus. Therefore, in a magnetic field with such a stray distribution, it is desired that the distribution be as steep as possible.

他方、第1図の磁界分布を便宜上第2図に示す
ベル型磁界分布に置換して考える。この分布は
式であらわされる。
On the other hand, for convenience, the magnetic field distribution shown in FIG. 1 is replaced with a bell-shaped magnetic field distribution shown in FIG. 2. This distribution is expressed by the formula.

B(x)=Bn/1+(x/λ)2 …… 式でλは半値幅、Bnは最大値である。 B(x)=B n /1+(x/λ) 2 ... In the formula, λ is the half width and B n is the maximum value.

そして式を式に代入すると 1/f=0.0345λ/VBn 2 …… を得、この式から焦点距離fと半値幅λとは反
比例の関係にあることがわかる(第3図)。さて、
陰極線管の寸法が決まり、この結果、焦点距離f
が決まり、さらに磁束密度分布が決まる。この場
合、第3図に示すとおり、半値幅λが大きいと、
その変分Δλに対する焦点距離fの変分Δfが小さ
いので焦点深度が深くなり、フオーカス調整が確
実かつ容易となる。そうしてみれば、半値幅λを
大とすることが好ましく、前述のストレー分布を
小とする要請と矛循してしまう。このことから、
従前ではフオーカス調整の煩雑さが問題として残
されていた。
Then, by substituting the equation into the equation, we obtain 1/f=0.0345λ/VB n 2 . . . From this equation, it can be seen that the focal length f and the half width λ are in an inversely proportional relationship (Fig. 3). Now,
The dimensions of the cathode ray tube are determined, resulting in a focal length f
is determined, and the magnetic flux density distribution is also determined. In this case, as shown in Figure 3, if the half width λ is large,
Since the variation Δf of the focal length f with respect to the variation Δλ is small, the depth of focus becomes deep and focus adjustment becomes reliable and easy. In this case, it is preferable to increase the half-width λ, which conflicts with the above-mentioned requirement to minimize the stray distribution. From this,
Previously, the complexity of focus adjustment remained a problem.

もし、磁界分布が第4図に示すようなものであ
ればストレー分布も問題とならず、半値幅λも大
とできて、その結果としてフオーカス調整を確実
かつ容易に行える。
If the magnetic field distribution is as shown in FIG. 4, the stray distribution will not be a problem, and the half-width λ can be made large, and as a result, focus adjustment can be performed reliably and easily.

本考案者らは、鋭意研究のすえ、より好ましい
磁界分布を形成し、ストレー分布の問題とフオー
カスの問題とをともに解消し、あわせてビームの
センタ調整をも容易な陰極線管を提供するにいた
つた。
After intensive research, the inventors of the present invention were able to form a more preferable magnetic field distribution, solve both the stray distribution problem and the focus problem, and provide a cathode ray tube that makes it easy to adjust the center of the beam. Ivy.

以下、本考案陰極線管の一実施例について第5
図以降の図面を参照しながら説明しよう。
Hereinafter, the fifth embodiment of the cathode ray tube of the present invention will be explained.
Let's explain with reference to the drawings that follow.

第5図において、1はパネル、2はフアンネ
ル、3はネツク管を示し、これらフアンネル2お
よびネツク管3にわたつて偏向コイル4が実装さ
れる。そして、ネツク管3のほぼ中央位置に円筒
部材5が取り付けられ、この円筒部材5に環状の
永久磁石6,7が取り付けられる。この場合、永
久磁石6,7がネツク管3の外部に配置されるの
で、設計上の自由度が高く、このため像倍率m
(=b/a)をたとえば5と小にできる。一般の電磁 フオーカスではネツク管3内に電極を配置する関
係上このような自由度が低く、たかだか10程度で
ある。
In FIG. 5, 1 is a panel, 2 is a funnel, and 3 is a neck tube, and a deflection coil 4 is mounted across the funnel 2 and the neck tube 3. A cylindrical member 5 is attached to approximately the center of the neck tube 3, and annular permanent magnets 6, 7 are attached to this cylindrical member 5. In this case, since the permanent magnets 6 and 7 are arranged outside the network tube 3, there is a high degree of freedom in design, and therefore the image magnification m
(=b/a) can be made as small as 5, for example. In general electromagnetic focusing, the degree of freedom is low because the electrodes are arranged inside the network tube 3, and is about 10 at most.

なお、8は電子銃の封着金属部であり、その径
はネツク管3の外径より一般に大である。本例で
は前者が6.2mm、後者が7.2mmである。
Note that 8 is a sealing metal part of the electron gun, and its diameter is generally larger than the outer diameter of the network tube 3. In this example, the former is 6.2 mm and the latter is 7.2 mm.

円筒部材5は具体的には第6図および第7図に
示すように構成される。第6図および第7図にお
いて、円筒部材5の一端には偏向コイル受部5a
が形成され、他端には雄ネジ部5bが形成され
る。この雄ネジ部5bには複数の(本例では4
個)のスリツト5cがその一端がわから形成され
る。そして、この円筒部材5の内径はちようどネ
ツク管3の電子銃の封着金属部8を挿通しうるも
のとし、雄ネジ部5bの先端位置に突出部5dが
形成される。
The cylindrical member 5 is specifically constructed as shown in FIGS. 6 and 7. 6 and 7, one end of the cylindrical member 5 has a deflection coil receiving portion 5a.
is formed, and a male threaded portion 5b is formed at the other end. This male threaded portion 5b has a plurality of (four in this example)
2) slits 5c are formed with one end open. The inner diameter of the cylindrical member 5 is such that the sealing metal part 8 of the electron gun of the network tube 3 can be inserted therethrough, and a protruding part 5d is formed at the tip of the male screw part 5b.

環状の永久磁石6,7はN極がわを対向させる
配置で(第5図)円筒部材5に挿通され、このの
ち、調整用雌ネジ部材9が雄ネジ部5bに螺合さ
れる。この螺合は雌ネジ部材9の外周にローレツ
ト9a(第8図)を刻むことにより容易に行える。
この場合、永久磁石6,7間には反発力が生じ、
この反発力により永久磁石7,6がそれぞれ偏向
コイル受部5aおよび調整用雌ネジ部材9に強く
当接する。そして、この際の抗力により永久磁石
7および偏向コイル受部5a間に摩擦力が生じ
る。同様に他の永久磁石6および調整用雌ネジ部
材9間に摩擦力が生じる。
The annular permanent magnets 6 and 7 are inserted into the cylindrical member 5 with their north poles facing each other (FIG. 5), and then the female adjusting member 9 is screwed into the male threaded portion 5b. This screwing can be easily accomplished by cutting a knurl 9a (FIG. 8) on the outer periphery of the female screw member 9.
In this case, a repulsive force is generated between the permanent magnets 6 and 7,
Due to this repulsive force, the permanent magnets 7 and 6 strongly abut against the deflection coil receiving portion 5a and the adjusting female screw member 9, respectively. Then, due to the drag force at this time, a frictional force is generated between the permanent magnet 7 and the deflection coil receiving portion 5a. Similarly, a frictional force is generated between the other permanent magnet 6 and the adjusting female screw member 9.

本例では、永久磁石6,7の内径は円筒部材5
の外径より若干大とされ、第10図に矢印で示す
ように永久磁石6,7を円筒部材5に対して上
下、左右に偏心させることができる。図は上方に
偏心させた場合である。この結果、ビームのセン
タ調整をこの永久磁石6,7の位置調整で行いう
る。そして、この調整した位置は上述摩擦力によ
り仮固定される。調整後には接着剤により永久磁
石6,7を封止して最終的な固定を行う。
In this example, the inner diameter of the permanent magnets 6 and 7 is the same as that of the cylindrical member 5.
The permanent magnets 6 and 7 can be made eccentric in the vertical and horizontal directions with respect to the cylindrical member 5, as shown by the arrows in FIG. The figure shows the case where it is eccentrically upward. As a result, the center of the beam can be adjusted by adjusting the positions of the permanent magnets 6 and 7. This adjusted position is then temporarily fixed by the above-mentioned frictional force. After the adjustment, the permanent magnets 6 and 7 are sealed with adhesive for final fixation.

円筒部材5のネツク管3への固定は取付用雌ネ
ジ部材10により行う。すなわち、雌ネジ部材1
0のネジ部10aは一端がわ(電子銃がわ)ほど
狭くなるようにテーパが付される。この結果、雌
ネジ部材10を深く円筒部材5の雄ネジ部5bに
ネジ合わせていくと、円筒部材5の突出部5dが
ネツク管3を挾圧し、この結果、円筒部材5とネ
ツク管3とが一体化するものである。
The cylindrical member 5 is fixed to the neck tube 3 using a female screw member 10 for attachment. That is, the female screw member 1
The threaded portion 10a of 0 is tapered so as to become narrower toward one end (near the electron gun). As a result, when the female threaded member 10 is screwed deeply into the male threaded portion 5b of the cylindrical member 5, the protruding portion 5d of the cylindrical member 5 pinches the neck tube 3, and as a result, the cylindrical member 5 and the neck tube 3 are are integrated.

斯る構成では、永久磁石6,7によりそれぞれ
第10図に実線および破線で示すような磁束分布
が形成される。なお、この図でlは永久磁石6,
7間のギヤツプである。そして、永久磁石6,7
による合成磁束分布は第12図に示すようにな
る。この図に示す本例の磁束分布ではストレー分
布成分が全体の数%(10%以下)となり、半値幅
を大としてもストレー分布による不都合が極めて
少ない。したがつて、半値幅を大としてビームの
フオーカス調整を容易かつ確実に行え、その降不
具合もない。
In such a configuration, the permanent magnets 6 and 7 form magnetic flux distributions as shown by solid lines and broken lines in FIG. 10, respectively. In this figure, l is the permanent magnet 6,
It is a gap of 7. And permanent magnets 6, 7
The resultant magnetic flux distribution is shown in FIG. 12. In the magnetic flux distribution of this example shown in this figure, the stray distribution component is a few percent (10% or less) of the total, and even if the half-width is large, the problem caused by the stray distribution is extremely small. Therefore, the half width can be increased to easily and reliably adjust the focus of the beam, and there is no problem with dropout.

以上のビームのフオーカス調整は調整用雌ネジ
部材9の螺合の深さを加減して行えることに説明
を要しないであろう。
It is unnecessary to explain that the beam focus adjustment described above can be performed by adjusting the screwing depth of the adjusting female screw member 9.

他方、ビームのセンタを調整するには永久磁石
6,7の偏心の程度を操作すればよい。そうする
と、レンズ系が光軸に対して変位し、ビームのセ
ンタ位置を可変できる。
On the other hand, the center of the beam can be adjusted by manipulating the degree of eccentricity of the permanent magnets 6 and 7. Then, the lens system is displaced with respect to the optical axis, and the center position of the beam can be varied.

以上述べたように、本考案陰極線管によれば、
環状の永久磁石6,7を同極が対抗する配置でネ
ツク管3に外周位置に取り付けているので、極め
て好ましい磁界分布を得ることができ、この結
果、フオーカス調整が簡易かつ確実となる。しか
も、この調整は調整用雌ネジ部材9と円筒部材5
の雄ネジ部5bとの螺合の深さ調整で行え、一層
容易である。
As mentioned above, according to the cathode ray tube of the present invention,
Since the annular permanent magnets 6 and 7 are attached to the outer periphery of the neck tube 3 with the same poles facing each other, an extremely preferable magnetic field distribution can be obtained, and as a result, focus adjustment can be performed easily and reliably. Moreover, this adjustment is made between the adjusting female screw member 9 and the cylindrical member 5.
This can be done easily by adjusting the depth of the screw engagement with the male threaded portion 5b.

また、永久磁石6,7をクリアランスをもつて
円筒部材5に取り付けているので永久磁石6,7
をネツク管3に対して偏心させることができ、こ
の結果、ビームのセンタ調整をも容易かつ確実に
行える。
In addition, since the permanent magnets 6 and 7 are attached to the cylindrical member 5 with a clearance, the permanent magnets 6 and 7
can be made eccentric with respect to the neck tube 3, and as a result, the center of the beam can be adjusted easily and reliably.

また、テーパのある取付用雌ネジ部材10を円
筒部材5の雄ネジ部5bに螺合させ、ネツク管3
を円筒部材5で挾圧し、この結果として両者を一
体化する構成なので、極めて作業性がよい。この
際、円筒部材5のスリツト5cを利用して挾圧作
業を一層容易かつ確実にできる。
Further, the tapered female mounting thread member 10 is screwed into the male threaded portion 5b of the cylindrical member 5, and the neck pipe 3
Since the structure is such that the cylindrical member 5 clamps and presses the cylindrical member 5, and as a result, the two are integrated, the workability is extremely good. At this time, the slit 5c of the cylindrical member 5 can be used to make the clamping operation easier and more reliable.

また、永久磁石6,7をネツク管3の外部に配
置しているため、設計上に自由度が高く、像倍率
mを小さくできる。このことは、電磁フオーカス
の特長であるビームの反発効果を無視しうるとい
う点とあいまつて高解像度化を図ることとなる。
また、電磁レンズの口径が大となるので収差を低
減することにもなる。
Further, since the permanent magnets 6 and 7 are arranged outside the neck tube 3, there is a high degree of freedom in design, and the image magnification m can be made small. This, combined with the fact that the beam repulsion effect, which is a feature of electromagnetic focus, can be ignored, results in higher resolution.
Furthermore, since the aperture of the electromagnetic lens is increased, aberrations can be reduced.

もちろん、永久磁石6,7の利用により低消費
電力化を実現しうる。
Of course, by using the permanent magnets 6 and 7, lower power consumption can be achieved.

なお、本考案は上述実施例に制約されるもので
はなく、その要旨を逸脱しない範囲で種々の構成
を採り得る。
Note that the present invention is not limited to the above-described embodiments, and may take various configurations without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はともに本考案の説明に供する
線図、第5図は本考案陰極線管の一実施例を示す
側面図、第6図は第5図例の一部を断面して示す
側面図、第7図〜第9図は第5図例の要部をそれ
ぞれ示す斜視図、第10図〜第12図はともに第
5図例の説明に供する線図である。 3はネツク管、5は円筒部材、5bは円筒部材
5の雄ネジ部、5cは円筒部材5のスリツト、5
dは円筒部材の突出部、6,7は永久磁石、9は
調整用雌ネジ部材、10は取付用雌ネジ部材であ
る。
1 to 4 are diagrams for explaining the present invention, FIG. 5 is a side view showing an embodiment of the cathode ray tube of the present invention, and FIG. 6 is a partially cross-sectional view of the example shown in FIG. The illustrated side view, FIGS. 7 to 9 are perspective views showing the main parts of the example in FIG. 5, and FIGS. 10 to 12 are diagrams for explaining the example in FIG. 3 is a neck pipe, 5 is a cylindrical member, 5b is a male threaded portion of the cylindrical member 5, 5c is a slit in the cylindrical member 5, 5
d is a protrusion of the cylindrical member, 6 and 7 are permanent magnets, 9 is an adjustment female screw member, and 10 is a mounting female screw member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ネツク管外周に設けられた円筒部材に、対をな
す環状永久磁石を同極が対向する配置で取り付け
てビームのフオーカスを行う陰極線管において、
上記円筒部材に雄ネジ部を形成し、この雄ネジ部
に調整用雌ネジ部材を螺合して上記対をなす環状
永久磁石の間隔を可変してビームのフオーカス調
整を行えるようになすとともに、上記対をなす環
状永久磁石の内径を上記円筒部材の外径より大と
し上記環状永久磁石を偏心させてビームのセンタ
の調整を行えるようになし、かつ、上記円筒部材
の上記雄ネジ部位置に陰極線管本体の電子銃がわ
からスリツトを形成し、雌ネジ部にテーパの付さ
れた固定用雌ネジ部材を上記雄ネジ部に螺合させ
て上記円筒部材を上記ネツク管に挾圧固定するよ
うにしたことを特徴とする陰極線管。
In a cathode ray tube, the beam is focused by attaching a pair of annular permanent magnets with the same poles facing each other to a cylindrical member provided on the outer periphery of the tube.
A male threaded portion is formed in the cylindrical member, and an adjusting female threaded member is screwed into the male threaded portion so that the distance between the pair of annular permanent magnets can be varied to adjust the focus of the beam; The inner diameter of the annular permanent magnets forming the pair is larger than the outer diameter of the cylindrical member, and the annular permanent magnets are made eccentric so that the center of the beam can be adjusted. A slit is formed through the electron gun in the cathode ray tube body, and a fixing female screw member with a tapered female screw portion is screwed into the male screw portion to secure the cylindrical member to the neck tube with clamping pressure. A cathode ray tube characterized by:
JP19769881U 1981-12-25 1981-12-25 cathode ray tube Granted JPS5898759U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19769881U JPS5898759U (en) 1981-12-25 1981-12-25 cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19769881U JPS5898759U (en) 1981-12-25 1981-12-25 cathode ray tube

Publications (2)

Publication Number Publication Date
JPS5898759U JPS5898759U (en) 1983-07-05
JPS6316126Y2 true JPS6316126Y2 (en) 1988-05-09

Family

ID=30110910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19769881U Granted JPS5898759U (en) 1981-12-25 1981-12-25 cathode ray tube

Country Status (1)

Country Link
JP (1) JPS5898759U (en)

Also Published As

Publication number Publication date
JPS5898759U (en) 1983-07-05

Similar Documents

Publication Publication Date Title
US5780859A (en) Electrostatic-magnetic lens arrangement
EP1042784B1 (en) Wien filter
JPS6316126Y2 (en)
GB451766A (en) Improvements in or relating to cathode ray tubes
JPH0762984B2 (en) In-line color display tube
WO2022021140A1 (en) Visible light streak tube and electron-optical imaging system
EP0081839B1 (en) Electron beam focusing lens
JP3490896B2 (en) Cathode ray tube
KR860008592A (en) An imaging tube
JPH0148610B2 (en)
JPH05225936A (en) Object lens for scanning electron microscope
JPS5845782B2 (en) Objective lenses for scanning electron microscopes, etc.
JPH0622102B2 (en) Cathode ray tube
JPH0973867A (en) Electron gun for color picture tube
KR970023591A (en) Deflection yoke for cathode ray tube
JPS633083Y2 (en)
JPS60119061A (en) Electron gun
JPS5942945B2 (en) cathode ray tube device
JPH0560212B2 (en)
JPH0237651A (en) Electron gun
JPS6029799Y2 (en) Electrostatic deflection storage tube
JPS6465751A (en) Cathode-ray tube
JP2556242Y2 (en) Focus magnet
JPH11297261A (en) Coaxial cylindrical secondary electron lead-in electrode and adjusting method of this electrode
JPH0597046U (en) Cathode ray tube