JPS63161181A - Production of high-purity aluminum-lithium mother alloy - Google Patents

Production of high-purity aluminum-lithium mother alloy

Info

Publication number
JPS63161181A
JPS63161181A JP30545286A JP30545286A JPS63161181A JP S63161181 A JPS63161181 A JP S63161181A JP 30545286 A JP30545286 A JP 30545286A JP 30545286 A JP30545286 A JP 30545286A JP S63161181 A JPS63161181 A JP S63161181A
Authority
JP
Japan
Prior art keywords
cathode
lithium
alloy
aluminum
mother alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30545286A
Other languages
Japanese (ja)
Other versions
JPH0213035B2 (en
Inventor
Masayasu Toyoshima
豊嶋 雅康
Yoshiaki Watanabe
吉章 渡辺
Yoshiaki Orito
折戸 吉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP30545286A priority Critical patent/JPS63161181A/en
Publication of JPS63161181A publication Critical patent/JPS63161181A/en
Publication of JPH0213035B2 publication Critical patent/JPH0213035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To obtain the title Al-Li mother alloy without any breakage and crack by electrolyzing the mixed fuse salt of LiCl and KCl with a hollow cylindrical solid Al as the cathode at specific current density without floating the deposited Li on the bath surface. CONSTITUTION:The mixed fused salt of LiCl and KCl is charged in an electrolytic cell. The hollow cylindrical solid Al as the cathode is dipped in the fused salt, and electrolysis is carried out at 0.005-1A/cm<2> cathode current density to form an Al-Li alloy on the cathode. The deposited Li is not floated on the bath surface by this method, and Na, K, and Ca are also not deposited, and a high-purity Al-Li alloy is formed on the Al cathode.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高純度のアルミニウム−リチウム母合金の製
造方法に関する。詳しくはナトリウム、カリウム等のリ
チウム以外のアルカリ金属とカルシウムを実質土倉まな
いアルミニウム−1ノチウム母合金の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a high purity aluminum-lithium master alloy. Specifically, the present invention relates to a method for producing an aluminum-1-notium mother alloy that does not contain substantially any alkali metals other than lithium, such as sodium and potassium, and calcium.

[従来の技術] 従来方法によるアルミニウム−リチウム母合金の製造は
、大要法の2工程で行われている。
[Prior Art] The production of an aluminum-lithium master alloy by a conventional method is carried out in two main steps.

■ 金属リチウムの電解採取工程 ■ 溶解・鋳造工程 ■の工程は、塩化リチウムと塩化カリウムの混合溶融塩
の電解による金属リチウムの製造工程であり、■の工程
は、■の工程により製造された金属リチウムを母合金の
組成に所要な量でアルミニウムに加えて共に溶解して母
合金の鋳塊を得る工程である。
■ Electrolytic extraction process for metallic lithium ■ Melting/casting process The process ■ is a process for producing metallic lithium by electrolysis of a mixed molten salt of lithium chloride and potassium chloride. This is a process in which lithium is added to aluminum in an amount required for the composition of the master alloy and melted together to obtain an ingot of the master alloy.

実用上価値のある高純度のアルミニウム−リチウム母合
金としては、li含有量が10重四%以上であり、また
Na、にの含有量がそれぞれ5ppm以下であり、かつ
Caの含有量がi oppm以下である必要がある。
A high-purity aluminum-lithium mother alloy having practical value has a Li content of 10% by weight or more, a Na content of 5 ppm or less, and a Ca content of i oppm. Must be below.

現在、市販されている高純度電解リチウム(99,9%
)は、Na、におよびCaの含有量がそれぞれ200p
pm、 1100ppおよび200ppm程度であって
、これを用いて高純度のアルミニウム−リチウム母合金
を製造することは不可能である。
Currently, commercially available high-purity electrolytic lithium (99.9%
) has a content of Na, Ca and 200p each.
pm, 1100 ppm and 200 ppm, and it is impossible to manufacture a high purity aluminum-lithium mother alloy using this.

また超高純度電解リチウム(Na≦soppm)を製造
するには、リチウムの電解採取工程に対して、リチウム
塩や金属リチウムの精製工程の追加が必要となる。
Furthermore, in order to produce ultra-high purity electrolytic lithium (Na≦soppm), it is necessary to add a lithium salt or metallic lithium purification process to the lithium electrolytic extraction process.

[発明か解決しようとする問題点] リチウムの精製をカスによる溶湯処理によって行なう場
合には、リチウムの損失が大きい障害がある。更に従来
方法の金属リチウム電解における電流効率は比較的低く
、例えば70%から90%どまりである。
[Problems to be Solved by the Invention] When lithium is purified by molten metal treatment using scum, there is a problem in that the loss of lithium is large. Furthermore, the current efficiency in conventional metal lithium electrolysis is relatively low, for example, only 70% to 90%.

以上の他、従来のアルミニウム−リチウム母合金の製造
方法では、前記の■工程によって、電解リチウムとアル
ミニウムの再溶解が不可欠であり、その際に高活性であ
るリチウムは変質し劣化を起こしやすい。これを防ぐに
は希ガスによる溶解雰囲気の調整が必要となる。更に、
低融点で比重が小さいためリチウムは凝固過程で偏析を
起こしやすい。したがって、従来方法によって常に安定
して一定組成の母合金を製造することは不可能である。
In addition to the above, in the conventional method for producing an aluminum-lithium mother alloy, it is essential to re-dissolve the electrolytic lithium and aluminum in the step (1) described above, and at this time, highly active lithium is likely to undergo deterioration and deterioration. To prevent this, it is necessary to adjust the dissolution atmosphere using a rare gas. Furthermore,
Because of its low melting point and low specific gravity, lithium is prone to segregation during the solidification process. Therefore, it is impossible to always stably produce a master alloy having a constant composition using conventional methods.

本出願人はこれらの問題点を解決する方法としてさきに
特願昭58−215989号を開発した。この方法はア
ルミニウム−リチウム母合金の電解製造において、陰極
に固体アルミニウムを用いることを骨子とする方法であ
る。この場合、電解が進行すると、アルミニウム陰極の
表面層から中心部に向って合金化が進むとともに膨張す
る。そして膨張が進むにつれて、合金図に亀裂が生じ、
その亀裂は徐々に大きくなる。亀裂が大きくなるにつれ
て以下の問題が生じる。
The present applicant previously developed Japanese Patent Application No. 58-215989 as a method to solve these problems. This method is a method in which solid aluminum is used as a cathode in the electrolytic production of an aluminum-lithium master alloy. In this case, as electrolysis progresses, alloying progresses from the surface layer of the aluminum cathode toward the center, and the aluminum cathode expands. As the expansion progresses, cracks appear in the alloy diagram,
The crack gradually grows larger. As the crack grows larger, the following problems arise.

■ 合金取出時に亀裂内に電解浴が取り込まれる。■ Electrolytic bath is taken into the crack when the alloy is removed.

■ 陰極電流密度が変動する。■ Cathode current density fluctuates.

■ 合金の欠落の恐れがおる。■ There is a risk of alloy chipping.

■ 陰極装入部の占有面積か大きくなる。■ The area occupied by the cathode charging section increases.

[問題点を解決するための手段] 本発明は、上記問題点を解決するもので、塩化リチウム
と塩化カリウムからなる混合溶融塩を陰極に中空筒状固
体アルミニウムを用いて電解し、該陰極にアルミニウム
−リチウム合金を生成させることを特徴とする高純度ア
ルミニウム−リチウム母合金の製造方法でおる。
[Means for Solving the Problems] The present invention solves the above problems by electrolyzing a mixed molten salt of lithium chloride and potassium chloride using a hollow cylindrical solid aluminum as a cathode. A method for producing a high-purity aluminum-lithium mother alloy, which is characterized by producing an aluminum-lithium alloy.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明者らはLiClとKCIとの混合溶融塩の電解に
おいて、陰極に中空固体アルミニウムを用いて電解を行
なえば、析出1−iを電解浴面に浮上させることなく、
かつ、Na、におよびCaを析出させることなしにA1
陰極に高純度のAl−1i合金を生成させることができ
る。
In the electrolysis of a mixed molten salt of LiCl and KCI, the present inventors found that if the electrolysis was carried out using hollow solid aluminum as the cathode, the deposit 1-i would not float to the surface of the electrolytic bath.
And A1 without precipitating Na and Ca.
A high purity Al-1i alloy can be produced at the cathode.

しかもそのAl−1−i合金の生成は、理由は定かでは
ないが、中空固体アルミニウムカソードを用いた場合に
は、中空部分に向けてのストレス方向となり、膨張も同
方向に生じると思われ、ざらに、Al棒の場合と異なり
、ストレスが開放されるために亀裂の発生、合金の欠落
等の問題が少ないものと考えられる。
Moreover, the reason for the formation of the Al-1-i alloy is not clear, but when a hollow solid aluminum cathode is used, the stress is directed toward the hollow part, and expansion is thought to occur in the same direction. In general, unlike the case of Al rods, it is thought that because the stress is released, there are fewer problems such as cracking and chipping of alloy.

第1図は本発明を実施するための基本的な説明図で、1
は電解槽であり、内部にしIC1とKCIの混合溶融塩
4を収容し、これに黒鉛等からなる陽極5と中空筒状固
体アルミニウムの陰極2とを対置浸漬する。3は陰極リ
ード、6は陽極リードであり、7は陽極に発生する塩素
ガス捕集排出管でおる。
FIG. 1 is a basic explanatory diagram for implementing the present invention.
is an electrolytic cell which contains a mixed molten salt 4 of IC1 and KCI, into which an anode 5 made of graphite or the like and a hollow cylindrical solid aluminum cathode 2 are immersed oppositely. 3 is a cathode lead, 6 is an anode lead, and 7 is a collection and discharge pipe for chlorine gas generated at the anode.

この場合陰極電流密度は0.005〜I A/Cm2の
範囲とする。0.005 A/cm2より小さいとLl
の析出量が少なく、結果としてAl−1−i合金の生成
量が少なくなって生産性が極めて低く、非工業的であり
、又、I A/Cm’より大きいとLi単味が陰極に析
出し合金化の歩留りが低下するので好ましくない。
In this case, the cathode current density is in the range of 0.005 to IA/Cm2. Ll if smaller than 0.005 A/cm2
As a result, the amount of Al-1-i alloy produced is small, resulting in extremely low productivity and non-industrial use.Also, if it is larger than IA/Cm', single Li will precipitate on the cathode. This is not preferable because the yield of alloying decreases.

又、高純度Al−1−i合金が生成する理由については
、電解によって陰極面に析出したl−iが固体Al内に
拡散してLi−Al化合物を生成し、この生成化合物に
よって陰極の分極が減少する減極作用によって、LiC
lの分解電圧が低下するのに対し、Naにはこのような
減極作用がないので、NaClの分解電圧は変らず、C
aは合金化による減極効果でCaCl2の分解電圧は低
下するが、Caの合金的拡散はL1に比較して相当遅れ
るので、結果として分解電圧が変らない。また、KCI
の分解電圧はもともと1−iQIより大きいので、Li
の減極効果によってその差は拡大し、結果としてl−i
だけが析出し、陰極材にNa、におよびCaの混入が起
らないことによるものと考察される。
In addition, the reason why high-purity Al-1-i alloy is formed is that l-i deposited on the cathode surface by electrolysis diffuses into solid Al to generate Li-Al compounds, and this generated compound causes polarization of the cathode. Due to the depolarization effect that decreases LiC
While the decomposition voltage of L decreases, Na has no such depolarization effect, so the decomposition voltage of NaCl remains unchanged and C
In a, the decomposition voltage of CaCl2 decreases due to the depolarization effect due to alloying, but since the alloying diffusion of Ca is considerably delayed compared to L1, the decomposition voltage does not change as a result. Also, KCI
Since the decomposition voltage of is originally larger than 1-iQI, Li
The difference increases due to the depolarization effect of l−i
This is considered to be due to the fact that only Na, Ca and Na are precipitated, and that Na, Ca and Na are not mixed into the cathode material.

[実施例] 次に実施例について比較例と共に説明する。[Example] Next, examples will be described together with comparative examples.

前記第1図に示した如き電解槽1に45wt%LiCl
と55wt%KC+よりなる混合溶融塩4を入れ、これ
に黒鉛からなる陽極5とその対極として第2図ないし第
4図に示す形状の各種陰極2を吊下げる。
45 wt% LiCl was added to the electrolytic cell 1 as shown in FIG.
A mixed molten salt 4 consisting of KC+ and 55 wt% KC+ is put therein, and an anode 5 made of graphite and various cathodes 2 having the shapes shown in FIGS. 2 to 4 as counter electrodes are suspended therein.

第2図(a)は実施例の陰極材で、外径80mm、内径
50mmよりなる99.7%A I 、Na<5ppm
なる組成の円筒状のものである。第3゛図(a)は他の
実施例の陰極材で、外径80mm、内径60mmのもの
で、同じり99.7%A1の円筒状のものである。
Figure 2 (a) shows the cathode material of the example, which has an outer diameter of 80 mm and an inner diameter of 50 mm, with 99.7% A I and Na<5 ppm.
It has a cylindrical shape and has the following composition. FIG. 3(a) shows a cathode material of another embodiment, which has an outer diameter of 80 mm, an inner diameter of 60 mm, and is also cylindrical with 99.7% A1.

第4図(a)は比較例の陰極材で、直径80mmの円柱
状のものである。
FIG. 4(a) shows a comparative example of a cathode material having a cylindrical shape with a diameter of 80 mm.

実施例1 第2図(a)に示す陰極材を用い、電流密度0、07A
/Cm ’で電解した。結果的に陰極材の膨張は第2図
(b)に示す程度、すなわち外径82mm、内径35m
mとなり、亀裂は発生しなかった。母合金の組成は11
.4wt%l−iで、Na濃度は5ppm以下であった
Example 1 Using the cathode material shown in Figure 2(a), the current density was 0.07A.
/Cm'. As a result, the expansion of the cathode material was as shown in Figure 2 (b), that is, the outer diameter was 82 mm and the inner diameter was 35 mm.
m, and no cracks occurred. The composition of the master alloy is 11
.. At 4 wt% l-i, the Na concentration was 5 ppm or less.

実施例2 第3図(a)に示す陰極材を用い、電流密度0、 IO
A/cm’で電解した。結果的に第3図(b)に示すよ
うに外径84mm、内径40mmとなって亀裂は僅少で
無視し得る程度であった。母合金の組成は20wt%l
−iで、Na濃度は5ppm以下であった。
Example 2 Using the cathode material shown in FIG. 3(a), the current density was 0, IO
Electrolysis was carried out at A/cm'. As a result, as shown in FIG. 3(b), the outer diameter was 84 mm and the inner diameter was 40 mm, and the cracks were slight and could be ignored. The composition of the master alloy is 20wt%l
-i, the Na concentration was 5 ppm or less.

比較例 第4図(a)に示す陰極材を用い、電流密度0、7A/
Cm 2で電解したところ、陰極材の外面から合金化が
進行し、第4図(b)に示すように外径95〜105m
mと膨張し、亀裂が多数発生した。
Comparative Example Using the cathode material shown in Figure 4(a), the current density was 0, 7A/
When electrolyzed with Cm2, alloying progressed from the outer surface of the cathode material, and as shown in Figure 4(b), the outer diameter was 95 to 105 m.
It expanded and many cracks occurred.

母合金の組成は11wt%Liで、N89度は5ppm
以下であった。
The composition of the master alloy is 11 wt% Li, and the N89 degree is 5 ppm.
It was below.

[発明の効果] 本発明の方法によれば下記のような効果が得られる。[Effect of the invention] According to the method of the present invention, the following effects can be obtained.

(1)陰極の外径がほとんど変らず、すなわち外側へ向
っての膨張が小ざいので、表面亀裂が入りにくい。
(1) Since the outer diameter of the cathode hardly changes, that is, outward expansion is small, surface cracks are less likely to occur.

(2)外径変化が小さいため、電解槽の陰極部をコンパ
クトにすることができる。
(2) Since the outer diameter change is small, the cathode part of the electrolytic cell can be made compact.

(3)陰極表面の亀裂が少ないため、取出時の付着浴發
が少なく、浴汚染が少ない。
(3) Since there are few cracks on the surface of the cathode, there is less adhesion of the bath during removal and less bath contamination.

(4)陰極の外径変化が僅少であるため陰極電流変動が
無視でき、操業が安定する。
(4) Since the change in the outer diameter of the cathode is small, cathode current fluctuations can be ignored, resulting in stable operation.

(5)陰極の表面に亀裂が発生することが少ないので、
小塊の欠落の恐れが少ない。
(5) Since cracks are less likely to occur on the surface of the cathode,
There is less risk of missing small lumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための説明図、第2図
(a)、(b) 、第3図(a)、 (b)は本発明の
実施に用いる陰極材とその電解後の断面図、第4図(a
)、 (b)は比較例の陰極材とその電解後の断面図で
ある。 1・・・電解槽、2・・・陰極、3・・・陰極リード、
4・・・混合溶融塩、5・・・陽極、6・・・陽極リー
ド、7・・・塩素ガス排出管。
Fig. 1 is an explanatory diagram for explaining the present invention in detail, Fig. 2 (a), (b), and Fig. 3 (a), (b) show the cathode material used in carrying out the present invention and its electrolyzed material. Cross-sectional view of Figure 4 (a
) and (b) are cross-sectional views of a comparative example of a cathode material and its electrolyzed state. 1... Electrolytic cell, 2... Cathode, 3... Cathode lead,
4...Mixed molten salt, 5...Anode, 6...Anode lead, 7...Chlorine gas discharge pipe.

Claims (2)

【特許請求の範囲】[Claims] (1)塩化リチウムと塩化カリウムからなる混合溶融塩
を陰極に中空筒状固体アルミニウムを用いて電解し、該
陰極にアルミニウム−リチウム合金を生成させることを
特徴とする高純度アルミニウム−リチウム母合金の製造
方法。
(1) A high-purity aluminum-lithium mother alloy characterized in that a mixed molten salt consisting of lithium chloride and potassium chloride is electrolyzed using a hollow cylindrical solid aluminum as a cathode to form an aluminum-lithium alloy on the cathode. Production method.
(2)陰極電流密度を0.005〜1A/cm^2とし
て電解する特許請求の範囲第(1)項記載の高純度アル
ミニウム−リチウム母合金の製造方法。
(2) A method for producing a high-purity aluminum-lithium mother alloy according to claim (1), in which electrolysis is carried out at a cathode current density of 0.005 to 1 A/cm^2.
JP30545286A 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy Granted JPS63161181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30545286A JPS63161181A (en) 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30545286A JPS63161181A (en) 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy

Publications (2)

Publication Number Publication Date
JPS63161181A true JPS63161181A (en) 1988-07-04
JPH0213035B2 JPH0213035B2 (en) 1990-04-03

Family

ID=17945315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30545286A Granted JPS63161181A (en) 1986-12-23 1986-12-23 Production of high-purity aluminum-lithium mother alloy

Country Status (1)

Country Link
JP (1) JPS63161181A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504592A (en) * 1989-03-24 1992-08-13 コマルコ アルミニウム リミテッド Tough aluminum-lithium, aluminum-magnesium and magnesium-lithium alloys
CN103060851A (en) * 2013-01-18 2013-04-24 哈尔滨工程大学 Method for preparing erbium-thulium alloy containing reinforced aluminum-lithium through molten salt electrolysis co-reduction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504592A (en) * 1989-03-24 1992-08-13 コマルコ アルミニウム リミテッド Tough aluminum-lithium, aluminum-magnesium and magnesium-lithium alloys
CN103060851A (en) * 2013-01-18 2013-04-24 哈尔滨工程大学 Method for preparing erbium-thulium alloy containing reinforced aluminum-lithium through molten salt electrolysis co-reduction

Also Published As

Publication number Publication date
JPH0213035B2 (en) 1990-04-03

Similar Documents

Publication Publication Date Title
US5024737A (en) Process for producing a reactive metal-magnesium alloy
US7901561B2 (en) Method for electrolytic production and refining of metals
RU2145646C1 (en) Method of production of metallic silicon, silumin and aluminium and technological plant for realization of this method
JP5183498B2 (en) Electrolytic production of silicon and scouring method
JPS5813613B2 (en) Aluminum refining method
EP3368477A1 (en) Method for the enrichment and separation of silicon crystals from a molten metal for the purification of silicon
JP4160400B2 (en) Method for preparing silicon and optionally aluminum and silmine (aluminum silicon alloy)
CN103243385A (en) Method for preparing high-purity monocrystalline silicon through electrolytic refining-liquid cathode in-situ directional solidification
JPS5942079B2 (en) Aluminum refining method
US4292145A (en) Electrodeposition of molten silicon
JP4783310B2 (en) Recovery and purification of platinum group metals by molten salt electrolysis
CA1251162A (en) Method of producing a high purity aluminum-lithium mother alloy
JPH01184295A (en) Production of high purity aluminum-lithium mother alloy
JPS63161181A (en) Production of high-purity aluminum-lithium mother alloy
WO2022092231A1 (en) Method for manufacturing recycled aluminum, manufacturing equipment, manufacturing system, recycled aluminum, and processed aluminum product
CN102554186B (en) Method for preparing copper electrolysis anode plate
RU2103391C1 (en) METHOD FOR PRODUCING REFRACTORY METALS FROM ORE CONCENTRATES
CN115305568A (en) Smelting method of polycrystalline silicon
JPS61261491A (en) Manufacture of high purity aluminum-lithium alloy powder
WO1997027143A1 (en) Production of high purity silicon metal, aluminium, their alloys, silicon carbide and aluminium oxide from alkali alkaline earth alumino silicates
US3020221A (en) Process for producing sodium
JPH0213031B2 (en)
JP5236897B2 (en) Method for producing silicon
JP2000104128A (en) Method for refining aluminum and use of obtained aluminum
US2948663A (en) Composition of matter including titanium crystal intergrowths and method of making same