JP4783310B2 - Recovery and purification of platinum group metals by molten salt electrolysis - Google Patents

Recovery and purification of platinum group metals by molten salt electrolysis Download PDF

Info

Publication number
JP4783310B2
JP4783310B2 JP2007036175A JP2007036175A JP4783310B2 JP 4783310 B2 JP4783310 B2 JP 4783310B2 JP 2007036175 A JP2007036175 A JP 2007036175A JP 2007036175 A JP2007036175 A JP 2007036175A JP 4783310 B2 JP4783310 B2 JP 4783310B2
Authority
JP
Japan
Prior art keywords
molten salt
platinum group
chloride
chlorine
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007036175A
Other languages
Japanese (ja)
Other versions
JP2008202064A (en
Inventor
鎗田  聡明
光弥 高橋
弘章 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2007036175A priority Critical patent/JP4783310B2/en
Priority to PCT/JP2008/052013 priority patent/WO2008099748A1/en
Priority to TW97105132A priority patent/TW200839035A/en
Publication of JP2008202064A publication Critical patent/JP2008202064A/en
Application granted granted Critical
Publication of JP4783310B2 publication Critical patent/JP4783310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/34Electrolytic production, recovery or refining of metals by electrolysis of melts of metals not provided for in groups C25C3/02 - C25C3/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Description

本発明は、溶融塩電解法により、ルテニウム、イリジウム等の白金族金属を含む廃棄物等から、白金族金属を回収するための方法に関する。   The present invention relates to a method for recovering a platinum group metal from waste containing a platinum group metal such as ruthenium and iridium by a molten salt electrolysis method.

ルテニウム、イリジウム等の白金族の貴金属(以下、貴金属と称するときがある。)は、高耐熱性、高耐食性を有することから各種無機材料融解用のるつぼ等の構造材料の他、電気的特性にも優れることから電子部品の電極材料等にも使用されている。一方、これら貴金属は、希少性が高く高価な金属であることから、無駄のない有効な利用・消費が必要であり、リサイクル技術の発展が求められる。   Platinum group noble metals such as ruthenium and iridium (hereinafter sometimes referred to as noble metals) have high heat resistance and high corrosion resistance, so they have electrical properties in addition to structural materials such as crucibles for melting various inorganic materials. In addition, it is also used as an electrode material for electronic parts. On the other hand, since these noble metals are rare and expensive, they require efficient use and consumption without waste, and the development of recycling technology is required.

本願出願人は、貴金属の回収・精製技術において溶融塩による処理技術を有しており、例えば、下記のような方法を開示している。
特開2004−99975号公報
The applicant of the present application has a processing technique using a molten salt in a technique for recovering and purifying precious metals, and discloses, for example, the following method.
Japanese Patent Laid-Open No. 2004-99975

本願出願人による、廃棄物からの白金族金属回収法は、イリジウム等の貴金属を含む廃棄物をセシウム塩を含む塩化物溶融塩中に溶解させ、廃棄物中の貴金属を、塩化イリジウム酸塩セシウム等とし、反応後の溶融塩と水とを混合して塩化イリジウム酸塩セシウム等を分離回収する工程を含むものである。この溶融塩を用いた技術は、比較的少工程で白金族金属を回収することができる。   The method of recovering platinum group metals from waste by the applicant of the present application is to dissolve a waste containing a noble metal such as iridium in a molten chloride salt containing a cesium salt, and to convert the noble metal in the waste into a cesium chloride iridate. And a step of separating and recovering cesium chloride iridate by mixing the molten salt after reaction and water. This technique using the molten salt can recover the platinum group metal in a relatively small number of steps.

また、本願出願人は、上記のように、塩化物溶融塩中の貴金属を化合物の形態で回収する技術の他、塩化物溶融塩を電解し、貴金属を析出させる方法も開示している。
特開2001−089890号公報 特開2001−152381号公報
In addition to the technique for recovering the noble metal in the chloride molten salt in the form of a compound as described above, the applicant of the present application also discloses a method for electrolyzing the chloride molten salt to precipitate the noble metal.
JP 2001-089890 A JP 2001-152381 A

このような溶融塩電解法による貴金属回収においては、処理対象となる廃棄物等を陽極とし、カーボン等の不溶性電極を陰極とし、これらを塩化物溶融塩(塩化ナトリウム、塩化カリウム、塩化セシウム等のアルカリ金属の塩化物の単独塩又は混合塩が良く用いられている。)中に浸漬し、両極を通電する。これにより、陽極中の貴金属が溶融塩中に溶出すると共に、陰極表面に析出し回収可能な状態となる。かかる溶融塩電解法は、貴金属を直接回収することができ、その純度も高いという利点がある。   In such precious metal recovery by the molten salt electrolysis method, the waste to be treated is used as an anode, an insoluble electrode such as carbon is used as a cathode, and these are used as chloride molten salts (sodium chloride, potassium chloride, cesium chloride, etc.). A single salt or mixed salt of an alkali metal chloride is often used). As a result, the noble metal in the anode is eluted into the molten salt, and is deposited on the surface of the cathode and can be recovered. Such a molten salt electrolysis method has an advantage that the precious metal can be directly recovered and its purity is high.

ところで、溶融塩を利用した貴金属の回収効率は、溶融塩に溶解した貴金属の含有量、即ち、貴金属を含む処理対象物の溶融塩への溶解量により変化する。   By the way, the collection efficiency of the noble metal using the molten salt varies depending on the content of the noble metal dissolved in the molten salt, that is, the amount of the object to be treated containing the noble metal dissolved in the molten salt.

しかし、処理対象物中の貴金属の溶解速度は、溶融塩の温度等によりある程度は調整可能であるが、その範囲には限界がある。また、調整可能であっても溶解速度に限界があり、同一条件でより効率的に溶解を行なう方法が求められる。   However, the dissolution rate of the noble metal in the object to be treated can be adjusted to some extent by the temperature of the molten salt, but the range is limited. Moreover, even if it can be adjusted, there is a limit to the dissolution rate, and a method for more efficient dissolution under the same conditions is required.

本発明は、以上のような背景の下になされたものであり、塩化物溶融塩を用いた貴金属の回収方法において、処理対象物からの貴金属の溶解速度を上昇させ、貴金属の回収を効率的に行なうことのできる方法、及び、そのための装置を提供とすることを目的とする。   The present invention has been made under the background as described above, and in the method for recovering a noble metal using a molten chloride salt, the dissolution rate of the noble metal from the object to be processed is increased, thereby efficiently recovering the noble metal. It is an object of the present invention to provide a method that can be carried out in the future and an apparatus therefor.

上記課題を解決する本発明は、塩化物溶融塩中に、白金族金属を含む処理対象物を浸漬し、前記白金族金属を前記塩化物溶融塩に溶解させる溶解工程を含む白金族金属の回収・精製方法であって、前記溶解工程は、前記塩化物溶融塩に塩素を吹き込みながら電解するものである白金族金属の回収・精製方法である。   The present invention for solving the above-mentioned problems is a recovery of a platinum group metal including a dissolving step of immersing a treatment object containing a platinum group metal in a chloride molten salt and dissolving the platinum group metal in the chloride molten salt. -It is a refinement | purification method, Comprising: The said melt | dissolution process is a collection | recovery / refinement | purification method of the platinum group metal which is electrolyzed while blowing chlorine in the said chloride molten salt.

溶融塩中における貴金属の溶解は、貴金属のイオン化、及び、発生した貴金属イオンと塩素イオンとが反応して塩化物を形成することに基づくものである。これらの反応は、平衡関係にあることから、貴金属の溶解を促進するためには、貴金属イオンの増加及び塩素イオンの濃度上昇を図ることが求められる。本発明では、溶融塩の電解による貴金属イオン及び塩素イオンの濃度上昇と、塩素ガスの吹き込みによる塩素イオン源の増加により、前記平衡関係を塩化物生成側へシフトさせるものである。   The dissolution of the noble metal in the molten salt is based on the ionization of the noble metal and the reaction between the generated noble metal ion and chlorine ion to form a chloride. Since these reactions are in an equilibrium relationship, it is necessary to increase the concentration of noble metal ions and increase the concentration of chlorine ions in order to promote dissolution of the noble metal. In the present invention, the equilibrium relationship is shifted to the chloride production side by increasing the concentration of noble metal ions and chlorine ions by electrolysis of molten salt and increasing the chlorine ion source by blowing in chlorine gas.

以下、本発明について詳細に説明する。本発明において、貴金属を含む処理対象物は、陽極として作用するが、貴金属の含有量は特に限定されない。その形状についても陽極として通電可能なものであれば特に限定はない。また、貴金属を含有するスクラップを一旦溶解鋳造したものを用いても良い。また、陰極は、不溶性電極の適用が好ましく、カーボン製が好ましい。尚、本発明において対象となる白金族金属に属するものとして、白金、イリジウム、ルテニウム、ロジウム、オスミウムの回収、精製が可能である。   Hereinafter, the present invention will be described in detail. In the present invention, the object to be treated containing a noble metal acts as an anode, but the content of the noble metal is not particularly limited. The shape is not particularly limited as long as it can be energized as an anode. Moreover, you may use what once melted and cast the scrap containing a noble metal. The cathode is preferably an insoluble electrode and is preferably made of carbon. Note that platinum, iridium, ruthenium, rhodium, and osmium can be recovered and purified as belonging to the platinum group metal that is the subject of the present invention.

電解質となる塩化物溶融塩の組成は、アルカリ金属塩化物の溶融塩が好ましく、取扱性の観点から特に好ましいのは、塩化ナトリウム、塩化カリウム、塩化セシウムの少なくともいずれかを含むものである。また、これらを混合した混合塩も適用でき、混合比を調整することで混合塩を溶融させるための融点の調整が可能である。3種の混合塩を用いる場合の好ましい組成は、塩化ナトリウム:塩化カリウム:塩化セシウム=25〜35mol%:20〜30mol%:40〜50mol%である。溶融塩の温度は、490〜540℃とするのが好ましい。   The composition of the molten chloride salt serving as the electrolyte is preferably an alkali metal chloride molten salt, and particularly preferably includes at least one of sodium chloride, potassium chloride, and cesium chloride from the viewpoint of handleability. A mixed salt obtained by mixing these can also be applied, and the melting point for melting the mixed salt can be adjusted by adjusting the mixing ratio. A preferable composition when three kinds of mixed salts are used is sodium chloride: potassium chloride: cesium chloride = 25 to 35 mol%: 20 to 30 mol%: 40 to 50 mol%. The temperature of the molten salt is preferably 490 to 540 ° C.

そして、貴金属の溶解工程における条件は、まず、電解条件としては、陰極電流密度を5〜40mA/cm、好ましくは、20〜30mA/cmとするのが好ましい。また、溶融塩に吹き込む塩素ガスは、純度がほぼ100%のものを用いるのが好ましい。塩素ガスの吹き込み量については、電極面積及び陰極電流密度に依存し、これらに基づいて換算される電気化学当量相当量の当倍量以上で2倍量以下の塩素ガスを吹き込むことが好ましい。電気化学当量の2倍を超える塩素ガスを吹き込むと、反応容器中の塩素分圧が上昇し、反応容器の腐食進行が早まるおそれがあるからである。また、電気化学当量未満の塩素ガスを吹き込んでも、溶解は進行するが、その速度は遅いものとなる。このとき、陰極電流密度を上昇させても貴金属の陰極側での析出を伴い、溶解速度の上昇が見込めない。従って、電気当量以上の塩素ガスの吹込みが好ましい。 The conditions in the noble metal dissolution process, first, as the electrolysis conditions, 5 to 40 mA / cm 2 cathode current density, preferably, preferably with 20~30mA / cm 2. The chlorine gas blown into the molten salt is preferably one having a purity of almost 100%. The amount of chlorine gas blown depends on the electrode area and the cathode current density, and it is preferable to blow chlorine gas in an amount equivalent to or more than the equivalent amount of the electrochemical equivalent converted on the basis of the electrode area and the cathode current density. This is because if chlorine gas exceeding twice the electrochemical equivalent is blown, the partial pressure of chlorine in the reaction vessel rises, and the corrosion of the reaction vessel may be accelerated. Moreover, even if chlorine gas less than the electrochemical equivalent is blown, dissolution proceeds, but the speed is slow. At this time, even if the cathode current density is increased, noble metal is precipitated on the cathode side, and an increase in dissolution rate cannot be expected. Therefore, it is preferable to blow in chlorine gas having an electrical equivalent or more.

溶解工程において、上記条件により塩素吹き込み及び電解を行なう時間の目安としては、8〜24時間とするのが好ましい。また、その後の貴金属の回収効率を考慮すると、溶融塩中の貴金属濃度が溶融塩に対し0.1〜0.4mol%となるまで溶解工程を行なうのが好ましい。   In the melting step, it is preferable that the time for performing chlorine blowing and electrolysis under the above conditions is 8 to 24 hours. In consideration of the subsequent recovery efficiency of the precious metal, it is preferable to carry out the dissolving step until the precious metal concentration in the molten salt becomes 0.1 to 0.4 mol% with respect to the molten salt.

本発明においては、貴金属を溶融塩に溶解させた後に、塩素の吹き込みを停止し、溶融塩から貴金属を回収する。この回収工程については、溶解工程後の溶融塩を溶解処理して貴金属化合物の形態で回収しても良いが、好ましいのは、溶解工程後の溶融塩を電解して貴金属を析出させるものである。溶解工程で使用した電解のための装置をそのまま使用することができ、溶解工程から速やかに回収工程へ移行することができるからである。また、電解析出を行うことで、高純度の貴金属を回収することができ、回収と同時に精製が可能となるからである。   In the present invention, after the noble metal is dissolved in the molten salt, the blowing of chlorine is stopped and the noble metal is recovered from the molten salt. For this recovery step, the molten salt after the dissolution step may be dissolved and recovered in the form of a noble metal compound, but preferably the molten salt after the dissolution step is electrolyzed to precipitate the noble metal. . This is because the electrolysis apparatus used in the dissolution process can be used as it is, and the recovery process can be promptly shifted from the dissolution process. Further, by performing electrolytic deposition, it is possible to recover a high-purity noble metal, and it becomes possible to purify simultaneously with the recovery.

この電解析出による回収工程の電解条件は、10〜50mA/cm、好ましくは、30〜50mA/cmとするのが好ましい。貴金属溶解の際の電流密度より高めの範囲となっているのは、この段階における電解が析出の促進を目的としているからである。 The electrolytic conditions in the recovery step by this electrolytic deposition are 10 to 50 mA / cm 2 , preferably 30 to 50 mA / cm 2 . The reason why the current density is higher than the current density at the time of dissolving the noble metal is that the electrolysis at this stage is aimed at promoting the precipitation.

電解析出により回収される貴金属は、溶解工程における陰極上に析出する。析出した金属は、陰極から剥がした後、洗浄等して回収する。必要に応じて溶解処理等をしても良い。また、溶融塩電解法により析出する貴金属は高純度であり、洗浄、成形加工により、そのまま製品(例えば、スパッタリング用のターゲット)とすることができる。   The noble metal recovered by electrolytic deposition is deposited on the cathode in the melting step. The deposited metal is removed from the cathode and then recovered by washing or the like. You may perform a melt | dissolution process etc. as needed. The noble metal deposited by the molten salt electrolysis method has a high purity, and can be used as it is as a product (for example, a sputtering target) by washing and molding.

以上説明したように本発明によれば、ルテニウム、イリジウム等の貴金属を含むスクラップ等の処理対象物中の貴金属を、溶融塩に高い溶解速度で溶解させることができる。これにより、効率的な貴金属の回収・精製が可能となる。   As described above, according to the present invention, the noble metal in the processing object such as scrap containing noble metal such as ruthenium and iridium can be dissolved in the molten salt at a high dissolution rate. This makes it possible to efficiently recover and purify noble metals.

また、上記により貴金属を溶解させた溶融塩を電解することで高純度の貴金属を効率的に回収することができる。このような溶解工程と電解析出との組合わせにより、廃棄物から製品を少工程で製造することができる。本発明によれば、資源の有効利用を図ると共に、貴金属を使用する製品のコスト低下を図ることができる。   In addition, high-purity noble metal can be efficiently recovered by electrolyzing the molten salt in which the noble metal is dissolved as described above. By combining such a dissolution step and electrolytic deposition, a product can be manufactured from waste in a small number of steps. ADVANTAGE OF THE INVENTION According to this invention, while aiming at the effective use of resources, the cost reduction of the product using a noble metal can be aimed at.

以下に本発明の好適な実施例を示す。本実施形態では、所定の溶融塩電解装置を使用し、貴金属を含有する廃棄物を処理対象物とし、溶解工程及び析出工程を経て貴金属回収を行った。   Preferred embodiments of the present invention are shown below. In the present embodiment, a predetermined molten salt electrolysis apparatus was used, and a waste containing noble metal was treated as an object to be treated, and the noble metal was recovered through a dissolution step and a precipitation step.

図1は、本実施形態で用いた溶融塩電解装置の構成を示すものである。溶融塩電解装置1は、溶融塩10を収容するグラファイト製の内容器20と、内容器20を収容するグラファイト製のコンテナ30、更に、コンテナ30を収容するステンレス製の外容器40を有する。内容器20はグラファイト製の遮蔽版21により密閉されており、更に、外容器40及び遮蔽版21を貫通する塩素導入管50と排気管51が設けられている。そして、内容器20の底部には陽極60が敷設され、陽極60に対向するように陰極61が浸漬されている。   FIG. 1 shows the configuration of the molten salt electrolysis apparatus used in this embodiment. The molten salt electrolysis apparatus 1 includes a graphite inner container 20 that houses the molten salt 10, a graphite container 30 that houses the inner container 20, and a stainless outer container 40 that houses the container 30. The inner container 20 is hermetically sealed with a graphite shielding plate 21, and further, a chlorine introduction pipe 50 and an exhaust pipe 51 that penetrate the outer container 40 and the shielding plate 21 are provided. An anode 60 is laid on the bottom of the inner container 20, and a cathode 61 is immersed so as to face the anode 60.

また、外容器40には外容器内を不活性ガス(本実施形態ではアルゴンを用いた)で充満させるため、不活性ガス導入管52が設けられている。本発明では塩素を取り扱うことから、装置の腐食が懸念される。本発明では、塩素との接触が避けられない溶融塩を保持する内容器20についてはグラファイトで構成すると共に、内容器20を遮蔽板21で密閉している。そして、装置全体を保持する外容器40は、強度・靭性を要することからステンレスで構成すると共に、外容器内を不活性ガスで充満することでその腐食を抑制している。尚、陰極61については、電極間距離調整のため上下駆動可能としても良い、また、電解時の析出物の膜厚を均一なものとするために、回転可能としても良い。   The outer container 40 is provided with an inert gas introduction pipe 52 in order to fill the outer container with an inert gas (in this embodiment, argon is used). Since chlorine is handled in the present invention, there is a concern about corrosion of the apparatus. In the present invention, the inner container 20 that holds the molten salt that cannot be contacted with chlorine is made of graphite, and the inner container 20 is sealed with a shielding plate 21. And since the outer container 40 holding the whole apparatus requires strength and toughness, it is made of stainless steel, and the outer container is filled with an inert gas to suppress corrosion. The cathode 61 may be driven up and down for adjusting the distance between the electrodes, and may be rotatable in order to make the film thickness of the precipitate during electrolysis uniform.

塩化物溶融塩としては、以下の組成の混合溶融塩を用いた。また、陽極として、使用済みルテニウムターゲットを用いた。   As the chloride molten salt, a mixed molten salt having the following composition was used. A used ruthenium target was used as the anode.

塩化ナトリウム 3140g(53.7mol)
塩化カリウム 3250g(43.6mol)
塩化セシウム 13690g(81.3mol)
温度 520℃
Sodium chloride 3140 g (53.7 mol)
3250 g (43.6 mol) of potassium chloride
Cesium chloride 13690g (81.3mol)
Temperature 520 ° C

本実施形態での溶解工程では、まず、電解を行なうことなく溶融塩に100%塩素ガスを0.2L/min吹き込んだ。その間、アルゴンガス5L/min外容器内へ注入している。この間、所定間隔で溶融塩中のルテニウム濃度を測定した。   In the melting step in the present embodiment, first, 100% chlorine gas was blown into the molten salt at 0.2 L / min without performing electrolysis. Meanwhile, argon gas is injected into the outer container at 5 L / min. During this time, the ruthenium concentration in the molten salt was measured at predetermined intervals.

そして、塩素吹き込み量が約200Lになった時点で、塩素吹き込みをそのまま継続しつつ、溶融塩の電解を行った。電解条件は、電極面積1000cm、陰極電流密度20mA/cm(20A)とした。 Then, when the chlorine blowing amount reached about 200 L, the molten salt was electrolyzed while continuing the chlorine blowing as it was. The electrolysis conditions were an electrode area of 1000 cm 2 and a cathode current density of 20 mA / cm 2 (20 A).

図2は、上記のような溶解工程において、測定した溶融塩中のルテニウム濃度の変化を示す。図2からわかるように、塩素吹き込みのみの溶融塩中のルテニウム濃度は、緩やかに上昇するものであったが、これに電解を行なうことでルテニウム濃度の著しい上昇がみられた。これは、塩素の吹き込みと電解との双方の作用によりルテニウムの溶解が加速したためである。   FIG. 2 shows the change in the ruthenium concentration in the molten salt measured in the melting step as described above. As can be seen from FIG. 2, the ruthenium concentration in the molten salt with only chlorine blowing increased gradually, but a significant increase in the ruthenium concentration was observed by electrolysis. This is because the dissolution of ruthenium is accelerated by the action of both chlorine blowing and electrolysis.

次に、溶解工程を経た溶融塩について、塩素吹き込みを停止し、電解を行いルテニウムを析出させた。この時の電解条件は、電流密度30mA/cmとし、析出時間については、240時間とした。電解析出後、陰極上の析出物は、塩酸で酸洗いし、グラファイト電極から剥離させた。その結果9028gのルテニウムが得られ、その純度を測定したところ99.99%以上であった。 Next, about the molten salt which passed through the melt | dissolution process, chlorine blowing was stopped, it electrolyzed and ruthenium was deposited. The electrolysis conditions at this time were a current density of 30 mA / cm 2 and the deposition time was 240 hours. After electrolytic deposition, the deposit on the cathode was pickled with hydrochloric acid and separated from the graphite electrode. As a result, 9028 g of ruthenium was obtained, and its purity was measured and found to be 99.99% or more.

本実施形態で使用した溶融塩電解装置の概略。The outline of the molten salt electrolysis apparatus used in this embodiment. 溶解工程における溶融塩中のルテニウム濃度の変化を示す図。The figure which shows the change of the ruthenium density | concentration in molten salt in a melt | dissolution process.

Claims (3)

塩化物溶融塩中に、白金族金属を含む処理対象物を浸漬し、前記白金族金属を前記塩化物溶融塩に溶解させる溶解工程を含む白金族金属の回収・精製方法であって、
前記溶解工程は、前記塩化物溶融塩に塩素を吹き込みながら電解するものである白金族金属の回収・精製方法。
A method for recovering and purifying a platinum group metal comprising a dissolving step of immersing a treatment object containing a platinum group metal in a chloride molten salt and dissolving the platinum group metal in the chloride molten salt,
The method for recovering and purifying a platinum group metal, wherein the dissolving step is to perform electrolysis while blowing chlorine into the chloride molten salt.
溶解工程後、塩素吹き込みを停止し、塩化物溶融塩を電解することにより、塩化物溶融塩中の白金族金属を析出させる析出工程を含む請求項1記載の白金族金属の回収・精製方法。 The method for recovering and purifying a platinum group metal according to claim 1, further comprising a precipitation step of precipitating the platinum group metal in the molten chloride salt by stopping the blowing of chlorine after the dissolving step and electrolyzing the molten chloride salt. 溶融塩を収容するグラファイト製の内容器と、前記内容器を収容するステンレス製の外容器と、を備え
前記外容器を貫通して設けられ、前期溶融塩に塩素を供給する塩素導入管、及び、前記外容器を貫通して設けられ、内容器内からの排気を行なう排気管と、
更に、前記外容器を貫通して設けられ、外容器内壁と内容器外壁との空間を不活性ガスで充満させるための不活性ガス導入管と、を備える溶融塩電解装置。
A graphite inner vessel for containing the molten salt, and a stainless outer vessel for containing the inner vessel, a chlorine introduction pipe provided through the outer vessel and supplying chlorine to the molten salt, and An exhaust pipe provided through the outer container and exhausting from the inner container;
Furthermore, a molten salt electrolysis apparatus comprising: an inert gas introduction pipe provided through the outer container and filling the space between the inner container outer wall and the inner container outer wall with an inert gas.
JP2007036175A 2007-02-16 2007-02-16 Recovery and purification of platinum group metals by molten salt electrolysis Expired - Fee Related JP4783310B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007036175A JP4783310B2 (en) 2007-02-16 2007-02-16 Recovery and purification of platinum group metals by molten salt electrolysis
PCT/JP2008/052013 WO2008099748A1 (en) 2007-02-16 2008-02-07 Method for recovering/purifying platinum group metal by molten salt electrolysis
TW97105132A TW200839035A (en) 2007-02-16 2008-02-14 Method for recovering and refining platinum group metal using molten salt electrolytic process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036175A JP4783310B2 (en) 2007-02-16 2007-02-16 Recovery and purification of platinum group metals by molten salt electrolysis

Publications (2)

Publication Number Publication Date
JP2008202064A JP2008202064A (en) 2008-09-04
JP4783310B2 true JP4783310B2 (en) 2011-09-28

Family

ID=39689984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036175A Expired - Fee Related JP4783310B2 (en) 2007-02-16 2007-02-16 Recovery and purification of platinum group metals by molten salt electrolysis

Country Status (3)

Country Link
JP (1) JP4783310B2 (en)
TW (1) TW200839035A (en)
WO (1) WO2008099748A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418660B (en) * 2010-07-02 2013-12-11 Univ Chang Gung Preparation of Transparent Conductive Multicomponent Metal Oxide Powders by Modified Electrolysis
KR101145652B1 (en) 2010-09-30 2012-05-24 한국지질자원연구원 Apparatus for high efficient recovery of ruthenium and method for the same
JP5993374B2 (en) 2011-08-10 2016-09-14 住友電気工業株式会社 Element recovery method
JP2013117063A (en) * 2011-11-04 2013-06-13 Sumitomo Electric Ind Ltd Method of producing metal by molten salt electrolysis
JP2013147731A (en) * 2011-12-22 2013-08-01 Sumitomo Electric Ind Ltd Molten salt electrolysis metal fabrication method
KR101405619B1 (en) 2012-08-27 2014-06-10 한국수력원자력 주식회사 Integrated anode-liquid cathode structure for electrowinning process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089770A (en) * 1977-07-11 1978-05-16 E. I. Du Pont De Nemours And Company Electrolytic cell
JPS63183189A (en) * 1987-01-23 1988-07-28 Komatsu Denshi Kinzoku Kk Molten-salt electrolysis method
GB8707782D0 (en) * 1987-04-01 1987-05-07 Shell Int Research Electrolytic production of metals
JP4162809B2 (en) * 1999-09-24 2008-10-08 田中貴金属工業株式会社 Molten salt electrolysis equipment
JP2002194581A (en) * 2000-12-27 2002-07-10 Furuya Kinzoku:Kk Method for recovering platinum group metal from metal electrode
JP4087196B2 (en) * 2002-09-10 2008-05-21 田中貴金属工業株式会社 Method for recovering ruthenium and / or iridium

Also Published As

Publication number Publication date
WO2008099748A1 (en) 2008-08-21
TW200839035A (en) 2008-10-01
JP2008202064A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4647695B2 (en) Method for recovering valuable metals from ITO scrap
JP5043027B2 (en) Recovery method of valuable metals from ITO scrap
JP5043029B2 (en) Recovery method of valuable metals from ITO scrap
JP5043028B2 (en) Recovery method of valuable metals from ITO scrap
JP4783310B2 (en) Recovery and purification of platinum group metals by molten salt electrolysis
JP4745400B2 (en) Recovery method of valuable metals from ITO scrap
TWI432609B (en) Method for recovering valuable metal from indium - zinc oxide waste
AU2002349139B2 (en) Electrochemical processing of solid materials in fused salt
NO340277B1 (en) A method of reducing a solid metal oxide in an electrolysis cell.
CN104775036A (en) Method for recovering noble metal from waste titanium anodes with noble metal coatings
JP2007016293A (en) Method for producing metal by suspension electrolysis
JP3718691B2 (en) Titanium production method, pure metal production method, and pure metal production apparatus
JP2011208216A (en) Method of recovering indium and tin
JP2004528584A (en) Actinide manufacturing
KR100614890B1 (en) Method for manufacturing the high purity Indium and the apparatus therefor
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
Fray Electrochemical processing using slags, fluxes and salts
Zhou et al. Phase Transitions Observations During the Direct Electrolysis of Ilmenite to Ferrotitanium in CaCl2-NaCl Melt
JP6652871B2 (en) How to recover tin
RU2504591C2 (en) ELECTROLYSIS UNIT FOR SATURATION OF CaCl2 MELT WITH CALCIUM
Sokhanvaran et al. Advances in Electrometallurgy for Sustainable Metal Production
SU657091A1 (en) Method of refining nonferrous metals by electrolysis
CN108624909A (en) A method of the electrolytic recovery copper from acid etching liquid and PCB waste materials
JP2005298240A (en) Method for recovering iridium compound from waste solution
Sato et al. Anodic Behavior in the Production of Al-Li Alloy Using Li2CO3 in LiCl Melt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees