JPS6316058B2 - - Google Patents

Info

Publication number
JPS6316058B2
JPS6316058B2 JP54137449A JP13744979A JPS6316058B2 JP S6316058 B2 JPS6316058 B2 JP S6316058B2 JP 54137449 A JP54137449 A JP 54137449A JP 13744979 A JP13744979 A JP 13744979A JP S6316058 B2 JPS6316058 B2 JP S6316058B2
Authority
JP
Japan
Prior art keywords
optical
signal
transmission
signals
multiplex transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54137449A
Other languages
Japanese (ja)
Other versions
JPS5661844A (en
Inventor
Takeshi Usui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13744979A priority Critical patent/JPS5661844A/en
Publication of JPS5661844A publication Critical patent/JPS5661844A/en
Publication of JPS6316058B2 publication Critical patent/JPS6316058B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は光通信システム、特に光多重伝送シス
テムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical communication systems, and particularly to optical multiplex transmission systems.

近年、光通信システムの進歩は著しく、その用
途は各種の分野に応がつており、その発展利用形
態の一つに単一の光伝送路を使用して複数の光信
号を同時に双方向に伝送する光多重伝送システム
がある。
In recent years, optical communication systems have made remarkable progress and are being used in a variety of fields.One of the ways in which they are used is the simultaneous bidirectional transmission of multiple optical signals using a single optical transmission path. There is an optical multiplex transmission system.

従来この種の多重伝送を行なう方式としては、
異なる発光波長の光源と光分波器を組合せて、波
長分割により双方向の多重伝送を行なう波長分割
多重伝送方式や、送受信の多重分離に光方向性結
合器を使用してその方向性を利用することにより
伝送方向の違いのみで光送信信号と光受信信号を
分離する双方向多重伝送方式などが考えられてい
る。
Conventional methods for performing this type of multiplex transmission include:
Wavelength division multiplexing transmission method combines light sources with different emission wavelengths and optical demultiplexers to perform bidirectional multiplex transmission by wavelength division, and optical directional couplers are used to demultiplex transmission and reception to utilize the directionality. A bidirectional multiplex transmission system is being considered in which the optical transmission signal and the optical reception signal are separated based only on the difference in the transmission direction.

しかし、最も特性の優れた波長分割多重伝送方
式でも簡単な構成の光分波器を使用したのでは、
光伝送路での後方散乱や接続個所などでの端面反
射により生じた光送信信号の反射光が自局の光受
信器に廻り込むのを充分に押えられない。その
為、廻り込んだ干渉光により光受信感度の劣化が
生じ、あまり長距離の伝送ができない難点があ
る。
However, even with the wavelength division multiplexing transmission method, which has the best characteristics, using an optical demultiplexer with a simple configuration,
It is not possible to sufficiently suppress the reflected light of the optical transmission signal caused by backscattering on the optical transmission path or end face reflection at the connection point from going around to the optical receiver of the local station. Therefore, the optical reception sensitivity deteriorates due to the reflected interference light, making it difficult to transmit over long distances.

そこで長距離の伝送を行なう場合には、干渉光
に対する減衰量を大きくする為に複数の光フイル
タを組合せた構成の光分波器を使用するなどの方
法が考えられているが、この方法では光分波器の
構成が複数になり、かつ高価になる欠点がある。
Therefore, in the case of long-distance transmission, methods such as using an optical demultiplexer composed of a combination of multiple optical filters have been considered in order to increase the amount of attenuation against interference light, but this method does not work. The drawback is that the optical demultiplexer has a plurality of configurations and is expensive.

また他の改善方法として自局の光送信器から光
送信信号に比例した電気信号を光受信器に供給
し、電気的に廻り込み干渉信号成分を除去する方
法も考えられる。しかし、通常反射光を生じる個
所が決まつた一点のみではなく、さらに反射する
個所までの距離によつて反射光の遅延時間が変化
するのでこの方法はごく伝送速度の遅い特殊なシ
ステムの場合を除いて一般には適用できない欠点
がある。
Another possible improvement method is to supply an electrical signal proportional to the optical transmission signal from the optical transmitter of the local station to the optical receiver, thereby electrically removing the wraparound interference signal component. However, since the delay time of the reflected light usually changes depending on the distance to the point where the reflected light is generated, rather than just one fixed point, this method is not suitable for special systems with very slow transmission speeds. However, there are drawbacks that make it generally inapplicable.

本発明の目的は、このような欠点をなくし、簡
単な構成の光分波器を使用した場合でも比較的長
距離の双方向の多重伝送が可能な光多重伝送シス
テムを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such drawbacks and to provide an optical multiplex transmission system that is capable of bidirectional multiplex transmission over relatively long distances even when using an optical demultiplexer with a simple configuration.

本発明によれば、複数の光送信器と複数の光受
信器とが光分波器を介して単一の光伝送路の両端
に光学的に接続され、双方向の多重伝送を行なう
光多重伝送システムにおいて、前記複数の光送信
器のうち少なくとも一つの光送信器から該光送信
器の光送信信号に比例した電気信号を求め、この
電気信号とこの電気信号を低域ろ波器に通して得
られる信号との和信号を合成する手段を有し、か
つ前記複数の光受信器のうち少なくとも一つの光
受信器が受信入力信号と前記手段で得られた信号
との差信号を受信するようにした光多重伝送シス
テムが得られる。なお、光分波器には、波長選択
性のない光方向性結合器も含むものとする。
According to the present invention, a plurality of optical transmitters and a plurality of optical receivers are optically connected to both ends of a single optical transmission line via an optical demultiplexer, and optical multiplexing is performed to perform bidirectional multiplex transmission. In the transmission system, an electrical signal proportional to an optical transmission signal of the optical transmitter is obtained from at least one optical transmitter among the plurality of optical transmitters, and the electrical signal is passed through a low-pass filter. and at least one of the plurality of optical receivers receives a difference signal between the received input signal and the signal obtained by the means. An optical multiplex transmission system is obtained. Note that the optical demultiplexer also includes an optical directional coupler without wavelength selectivity.

この光多重伝送システムにおいて光送信器から
自局光受信器に廻り込む光のうち最大のものは光
分波器から光伝送路への入射端面で生じる端面反
射光であり、次に大きいのは光伝送路が比較的長
い場合には光伝送路中で生じる後方散乱光であ
る。
In this optical multiplex transmission system, the largest amount of light that goes around from the optical transmitter to the local optical receiver is the end face reflected light that occurs at the input end face from the optical demultiplexer to the optical transmission line. This is backscattered light that occurs in the optical transmission line when the optical transmission line is relatively long.

なお、この後方散乱光は光伝送路の始端から終
端までの各個所での後方への散乱光の総和であ
り、従つてその応答は散乱点までの往復の伝送路
損失と遅延時間を考えて積分することによつて求
めることができ、光伝送路が長い場合について計
算すると、光パルスを入射した時の後方散乱光の
出力波形は所定の帯域の1次の低域ろ波器のパル
ス応答波形で近似することができる。
Note that this backscattered light is the sum of the backscattered light at each point from the beginning to the end of the optical transmission line, so the response is calculated by taking into account the transmission line loss and delay time to and from the scattering point. It can be obtained by integrating, and when calculated for a long optical transmission path, the output waveform of backscattered light when an optical pulse is input is the pulse response of a first-order low-pass filter in a predetermined band. It can be approximated by a waveform.

そこで本発明では上記の性質に着目し、光受信
器において受信入力信号から光送信信号に比例し
た適切なレベルの電気信号を差し引くことによつ
て前述の端面反射成分などの影響を除去でき、さ
らに前記の光送信信号に比例した電気信号を低域
ろ波器に通して得られる信号を使つて受信入力信
号に含まれている後方散乱光の影響も除去でき
る。その結果、自局の光送信信号の廻り込みの影
響をほとんどなくすことができるので、簡単な構
成の光分波器を使用した場合でも比較的長距離の
双方向の多重伝送が可能になる。
Therefore, the present invention focuses on the above-mentioned properties, and by subtracting an electrical signal of an appropriate level proportional to the optical transmission signal from the reception input signal in the optical receiver, it is possible to eliminate the effects of the above-mentioned end face reflection component, etc. The influence of backscattered light contained in the received input signal can also be removed by using the signal obtained by passing the electric signal proportional to the optical transmission signal through a low-pass filter. As a result, it is possible to almost eliminate the influence of the optical transmission signal from the local station, so even if an optical demultiplexer with a simple configuration is used, relatively long-distance bidirectional multiplex transmission is possible.

次に図面を参照して本発明について詳細に説明
する。
Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の第1の実施例の構成を示すブ
ロツク図で、波長分割により1対1の双方向伝送
を行なう光多重伝送システムに関するものであ
る。
FIG. 1 is a block diagram showing the configuration of a first embodiment of the present invention, which relates to an optical multiplex transmission system that performs one-to-one bidirectional transmission by wavelength division.

2台の光送信器11,12はそれぞれ送信信号
111,112を互いに異なる波長の光信号12
1,122に変換して送出するものであり、また
光分波器31,32はそれぞれ光送信器11,1
2の出力光信号121,122を低損失で光伝送
路1に接続し、かつ光伝送路1を伝送されて来た
光信号を低損失で光受信器21,22に接続する
ものである。一方、消去信号合成回路61,62
はそれぞれ光送信信号121,122から光方向
性結合器41,42と光検出器51,52を使つ
て得られた電気信号131,132を受けて、廻
り込み干渉成分を除去する為にこの電気信号13
1,132とこの電気信号131,132を低域
ろ波器に通して得られる信号とを適切な比で合成
した消去信号141,142を出力するものであ
る。このシステムでは、光伝送路1において後方
散乱や接続個所などでの端面反射などがある為
に、光送信器11,12から送出された光信号の
一部電力が戻つて来て、さらにその一部がそれぞ
れ光分波器31,32を経て光受信器21,22
に廻り込む。しかし、光受信器21,22におい
てそれぞれ自局の光送信器11,12からの干渉
光の加わつた受信入力信号から前記消去信号合成
回路61,62で合成された消去信号141,1
42を使つて電気的に廻り込み干渉成分を差し引
くことにより、干渉成分の大部分を消去すること
ができるので、廻り込み干渉による劣化をほとん
どなくすることができる。
The two optical transmitters 11 and 12 convert transmission signals 111 and 112 into optical signals 12 with different wavelengths, respectively.
The optical demultiplexers 31 and 32 are connected to the optical transmitters 11 and 1, respectively.
2 output optical signals 121 and 122 are connected to the optical transmission line 1 with low loss, and the optical signals transmitted through the optical transmission line 1 are connected to the optical receivers 21 and 22 with low loss. On the other hand, erasure signal synthesis circuits 61 and 62
receive electrical signals 131, 132 obtained from optical transmission signals 121, 122 using optical directional couplers 41, 42 and photodetectors 51, 52, respectively, and transmit the electrical signals 131, 132 to remove the loop interference components. signal 13
1,132 and a signal obtained by passing the electric signals 131, 132 through a low-pass filter, and outputs erasing signals 141, 142, which are obtained by combining them at an appropriate ratio. In this system, due to backscattering in the optical transmission line 1 and end face reflection at connection points, etc., part of the power of the optical signals sent from the optical transmitters 11 and 12 returns, and furthermore, some of the power is returned. The optical receivers 21 and 22 pass through optical demultiplexers 31 and 32, respectively.
Go around. However, in the optical receivers 21 and 22, the cancellation signals 141 and 1 are synthesized by the cancellation signal synthesis circuits 61 and 62 from the received input signals to which interference light from the optical transmitters 11 and 12 of the own station is added, respectively.
By electrically subtracting the wrap-around interference components using 42, most of the interference components can be eliminated, so that deterioration due to wrap-around interference can be almost eliminated.

第2図は第1の実施例の消去信号合成回路で用
いる低域ろ波器の構成を示す回路図であり、直列
の抵抗Rと並列の容量Cを縦続接続したRCろ波
回路である。この回路で、抵抗Rと容量Cおよび
入出力インピーダンスの値で決まる時定数を後方
散乱光の応答時定数に合せることにより、後方散
乱光の応答波形と同じ波形の電気信号を作ること
ができ、干渉部分の除去に使用することができ
る。
FIG. 2 is a circuit diagram showing the configuration of a low-pass filter used in the erasure signal synthesis circuit of the first embodiment, and is an RC filter circuit in which a series resistor R and a parallel capacitor C are connected in cascade. In this circuit, by matching the time constant determined by the values of resistance R, capacitance C, and input/output impedance to the response time constant of backscattered light, it is possible to create an electrical signal with the same waveform as the response waveform of backscattered light. It can be used to remove interference parts.

本発明の第2の実施例は第1図に示した第1の
実施例と同じ構成で低域ろ波器のみ第1の実施例
と異なる回路を使用したものである。
The second embodiment of the present invention has the same configuration as the first embodiment shown in FIG. 1, except for the low-pass filter, which uses a different circuit from the first embodiment.

第3図はこの実施例の消去信号合成回路で用い
る低域ろ波器の構成を示す回路図であり、直列の
誘導Lと並列の抵孔Rを縦続接続したLRろ波回
路である。この回路でも第1の実施例と同様に後
方散乱光の応答波形と同じ波形の電気信号を作る
ことができ、その信号を使つて廻り込み干渉によ
る劣化をほとんどなくすることができる。
FIG. 3 is a circuit diagram showing the configuration of a low-pass filter used in the erasure signal synthesis circuit of this embodiment, and is an LR filter circuit in which a series inductor L and a parallel resistor R are connected in cascade. Similar to the first embodiment, this circuit can also generate an electrical signal with the same waveform as the response waveform of the backscattered light, and by using that signal, it is possible to almost eliminate deterioration due to wraparound interference.

第4図は本発明の第3の実施例の構成を示すブ
ロツク図で2対1の双方向伝送を行なう光多重伝
送システムに関するものである。前述の第1の実
施例と同様にそれぞれ光送信器11,12,13
と光受信器21,22,23の間で波長分割によ
り双方向の多重伝送が行なわれる。また、第1の
実施例と同様に光送信器11,12,13の出力
光信号121,122,123からそれぞれ光方
向性結合器41,42,43と光検出器51,5
2,53および消去信号合成回路61,62,6
3を使つて必要な消去信号141,142,14
3が合成される。このシステムで、2波の送信を
行なう左側の局の光受信器21では受信入力信号
から前記の2つの消去信号141,143を使つ
て電気的に廻り込み干渉成分の除去が行なわれ
る。また1波の送信を行なう右側の局の2つの光
受信器22,23では、1つの消去信号142を
使つてそれぞれ電気的に廻り込み干渉部分の除去
が行なわれる。これによつて廻り込み干渉による
劣化をほとんどなくすることができる。
FIG. 4 is a block diagram showing the configuration of a third embodiment of the present invention, which relates to an optical multiplex transmission system that performs two-to-one bidirectional transmission. Similarly to the first embodiment described above, optical transmitters 11, 12, 13 are provided, respectively.
Bidirectional multiplex transmission is performed between the optical receivers 21, 22, and 23 by wavelength division. Further, as in the first embodiment, output optical signals 121, 122, 123 of optical transmitters 11, 12, 13 are transmitted to optical directional couplers 41, 42, 43 and photodetectors 51, 5, respectively.
2, 53 and erase signal synthesis circuits 61, 62, 6
3 to erase the necessary erase signals 141, 142, 14
3 are synthesized. In this system, the optical receiver 21 of the left station which transmits two waves electrically removes the wraparound interference component from the received input signal using the two cancellation signals 141 and 143. Furthermore, the two optical receivers 22 and 23 of the right station that transmit one wave each use one cancellation signal 142 to electrically eliminate the loop interference portion. This makes it possible to almost eliminate deterioration due to wraparound interference.

第4の実施例は前述の第1図と同じ構成で光送
信器11,12に同じ発光波長域を有する発光素
子を使用し、かつ光分波器31,32に前記発光
波長域の互いに異なる波長域成分のみを光伝送路
1に結合するものを使用して、実質的に波長分割
による双方向伝送を行なう光多重伝送システムで
ある。このシステムにおいても、第1の実施例と
同様に光送信信号を検出して、それから消去信号
141,142を合成し、廻り込み干渉成分の除
去を行なうことにより廻り込みによる劣化をほと
んどなくすることができる。
The fourth embodiment has the same configuration as the above-mentioned FIG. This is an optical multiplex transmission system that couples only the wavelength range components to the optical transmission line 1 and essentially performs bidirectional transmission by wavelength division. In this system as well, similar to the first embodiment, the optical transmission signal is detected, and then the cancellation signals 141 and 142 are combined to eliminate the loop interference component, thereby almost eliminating the deterioration due to the loop interference. Can be done.

第5の実施例は第1図と同じ構成で光分波器3
1,32に光方向性結合器を使用した光多重伝送
システムである。このシステムにおいても同様に
干渉成分の除去を行なうことができる。
The fifth embodiment has the same configuration as in FIG.
This is an optical multiplex transmission system using optical directional couplers for 1 and 32. In this system as well, interference components can be removed in the same way.

なお、以上の各実施例においては光方向性結合
器41〜43と光検出器51〜53を使用して、
それぞれ光送信信号121〜123を検出する方
法が用いられているが、光方向性結合器41〜4
3を使用しないで光送信器のモニター光や光源か
ら外部への漏洩光を検出する方法であつても良
い。
In addition, in each of the above embodiments, the optical directional couplers 41 to 43 and the photodetectors 51 to 53 are used,
Although a method of detecting the optical transmission signals 121 to 123 is used, the optical directional couplers 41 to 4
It is also possible to use a method of detecting the monitor light of the optical transmitter or the light leaking to the outside from the light source without using 3.

また、光送信出力電力が安定化された光送信器
を使用するシステムでは、単に送信信号111〜
113から直接消去信号を合成することも可能で
ある。
In addition, in a system using an optical transmitter with stabilized optical transmission output power, the transmission signals 111 to 111 are simply
It is also possible to synthesize the cancellation signal directly from 113.

なお、前記の各実施例は、1対1ないしは2対
1の双方向伝送を行なうものであつたが、それ以
上の任意の数の信号の双方向多重伝送を行なうシ
ステムについても同様に適用可能である。
Although each of the above embodiments performs one-to-one or two-to-one bidirectional transmission, it is equally applicable to a system that performs bidirectional multiplex transmission of any number of signals greater than that. It is.

また、前記の各実施例の光多重伝送システムに
おいて、廻り込みに対して光分波器の減衰量が充
分にとれている組合せがあれば、その組合せにつ
いて消去の為の回路を省略してもよい。
In addition, in the optical multiplex transmission systems of the above embodiments, if there is a combination in which the optical demultiplexer has sufficient attenuation against decoupling, the circuit for cancellation may be omitted for that combination. good.

以上詳述したように、本発明によれば簡単な構
成の光分波器を使用した場合でも自局光送信器か
らの廻り込み干渉成分を消去して干渉による劣化
をほとんどなくし、比較的長距離の双方向多重伝
送が可能な光多重伝送システムを提供することが
できる。
As described in detail above, according to the present invention, even when using an optical demultiplexer with a simple configuration, it is possible to eliminate the wraparound interference component from the local optical transmitter, almost eliminate deterioration due to interference, and achieve a relatively long An optical multiplex transmission system capable of bidirectional multiplex transmission over long distances can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1、第2、第4および第5
の実施例の構成を示すブロツク図、第2図は第1
の実施例の消去信号合成回路に用いる低域ろ波器
の回路図、第3図は第2の実施例で用いる低域ろ
波器の回路図、第4図は本発明の第3の実施例の
構成を示すブロツク図である。 1……光伝送路、11〜13……光送信器、2
1〜23……光受信器、31〜33……光分波
器、41〜43……光方向性結合器、51〜53
……光検出器、61〜63……消去信号合成回
路。
FIG. 1 shows the first, second, fourth and fifth embodiments of the present invention.
FIG. 2 is a block diagram showing the configuration of an embodiment of the invention.
FIG. 3 is a circuit diagram of a low-pass filter used in the cancellation signal synthesis circuit of the second embodiment, and FIG. 4 is a circuit diagram of a low-pass filter used in the second embodiment. FIG. 2 is a block diagram showing an example configuration. 1... Optical transmission line, 11-13... Optical transmitter, 2
1-23... Optical receiver, 31-33... Optical demultiplexer, 41-43... Optical directional coupler, 51-53
...Photodetector, 61-63...Elimination signal synthesis circuit.

Claims (1)

【特許請求の範囲】 1 複数の光送信器と複数の光受信器が光分波器
を介して単一の光伝送路の両端に光学的に接続さ
れ、双方向の多重伝送を行なう光多重伝送システ
ムにおいて、前記複数の光送信器のうち少なくと
も一つの光送信器から該光送信器の光送信信号に
比例した電気信号を求め、この電気信号とこの電
気信号を低域ろ波器に通して得られる信号との和
信号を合成する手段を有し、かつ前記複数の光受
信器のうち少なくとも一つの光受信器が受信入力
信号と前記手段で得られた信号との差信号を受信
するようにしたことを特徴とする光多重伝送シス
テム。 2 低域ろ波器がRCろ波回路から成ることを特
徴とする特許請求の範囲第1項記載の光多重伝送
システム。
[Claims] 1. Optical multiplexing in which a plurality of optical transmitters and a plurality of optical receivers are optically connected to both ends of a single optical transmission line via an optical demultiplexer to perform bidirectional multiplex transmission. In the transmission system, an electrical signal proportional to an optical transmission signal of the optical transmitter is obtained from at least one optical transmitter among the plurality of optical transmitters, and the electrical signal is passed through a low-pass filter. and at least one of the plurality of optical receivers receives a difference signal between the received input signal and the signal obtained by the means. An optical multiplex transmission system characterized by: 2. The optical multiplex transmission system according to claim 1, wherein the low-pass filter comprises an RC filter circuit.
JP13744979A 1979-10-24 1979-10-24 Optical multiplex transmission system Granted JPS5661844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13744979A JPS5661844A (en) 1979-10-24 1979-10-24 Optical multiplex transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13744979A JPS5661844A (en) 1979-10-24 1979-10-24 Optical multiplex transmission system

Publications (2)

Publication Number Publication Date
JPS5661844A JPS5661844A (en) 1981-05-27
JPS6316058B2 true JPS6316058B2 (en) 1988-04-07

Family

ID=15198864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13744979A Granted JPS5661844A (en) 1979-10-24 1979-10-24 Optical multiplex transmission system

Country Status (1)

Country Link
JP (1) JPS5661844A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171138A (en) * 1982-04-01 1983-10-07 Nec Corp Optical transmission and reception system
JPS63129344U (en) * 1987-02-17 1988-08-24
US5317441A (en) * 1991-10-21 1994-05-31 Advanced Micro Devices, Inc. Transceiver for full duplex signalling on a fiber optic cable

Also Published As

Publication number Publication date
JPS5661844A (en) 1981-05-27

Similar Documents

Publication Publication Date Title
JP4213218B2 (en) Monitoring system using optical sidetone as test signal
WO1998016027B1 (en) Monitoring system using an optical side tone as a test signal
US5696857A (en) WDM/FDM fiber optic sensor architecture using WDM tap coupler
JPH0385834A (en) Optical frequency multiplexer and optical frequency multiplex transmitter
US7127166B2 (en) Method for transmitting at least one first and one second data signal in polarization division multiplex in an optical transmission system
US6310706B1 (en) Transmitting/receiving facility and method for transmitting broadband signals as well as transmitting/receiving facility for receiving broadband signals
US5844706A (en) Fibre-optic communications-transmission method and intermediate repeater for use in the method
KR100324798B1 (en) Instrument for the controll of the optical source wavelengths in dense-wavelength-division-multiplexed optical communication systems
US4430572A (en) Device for separating two light signals emitted by sources having different wavelengths and transmitted in a single optical fiber
JPS6316058B2 (en)
JPH09233024A (en) Signal transmitter using optical path including monitor system for repeater
WO1993016533A1 (en) Optical signal transmission network
JPS57111607A (en) Numerical control device
JPH0669167B2 (en) Switching the optical line without interruption
JPS6318901B2 (en)
JPS6316055B2 (en)
JPS58171138A (en) Optical transmission and reception system
JPS6340378B2 (en)
JP3039995B2 (en) Characteristic detection method of optical fiber communication line
JP3376957B2 (en) Apparatus and method for measuring chromatic dispersion of optical fiber
JPS613024A (en) Apparatus for measuring wavelength dispersion of optical fiber
RU2034407C1 (en) Duplex optical communication system transceiver
JPS6030455B2 (en) optical transmission equipment
JPS6316056B2 (en)
JPS6330030A (en) Optcal wavelength multiplex transmission system