JPS6030455B2 - optical transmission equipment - Google Patents

optical transmission equipment

Info

Publication number
JPS6030455B2
JPS6030455B2 JP54004995A JP499579A JPS6030455B2 JP S6030455 B2 JPS6030455 B2 JP S6030455B2 JP 54004995 A JP54004995 A JP 54004995A JP 499579 A JP499579 A JP 499579A JP S6030455 B2 JPS6030455 B2 JP S6030455B2
Authority
JP
Japan
Prior art keywords
signal
wavelength band
filter
input
transmission means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54004995A
Other languages
Japanese (ja)
Other versions
JPS5597752A (en
Inventor
晧元 芹沢
好伸 辻本
勝治 服部
勉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54004995A priority Critical patent/JPS6030455B2/en
Publication of JPS5597752A publication Critical patent/JPS5597752A/en
Publication of JPS6030455B2 publication Critical patent/JPS6030455B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明はセンターと複数の端末間を単線にて接続し、複
数の波長を用いることによって双方向伝送を行う光伝送
装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optical transmission device that connects a center and a plurality of terminals with a single line and performs bidirectional transmission by using a plurality of wavelengths.

従来、光フアィバ伝送装置の中でセンターと複数の端末
を結ぶ方法としては第1図a,bに示すように、各端末
2〜6とセンター1を各々別々の線で接続する方法、あ
るいは方向性結合器8〜14にて接続する方法、またこ
の他に分波器によって接続する方法など考えられる。第
1図aの個別に接続する方法は光出力も大きくとれ、分
岐器や分波器なども必要ないが、各線ごとに入力光源が
必要となり、伝送フアィバも多量に必要とする欠点を有
している。
Conventionally, as a method of connecting a center and a plurality of terminals in an optical fiber transmission device, as shown in Fig. 1a and b, each terminal 2 to 6 and the center 1 are connected with a separate line, or a direction is used. Possible methods include a method of connecting using couplers 8 to 14, and a method of connecting using a duplexer. The individual connection method shown in Figure 1a can provide a large optical output and does not require a splitter or demultiplexer, but it has the drawbacks of requiring an input light source for each line and requiring a large amount of transmission fiber. ing.

その上、双方向での伝送をする場合には更に同距離のフ
アィバを必要そするか分岐器、分波器などの装置を必要
とする。第1図bは方向性結合器を用いる場合である。
Furthermore, in the case of bidirectional transmission, additional fibers of the same distance are required, or devices such as branchers and duplexers are required. FIG. 1b shows the case where a directional coupler is used.

7はセンター構成を示し、8〜14が4端子構成をもつ
分岐器で構成された端末部を示す。
Reference numeral 7 indicates a center configuration, and 8 to 14 indicate terminal portions each consisting of a branch having a four-terminal configuration.

センター7よりでた光信号15は端末8で一部はフアィ
バ17に分岐され残りは端末9へ伝送される。一方、フ
アイバ16より入射した光信号は一部端末9へ残りはフ
アィバ17へ伝送される。従って伝送される光信号の損
失が非常に大きいばかりか、フアィバ16の入力と同1
7の出力信号が同一同波数帯の信号の場合には送信と受
信を同時に行なうことができない。また、ファイバー6
よりの入力光信号は端末9,10・・・・・・14等の
端末でも受信することができるという漏話の欠点も有す
る。そこで、本発明は端末間の漏話がなく、しかもセン
タと各端末とは双方向伝送が可能な装置を提供するもの
である。以下図面を用いて本発明を実施例に基いて説明
する。
A part of the optical signal 15 output from the center 7 is branched to a fiber 17 at a terminal 8 and the rest is transmitted to a terminal 9. On the other hand, part of the optical signal input from the fiber 16 is transmitted to the terminal 9 and the rest to the fiber 17. Therefore, the loss of the transmitted optical signal is not only very large, but also
If the output signals of 7 are in the same wave number band, transmission and reception cannot be performed at the same time. Also, fiber 6
It also has the drawback of crosstalk in that the input optical signals from the terminals 9, 10, . . . , 14 can also be received by the terminals. SUMMARY OF THE INVENTION Therefore, the present invention provides an apparatus that eliminates crosstalk between terminals and allows bidirectional transmission between the center and each terminal. The present invention will be described below based on examples using the drawings.

第2図は本発明の分波器の基本構成の1列を示す。FIG. 2 shows one row of the basic configuration of the duplexer of the present invention.

20,21,22,23は光フアィバであり24,25
,26,27はしンズ系である。
20, 21, 22, 23 are optical fibers 24, 25
, 26, 27 are Shinzu series.

28は各フアィバ軸に対して45oの角度にとりつけら
れた誘電体多層膜による波長分離用フィル夕を示す。
Reference numeral 28 indicates a wavelength separation filter made of a dielectric multilayer film attached at an angle of 45° with respect to each fiber axis.

今、フィル夕28の特性を第3図のようなものと仮定し
、r,波長帯の光信号は透過し、「2波長帯の光は反射
する特性をもっとする。フアィバ20よりr,,「2の
波長帯の光が入射するとする。レンズ24で平行ビーム
とされ、フィル夕28によってr,波長帯の光信号は透
過してフアィバ22へ伝送され、「2波長帯の光は反射
してフアィバ23へ伝送される。同時にフアィバ21よ
りr2波長帯の光信号は反射されてフアィバ22へ伝送
される。フアイバ21およびフアィバ23に伝送される
光信号としては同一波長帯の光が信号の搬送波となって
いるが伝送信号は同一である必要はない。フィル夕28
の特性が第4図に示されるような特性を示す光信号r3
,「4がフアィバ20より入射する場合にはr3波長帯
の光信号はフアィバ23へ、r4波長帯の光信号はフア
イバ22へ伝搬される。
Now, assuming that the characteristics of the fiber 28 are as shown in Fig. 3, the optical signal in the r wavelength band is transmitted, and the light in the two wavelength bands is reflected. Suppose that light in the wavelength band 2 is incident. It is made into a parallel beam by the lens 24, and the optical signal in the wavelength band r is transmitted by the filter 28 and transmitted to the fiber 22. The light in the wavelength band 2 is reflected. At the same time, the optical signal in the r2 wavelength band is reflected from the fiber 21 and transmitted to the fiber 22.The optical signals transmitted to the fiber 21 and the fiber 23 are those in the same wavelength band. Although it is a carrier wave, the transmission signals do not need to be the same.Filter 28
An optical signal r3 whose characteristics are as shown in FIG.
, ``4'' is input from the fiber 20, the optical signal in the r3 wavelength band is propagated to the fiber 23, and the optical signal in the r4 wavelength band is propagated to the fiber 22.

なお、このような機能は、上記構成以外に自己収束型レ
ンズとフィル夕とを組み合わせた構成によって得られる
。このように本発明によれば複数波長帯の光信号を波長
帯ごとに分波することができるとともに、同時に同一波
長帯搬送波を使って別の信号を他の伝送フアィバに重畳
することができる。
Note that such a function can be obtained by a configuration in which a self-converging lens and a filter are combined in addition to the above configuration. As described above, according to the present invention, optical signals in multiple wavelength bands can be demultiplexed for each wavelength band, and at the same time, another signal can be superimposed on another transmission fiber using the same wavelength band carrier wave.

今、第2図に示すような構成で第4図のような特性をも
つ素子を第5図に示すように鎖状に結合した状態を考え
る。
Now, consider a state in which elements having the configuration shown in FIG. 2 and the characteristics shown in FIG. 4 are connected in a chain as shown in FIG. 5.

^,,^2……入nは短波長より順次、光信号の搬送波
帯城を表わし、第4図のように各素子の反射波長帯と一
致している。従つて、素子Aに入った入,〜入nの光信
号は^,波長帯の光信号のみを分離するとともに^2〜
入nの残りの信号は^,波長帯の別の信号を童畳してB
素子に向けて伝送される。同様にB素子では入2波長帯
の分波と別の入2波長帯の光信号の結合が行なわれる。
このように順次短波長帯の信号より分離、結合が行なわ
れN素子通過後は新たに結合された入,〜入nの信号が
伝搬する。このような系をシステムに応用した例を第6
図0に示す。
^, , ^2...Input n represents the carrier wave band of the optical signal in order from the shortest wavelength, and as shown in FIG. 4, it coincides with the reflection wavelength band of each element. Therefore, the input optical signals entering element A, ~input n, are separated only from the optical signals in the wavelength band, and are separated into ~2~
The remaining signal at input n is obtained by multiplying another signal in the wavelength band by B
transmitted towards the element. Similarly, the B element performs demultiplexing of two input wavelength bands and coupling of optical signals of two other input wavelength bands.
In this way, the signals in the short wavelength band are sequentially separated and combined, and after passing through N elements, the newly combined input, to input n signals propagate. An example of applying such a system to a system is shown in Part 6.
Shown in Figure 0.

センター29と端末30〜36は環状に結合されている
。センター29より送出された光信号^。〜入8は各端
末30〜36で単独に各自の端末に相当する波長帯の信
号のみを受信できる。また、各端末30〜36からはセ
ンター295に対してのみ送信することができる。この
ように閉回路構成をとることによって各端末間は相互に
交信することなく、各端末とセンター間のみ送受信可能
なシステムを構成することができる。なお、第5図、第
6図のシステムにおいて、各素子又は各端末に、本発明
によるシステムをさらに連結することもできる。例えば
、第5図の素子AにA,,A2,・・・・・・Anを連
結し、それぞれの素子で入・1,^,2,・・・・・・
^,nを分離及び入力することにより所定の目的を達成
することができる。また、第5図において、A〜Nの素
子はすべてバンドパスフィルタ−により構成されている
が、初段のA素子は入,波長帯信号を反射(透過)し入
2波長帯を透過(反射)する短波長側反射(透過)フィ
ル夕を最終段のN素子は入n波長帯より長波長の光を透
過(反射)させるフィル夕に置き換えが可能である。ま
た、同様に第3図構成のフィル夕においても端子位置が
かわるだけで同様のシステムを構成することができる。
次に、第7図には多波長多重された光フアィバ伝送系に
おける中継器構成を示す。
The center 29 and the terminals 30-36 are connected in a ring. Optical signal sent from center 29^. - input 8 allows each of the terminals 30 to 36 to independently receive only signals in the wavelength band corresponding to the respective terminal. Further, each terminal 30 to 36 can transmit only to the center 295. By adopting a closed circuit configuration in this manner, it is possible to configure a system in which transmission and reception are possible only between each terminal and the center, without mutual communication between the terminals. Note that in the systems shown in FIGS. 5 and 6, the system according to the present invention can be further connected to each element or each terminal. For example, connect A,, A2, . . . An to element A in Fig. 5, and input 1, ^, 2, . . . for each element.
A predetermined purpose can be achieved by separating and inputting ^ and n. In addition, in Fig. 5, all of the elements A to N are composed of bandpass filters, but the first stage A element reflects (transmits) the signal in the input wavelength band and transmits (reflects) the signal in the input wavelength band. The short wavelength side reflection (transmission) filter can be replaced by a filter that transmits (reflects) light with a longer wavelength than the input n wavelength band in the final stage N element. Similarly, in the filter shown in FIG. 3, a similar system can be constructed by simply changing the terminal positions.
Next, FIG. 7 shows a repeater configuration in a multi-wavelength multiplexed optical fiber transmission system.

37,38は入、出力フアイバ、42〜49はしンズ系
を示す。
37 and 38 are input and output fibers, and 42 to 49 are fibers.

39,40,41は第5図に示したと同機なミラー特性
をもつ光分波素子を示し軸を合わせて一列に配列されて
いる。
Reference numerals 39, 40, and 41 indicate optical demultiplexing elements having mirror characteristics similar to those shown in FIG. 5, which are arranged in a line with their axes aligned.

50,51,52は39,40,41のフィルタ特性に
対応した発光波長をもつ発光部を示している。
Reference numerals 50, 51, and 52 indicate light emitting portions having emission wavelengths corresponding to the filter characteristics of 39, 40, and 41.

53,54,55は同様に各フィルタ特性に対応した受
光部を示す。
Similarly, reference numerals 53, 54, and 55 indicate light receiving sections corresponding to each filter characteristic.

今、入,〜入nの各波長帯城を搬送波とする光信号がフ
アィバ37より伝搬されるとフィル夕39部で入.波長
帯信号は反射され53の受光素子によって電気信号に変
換され、信号波形の整型、増中などの中継処理がなされ
た後、50の発光部が駆動されて再度入,波長帯の光信
号に変換し、39のミラーで反射され透過してきた光信
号入2〜入nと合わさってb素子部に伝搬される。同様
にb素子部では入2波長帯城の光信号が中継処理されて
再度主伝送路へ伝搬する。このように中継処理された入
,〜入n波長帯の全光信号はフアィバ38へ伝送される
。従って、このようなフィル夕横成と光信号の入射方法
をとることによって受信部と発信部を別々の分波、多重
素子で構成するのに比較して約半分の要素素子数で構成
することができる。以上説明したように本発明によれだ
以下の効果を奏する。
Now, when an optical signal whose carrier wave is in each wavelength band from input to input n is propagated from the fiber 37, it is input at the filter section 39. The wavelength band signal is reflected and converted into an electrical signal by the light receiving element 53, and after relay processing such as shaping and amplification of the signal waveform is performed, the light emitting unit 50 is driven and input again, and the optical signal in the wavelength band is converted into an electric signal. It is combined with the optical signals input 2 to input n that have been reflected and transmitted by the mirror 39, and is propagated to the b element section. Similarly, in the b element section, the optical signal in the two wavelength bands is relayed and propagated to the main transmission path again. All the optical signals in the input to input n wavelength bands that have been relayed in this way are transmitted to the fiber 38. Therefore, by adopting such a method of filtering and inputting optical signals, it is possible to configure the receiver and transmitter with approximately half the number of elements compared to configuring the receiver and transmitter with separate demultiplexing and multiplexing elements. Can be done. As explained above, the present invention provides the following effects.

【1} 複数波長帯城の光信号の送信および受信部をも
つセンター構成と少数波長帯城の光信号の送信、受信部
をもつ端末部を複数個もっ閉ループの光伝送システムが
構成できる。
[1] A closed-loop optical transmission system can be constructed by having a center configuration having a transmitting and receiving section for optical signals in multiple wavelength bands and a plurality of terminal sections having transmitting and receiving sections for optical signals in a small number of wavelength bands.

■ 上記閉ループシステムにおいて、各端末ともに光損
失の少ない送信、および受信端をもつことができる。
(2) In the above closed-loop system, each terminal can have a transmission and reception end with little optical loss.

‘3’上記閉ループシステムにおいて、センター部と端
末部は双方向伝送が可能であるとともに、端末間の漏話
がないシステム構成となる。
'3' In the closed loop system described above, the center section and the terminal section can perform bidirectional transmission, and the system configuration is such that there is no crosstalk between the terminals.

(4} 光信号の増中、波形整形などの中継器構成にお
いては要素素子数が少なく、信頼性の高い、効率的な中
継器構成とすることができる。
(4) In a repeater configuration for optical signal amplification, waveform shaping, etc., the number of elements is small, and a highly reliable and efficient repeater configuration can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは従来の多端末接続装置の構成図、第2図
は本発明にかかる分波器の構成図、第3図、第4図はフ
ィル夕の特性図、第5図、第6図は本発明の各実施例を
示す構成図、第7図は本発明の他の実施例を示す複数波
長中継器の構成図である。 20〜23,37,38・・・・・・光フアィバ、24
〜27,45,46……レンズ、28,39〜41・・
・・・・半透過鏡、29…・・・センター、30〜36
,A〜N・・・・・・端末機。 第1図 第2図 第3図 第4図 第5図 第6図 第7図
1a and 1b are block diagrams of a conventional multi-terminal connection device, FIG. 2 is a block diagram of a duplexer according to the present invention, FIGS. 3 and 4 are characteristic diagrams of filters, and FIG. FIG. 6 is a block diagram showing each embodiment of the present invention, and FIG. 7 is a block diagram of a multi-wavelength repeater showing another embodiment of the present invention. 20-23, 37, 38... Optical fiber, 24
~27,45,46...Lens, 28,39~41...
... Semi-transparent mirror, 29 ... Center, 30-36
, A to N... terminal device. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1 特定波長帯域の光を反射し、他の波長帯域の光を透
過する特性を有するフイルタと、前記フイルタの反射及
び透過波長帯域の双方を含む帯域内にある複数の光信号
より成る第1の信号を前記フイルタに入射させる第1の
光伝送手段、と前記第1のの信号のうちで前記フイルタ
を透過した第2の信号を受けて伝送する第2の伝送手段
と、前記第1の信号のうちで前記フイルタにより反射さ
れた第3の信号を受けて伝送する第3の伝送手段と、前
記第2及び第3の信号のうち波長帯域が狭い方の信号と
同一波長帯域を有する第4の信号を伝送する第4の伝送
手段とを備え、前記第4の信号が前記フイルタを透過又
は反射されることにより得られる第5の信号を、前記第
2及び第3の伝送手段のうち波長帯域が広い信号を受け
る方へ入力することにより、前記第2及び第3の信号と
前記第5の信号を重畳することを特徴とする光伝送装置
。 2 第1の伝送手段が入力部に設置せられ、第2及び第
3のの伝送手段のうち波長帯域の広に信号を受ける方が
出力部に設置されてなる単位要素を複数個備え、前記各
単位要素内の各フイルタはその透過又は反射波長帯域が
それぞれ異なり、前記各単位要素はそれぞれの入力部と
出力部が互いに結合されてつながれたことを特徴とする
特許請求の範囲第1項記載の光伝送装置。
[Scope of Claims] 1. A filter having a characteristic of reflecting light in a specific wavelength band and transmitting light in other wavelength bands, and a plurality of lights within a band including both the reflection and transmission wavelength bands of the filter. a first optical transmission means for inputting a first signal consisting of a signal into the filter; and a second transmission means for receiving and transmitting a second signal of the first signal that has passed through the filter. , a third transmission means for receiving and transmitting a third signal reflected by the filter among the first signals, and a signal having a narrower wavelength band among the second and third signals; a fourth transmission means for transmitting a fourth signal having a wavelength band, and transmitting a fifth signal obtained by transmitting or reflecting the fourth signal through the second and third filters. An optical transmission device characterized in that the second and third signals and the fifth signal are superimposed by inputting the signal to one of the transmission means that receives a signal having a wide wavelength band. 2. The first transmission means is installed in the input section, and the one receiving the signal in a wider wavelength band among the second and third transmission means is installed in the output section. Claim 1, wherein each filter in each unit element has a different transmission or reflection wavelength band, and each unit element has its input part and output part connected to each other. optical transmission equipment.
JP54004995A 1979-01-20 1979-01-20 optical transmission equipment Expired JPS6030455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54004995A JPS6030455B2 (en) 1979-01-20 1979-01-20 optical transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54004995A JPS6030455B2 (en) 1979-01-20 1979-01-20 optical transmission equipment

Publications (2)

Publication Number Publication Date
JPS5597752A JPS5597752A (en) 1980-07-25
JPS6030455B2 true JPS6030455B2 (en) 1985-07-16

Family

ID=11599171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54004995A Expired JPS6030455B2 (en) 1979-01-20 1979-01-20 optical transmission equipment

Country Status (1)

Country Link
JP (1) JPS6030455B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2512620B2 (en) * 1981-02-13 1988-02-05 France Etat MATRIX OPTICAL CONCENTRATOR-DISTRIBUTOR
JPH06258546A (en) * 1993-03-09 1994-09-16 Hitachi Ltd Optical distribution element, optical distribution circuit and method for constituting the distribution circuit
US5883730A (en) * 1995-12-29 1999-03-16 Lucent Technologies Inc. Optical transceiver for multi-directional and multi-wavelength applications

Also Published As

Publication number Publication date
JPS5597752A (en) 1980-07-25

Similar Documents

Publication Publication Date Title
US5452124A (en) Unidirectional amplification for bi-directional transmission using wavelength-division multiplexing
CN100353695C (en) Low loss WDM add drop node
JP3293565B2 (en) Optical amplification repeater
WO1999049601A1 (en) Wdm transmission repeater, wdm transmission system and wdm transmission method
JPH1020143A (en) Light branching/inserting device and optical transmission system having the device
JP4116244B2 (en) Transceiver for wavelength division multiplexing
JPS6030455B2 (en) optical transmission equipment
JPH03269522A (en) Amplifier device for wavelength multiplex optical transmission line
JP3006670B2 (en) Optical submarine branching device and transmission line switching method thereof
US6873758B1 (en) Optical add-drop filter
JP3307334B2 (en) Monitoring signal light bypass circuit, optical amplification repeater using the same, and monitoring method thereof
JP3308148B2 (en) Optical submarine cable branching device for WDM communication system and WDM optical submarine cable network using the same
JPS6318901B2 (en)
JPS6139777B2 (en)
JPH11266205A (en) Light amplification repeater and monitoring method therefor
JPH11344638A (en) Ring coupler for optical network
JP2973886B2 (en) WDM transmission system
JPS6057777B2 (en) optical transmission equipment
JPS6347623A (en) Wavelength multiplying and dividing element
JPH11186960A (en) Optical node equipment, optical synthesis branching method and optical transmitter
JPS58101536A (en) Annular optical communication device
JPS63296006A (en) Bidirectional optical multiplexing and demultiplexing device for three wavelengths
JPH1022919A (en) Optical branching device
JPS63253309A (en) Optical repeater
JPS5840941A (en) Optical data transmitter