JPS6340378B2 - - Google Patents

Info

Publication number
JPS6340378B2
JPS6340378B2 JP54104671A JP10467179A JPS6340378B2 JP S6340378 B2 JPS6340378 B2 JP S6340378B2 JP 54104671 A JP54104671 A JP 54104671A JP 10467179 A JP10467179 A JP 10467179A JP S6340378 B2 JPS6340378 B2 JP S6340378B2
Authority
JP
Japan
Prior art keywords
optical
light
wavelength
transmission
demultiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104671A
Other languages
Japanese (ja)
Other versions
JPS5628538A (en
Inventor
Takeshi Usui
Shigetoki Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10467179A priority Critical patent/JPS5628538A/en
Publication of JPS5628538A publication Critical patent/JPS5628538A/en
Publication of JPS6340378B2 publication Critical patent/JPS6340378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は光通信システム、特に光多重伝送シス
テムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to optical communication systems, and particularly to optical multiplex transmission systems.

近年光通信システムの進歩は著しく、各種の分
野にその用途を広げており、さらにその発展利用
形態の一つとして単一の光伝送路に複数の光信号
を一方向ないしは双方向に同時に伝送を行なう光
多重伝送システムが検討されている。
In recent years, optical communication systems have made remarkable progress, and their applications are expanding to a variety of fields.One of their advanced uses is the simultaneous transmission of multiple optical signals in one or both directions through a single optical transmission path. Optical multiplexing transmission systems that do this are being considered.

従来この種の光多重伝送方式としては、異なる
発光波長の光源と光分波器を組合せて、波長分割
により一方向ないしは双方向の多重伝送を行なう
波長分割多重伝送方式と、送受信の多重分離に光
方向性結合器を使用して、その光方向性結合器の
方向性を利用し、伝送方向の違いのみで送信信号
を分離する双方向多重伝送方式とが考えられてい
る。
Conventionally, this type of optical multiplexing transmission system consists of a wavelength division multiplexing transmission system that performs unidirectional or bidirectional multiplex transmission by combining light sources with different emission wavelengths and optical demultiplexers, and a wavelength division multiplexing system that performs unidirectional or bidirectional multiplex transmission by wavelength division. A bidirectional multiplex transmission system is being considered that uses an optical directional coupler and utilizes the directionality of the optical directional coupler to separate transmitted signals based only on differences in transmission direction.

前者の波長分割多重伝送方式では長距離の伝送
が可能であるが、反面発光波長の異なる複数種の
光源を準備しなければならない欠点がある。
The former wavelength division multiplexing transmission method allows long-distance transmission, but has the disadvantage of requiring the preparation of multiple types of light sources with different emission wavelengths.

一方後者の方向は、簡易ではあるが光伝送路で
の後方散乱や光コネクタなどの端面での反射ある
いは光方向性結合器の方向性の不完全などによ
り、送信光信号が自局の光受信器に廻り込んで干
渉し、光受信感度を劣化させる為、ごく短距離の
伝送にしか使用できない欠点があり、さらに一方
向の多重伝送にも適用できない欠点がある。
On the other hand, in the latter direction, although it is simple, the transmitted optical signal is not received by the local station due to backscattering in the optical transmission line, reflection at the end face of the optical connector, or imperfect directionality of the optical directional coupler. It has the disadvantage that it can only be used for very short distance transmission because it interferes with the device and degrades the optical reception sensitivity, and it also has the disadvantage that it cannot be applied to unidirectional multiplex transmission.

そこで本発明の目的はこのような欠点をなく
し、実質的に同じ発光波長域を有する光源を使用
した場合でもは双方向の比較的長距離の多重伝送
が可能な簡易な光多重伝送システムを提供する事
にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate such drawbacks and provide a simple optical multiplex transmission system that is capable of bidirectional, relatively long-distance multiplex transmission even when light sources having substantially the same emission wavelength range are used. It's about doing.

本願発明によれば、単一光フアイバ伝送路の一
端で第1の光分波器を介して光学的に接続された
第1の光送信器および第1の光受信器と、他端で
第2の光分波器を介して光学的に接続された第2
の光送信器および第2の光受信器とを有し、前記
光フアイバを介して双方向で光通信を行う光伝送
システムにおいて、前記第1および第2の光送信
器は実質的に同一発光波長帯域の光を発光する光
源からなり、前記第1の光送信器の光源が発生す
る光のうち第1の波長帯域の光が前記第1の光分
波器で選択され、前記光フアイバを介して前記第
2の光受信器で受信され、前記第2の光送信器の
光源が発生する光のうち前記第1の波長帯域とは
異なる第2の波長帯域の光が前記第2の光分波器
によつて選択され、前記光フアイバを介して前記
第1の光受信器で受信されることを特徴とする光
伝送システムが得られる。
According to the present invention, a first optical transmitter and a first optical receiver are optically connected via a first optical demultiplexer at one end of a single optical fiber transmission line, and a first optical receiver is optically connected at one end of a single optical fiber transmission line via a first optical demultiplexer. a second optically connected via a second optical demultiplexer;
In an optical transmission system that includes an optical transmitter and a second optical receiver, and performs bidirectional optical communication via the optical fiber, the first and second optical transmitters emit substantially the same light. The light source includes a light source that emits light in a wavelength band, and the light in the first wavelength band is selected by the first optical demultiplexer among the light generated by the light source of the first optical transmitter, and the light is transmitted through the optical fiber. Among the light generated by the light source of the second optical transmitter, the light in a second wavelength band different from the first wavelength band is received by the second optical receiver through the second optical receiver. There is obtained an optical transmission system characterized in that the optical signal is selected by a demultiplexer and is received by the first optical receiver via the optical fiber.

この光多重伝送システムでは複数の光送信器の
光源は実質的に同じ発光波長域を有するけれど
も、光分波器を介して光伝送路に結合されるの
は、その互いに異なる一部波長成分であり、又相
手側の光分波器に応じてそれぞれ特定の光受信器
に低損失で選択的に分波されるので、実効的に波
長分割多重伝送方式と同様な原理で、双方向の比
較的長距離の多重伝送ができ、かつ同じ波長の光
源を使用して実現できる簡易な光多重伝送システ
ムを得る事ができる。
In this optical multiplex transmission system, although the light sources of the plurality of optical transmitters have substantially the same emission wavelength range, what is coupled to the optical transmission line via the optical demultiplexer are some mutually different wavelength components. In addition, it is selectively demultiplexed to a specific optical receiver with low loss depending on the optical demultiplexer on the other side, so it is effectively the same principle as the wavelength division multiplexing transmission system, making it possible to perform two-way comparisons. A simple optical multiplex transmission system that can perform long-distance multiplex transmission using light sources of the same wavelength can be obtained.

次に図面を参照して本発明について詳細に説明
する。
Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の第1の実施例の構成を示すブ
ロツク図で、単一の光伝送路で双方向の多重伝送
を行なう光多重伝送システムに関するものであ
る。
FIG. 1 is a block diagram showing the configuration of a first embodiment of the present invention, which relates to an optical multiplex transmission system that performs bidirectional multiplex transmission on a single optical transmission path.

第1図において、光送信器11と12の光源に
はほぼ同じ発光波長域を有する発光ダイオードが
用いられており、一方光分波器31には遮断波長
が前記光源の発光中心波長にほぼ等しく短波長の
光を透過し、長波長の光を反射する短波長透過フ
イルタが使用され、又光分波器32には遮断波長
が前記光源の発光中心波長にほぼ等しく長波長の
光を透過し、短波長の光を反射する長波長透過フ
イルタが使用されている。
In FIG. 1, the light sources of the optical transmitters 11 and 12 are light emitting diodes having approximately the same emission wavelength range, while the optical demultiplexer 31 uses a light emitting diode whose cutoff wavelength is approximately equal to the emission center wavelength of the light sources. A short wavelength transmission filter is used that transmits short wavelength light and reflects long wavelength light, and the optical demultiplexer 32 has a cutoff wavelength that is approximately equal to the emission center wavelength of the light source and transmits long wavelength light. , a long-wavelength transmission filter is used that reflects short-wavelength light.

従つて光送信器11から送出された光信号は光
分波器31を通過する際に長波長成分は阻止さ
れ、ほぼ短波長成分のみが光伝送路41に入射さ
れる。この光信号は光伝送路41を伝搬した後、
光分波器32に入射されるが、この光信号はほと
んどが短波長成分である為に、ほぼ全反射され、
光受信器22に入力されて、ここで電気信号に変
換された後、元の信号に再生される。
Therefore, when the optical signal sent from the optical transmitter 11 passes through the optical demultiplexer 31, the long wavelength components are blocked, and almost only the short wavelength components enter the optical transmission line 41. After this optical signal propagates through the optical transmission line 41,
The optical signal is incident on the optical demultiplexer 32, but since most of this optical signal has short wavelength components, it is almost totally reflected.
The signal is input to the optical receiver 22, where it is converted into an electrical signal and then regenerated into the original signal.

一方、光伝送路41で、後方散乱ないしは端面
で反射された反射光は自局の光分波器31に返つ
て来るが、短波長成分がほとんどであるので大部
分は光分波器31を透過し、ごく一部が反射され
て、光受信器21に廻り込むだけである。
On the other hand, in the optical transmission line 41, the reflected light that is backscattered or reflected at the end face returns to the optical demultiplexer 31 of the own station, but since most of the short wavelength components are short wavelength components, the majority of the reflected light is sent to the optical demultiplexer 31. It is transmitted, and only a small portion is reflected and goes around to the optical receiver 21.

又、光送信器12から送出された光信号の場合
には、光分波器32を経て長波長成分が光伝送路
41に送出され、前述と同様に光受信器21に伝
送され、一方光伝送路41での反射光も同様にご
く一部が光受信器22に廻り込むだけである。
Furthermore, in the case of an optical signal sent out from the optical transmitter 12, the long wavelength component is sent out to the optical transmission path 41 through the optical demultiplexer 32, and transmitted to the optical receiver 21 in the same manner as described above. Similarly, only a small portion of the reflected light from the transmission path 41 goes around to the optical receiver 22.

従つて光分波器31と32の代わりに単に光方
向性結合器を使用した従来の方式に比べて、光送
信信号が自局の光受信器に廻り込む割合を大幅に
少なくでき、その分だけ伝送路の許容損失が大き
くできるので、比較的長距離の双方向多重伝送が
可能となる。
Therefore, compared to the conventional system that simply uses an optical directional coupler instead of the optical demultiplexers 31 and 32, the rate at which the optical transmission signal goes around to the optical receiver of the local station can be significantly reduced, and the Since the permissible loss of the transmission line can be increased, relatively long-distance bidirectional multiplex transmission is possible.

上記の各実施例で、光分波器31〜32には短
波長透過フイルタないしは長波長透過フイルタを
使用しているが、帯域透過フイルタを使用して一
方の遮断波長を光源の発光中心波長に合せても同
様な性能を得る事ができる。又第1の実施例では
光送信器を光分波器の透過側に接続したが、逆に
反射側に接続しても同様の特性を得る事ができ
る。
In each of the above embodiments, a short wavelength transmission filter or a long wavelength transmission filter is used for the optical demultiplexers 31 to 32, but a band transmission filter is used to set one cutoff wavelength to the emission center wavelength of the light source. Similar performance can be obtained by combining them. Further, in the first embodiment, the optical transmitter is connected to the transmission side of the optical demultiplexer, but the same characteristics can be obtained even if the optical transmitter is connected to the reflection side.

なお光分波器の遮断波長は正確に光源の発光中
心波長に合せる必要はなく、おおむね合つていれ
ば良く、又2個の光源の発光波長域も概略一致し
ていれば良く、もし発光波長域が若干ずれている
ような場合には光分波器の透過波長域との関係で
損失が少なくなる様に光源の使用個所を割りふれ
ば同一の波長域の場合よりも良い特性を得る事が
できる。
Note that the cutoff wavelength of the optical demultiplexer does not need to exactly match the emission center wavelength of the light source; it is sufficient that it roughly matches, and the emission wavelength range of the two light sources also needs to roughly match. If the wavelength ranges are slightly different, you can obtain better characteristics than in the case of the same wavelength range by allocating the locations where the light source is used to reduce loss in relation to the transmission wavelength range of the optical demultiplexer. I can do things.

なお、前述のフイルタには誘電体多層膜を用い
た干渉フイルタが使用でき、その他にも透過域以
外の光が反射されるフイルタであれば使用でき
る。
Note that an interference filter using a dielectric multilayer film can be used as the above-mentioned filter, and any other filter can be used as long as it reflects light outside the transmission range.

又、プリズムや回折格子などを用いた光分波器
を使用する事も可能である。
It is also possible to use an optical demultiplexer using a prism, a diffraction grating, or the like.

又、以上の実施例は、二波の双方向の多重伝送
であつたが、光分波器にプリズムや回折格子など
によるもの、または複数の遮断波長のことなるフ
イルタを組合せたものを使用すれば多重伝送も行
なう事ができる。
Furthermore, although the above embodiments involved bidirectional multiplex transmission of two waves, it is also possible to use a prism, a diffraction grating, etc. as the optical demultiplexer, or a combination of multiple filters with different cutoff wavelengths. Multiplex transmission can also be performed.

以上詳述したように、本発明によれば同じ発光
波長域を有する光源を使用しても、双方向の多重
伝送が可能な簡便な光多重伝送システムを得る事
ができる。
As described in detail above, according to the present invention, a simple optical multiplex transmission system capable of bidirectional multiplex transmission can be obtained even if light sources having the same emission wavelength range are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はそれぞれ本発明の実施例を示すブロツ
ク図である。 なお図において、11〜12……光送信器、2
1〜22……光受信器、31〜32……光分波
器、41……光伝送路である。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 11 to 12... optical transmitter, 2
1-22... Optical receiver, 31-32... Optical demultiplexer, 41... Optical transmission line.

Claims (1)

【特許請求の範囲】[Claims] 1 単一光フアイバ伝送路の一端で第1の光分波
器を介して光学的に接続された第1の光送信器お
よび第1の光受信器と、他端で第2の光分波器を
介して光学的に接続された第2の光送信器および
第2の光受信器とを有し、前記光フアイバを介し
て双方向で光通信を行う光伝送システムにおい
て、前記第1および第2の光送信器は実質的に同
一発光波長帯域の光を発光する光源からなり、前
記第1の光送信器の光源が発生する光のうち第1
の波長帯域の光が前記第1の光分波器で選択さ
れ、前記光フアイバを介して前記第2の光受信器
で受信され、前記第2の光送信器の光源が発生す
る光のうち前記第1の波長帯域とは異なる第2の
波長帯域の光が前記第2の光分波器によつて選択
され、前記光フアイバを介して前記第1の光受信
器で受信されることを特徴とする光伝送システ
ム。
1 A first optical transmitter and a first optical receiver optically connected via a first optical demultiplexer at one end of a single optical fiber transmission line, and a second optical demultiplexer at the other end. The optical transmission system includes a second optical transmitter and a second optical receiver that are optically connected to each other via a fiber, and performs bidirectional optical communication via the optical fiber. The second optical transmitter is comprised of a light source that emits light in substantially the same emission wavelength band, and the second optical transmitter is comprised of a light source that emits light in substantially the same emission wavelength band, and
Light in a wavelength band of Light in a second wavelength band different from the first wavelength band is selected by the second optical demultiplexer and received by the first optical receiver via the optical fiber. Features of optical transmission system.
JP10467179A 1979-08-17 1979-08-17 Optical multiplex transmission system Granted JPS5628538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10467179A JPS5628538A (en) 1979-08-17 1979-08-17 Optical multiplex transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10467179A JPS5628538A (en) 1979-08-17 1979-08-17 Optical multiplex transmission system

Publications (2)

Publication Number Publication Date
JPS5628538A JPS5628538A (en) 1981-03-20
JPS6340378B2 true JPS6340378B2 (en) 1988-08-10

Family

ID=14386927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10467179A Granted JPS5628538A (en) 1979-08-17 1979-08-17 Optical multiplex transmission system

Country Status (1)

Country Link
JP (1) JPS5628538A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674963A1 (en) * 1991-04-03 1992-10-09 Balan Sa J OPTICAL BONDING SYSTEM THROUGH RELATED MODULES.
US5317441A (en) * 1991-10-21 1994-05-31 Advanced Micro Devices, Inc. Transceiver for full duplex signalling on a fiber optic cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103706A (en) * 1975-03-08 1976-09-13 Omron Tateisi Electronics Co
JPS51113505A (en) * 1975-03-31 1976-10-06 Nippon Serufuotsuku Kk Multiplex optical fiber communication equipment
JPS5591243A (en) * 1978-12-15 1980-07-10 Fujitsu Ltd Two-way optical communication circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103706A (en) * 1975-03-08 1976-09-13 Omron Tateisi Electronics Co
JPS51113505A (en) * 1975-03-31 1976-10-06 Nippon Serufuotsuku Kk Multiplex optical fiber communication equipment
JPS5591243A (en) * 1978-12-15 1980-07-10 Fujitsu Ltd Two-way optical communication circuit

Also Published As

Publication number Publication date
JPS5628538A (en) 1981-03-20

Similar Documents

Publication Publication Date Title
US4449782A (en) Modular, optical fiber communication system
JPH0233109A (en) Double wavelength optical communication former
US4662715A (en) Fiber optic network with reduced coupling losses
AU658465B2 (en) Optical transmission system
JP3293565B2 (en) Optical amplification repeater
JPS6142461B2 (en)
US4430572A (en) Device for separating two light signals emitted by sources having different wavelengths and transmitted in a single optical fiber
US20030053171A1 (en) Optical configuration, in particular for bidirectional WDM systems, and a transceiving module for bidirectional optical data transmission
JPS6318901B2 (en)
JPH07128541A (en) Optical communication transmitter-receiver and optical amplifier
JPS6340378B2 (en)
US6546160B1 (en) Transceiver for wavelength multiplexing processes
US6509984B1 (en) Crosstalk reduction in a bidirectional optical link
TW201801486A (en) Optical fiber laser transmission system with laser splitter achieving the aim of extending a laser transmission distance
JPS5815926Y2 (en) Composite optical wavelength demultiplexing circuit
JP3243326U (en) Optical fiber network signal receiving module capable of receiving same and different wavelengths
JPH08288911A (en) Optical communication equipment and its method
JPS598096B2 (en) fiber optic communication system
JPS6316058B2 (en)
JPS6046681B2 (en) Two-way optical communication device
JPS6316055B2 (en)
JPS6316056B2 (en)
JPH0591049A (en) Optical circuit
KR20100050024A (en) A system for transmitting optical signal
JPS6139776B2 (en)