JPH0669167B2 - Switching the optical line without interruption - Google Patents

Switching the optical line without interruption

Info

Publication number
JPH0669167B2
JPH0669167B2 JP60221476A JP22147685A JPH0669167B2 JP H0669167 B2 JPH0669167 B2 JP H0669167B2 JP 60221476 A JP60221476 A JP 60221476A JP 22147685 A JP22147685 A JP 22147685A JP H0669167 B2 JPH0669167 B2 JP H0669167B2
Authority
JP
Japan
Prior art keywords
optical
line
switching
variable
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60221476A
Other languages
Japanese (ja)
Other versions
JPS6281824A (en
Inventor
久治 柳川
幹夫 小粥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP60221476A priority Critical patent/JPH0669167B2/en
Publication of JPS6281824A publication Critical patent/JPS6281824A/en
Publication of JPH0669167B2 publication Critical patent/JPH0669167B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 『産業上の利用分野』 本発明は、現用光線路における切替対象区間の線路部を
無瞬断にて切替用光線路と切り替える方法に関する。
TECHNICAL FIELD The present invention relates to a method for switching a line portion of a switching target section in a working optical line to a switching optical line without interruption.

『従来の技術』 既知の通り、市街地の通信ケーブルは、これに支障が生
じるとか、移転のため、数十%以上のものが布設ルート
の変更を経験しており、迂回ルートに切り替える需要が
高い。
"Prior art" As is known, tens of percent or more of the communication cables in urban areas have experienced changes to the laying route due to obstacles to this, or due to relocation, there is a high demand for switching to detour routes. .

以下、その概要を第8図に示す。The outline is shown below in FIG.

第8図において、1は局内の電光変換器、2は局内の光
電変換器、3は各線路部(光ケーブル)31、32、33……
3nがそれぞれ接続された既設(現用)の光線路、4はケ
ーブル接続点、5は切替用光線路(迂回用ケーブル)で
あり、例えば光線路3の線路部32を何らかの理由で切り
替えるとき、切替用光線路5が所定のケーブル接続点4
へ接続される。
In FIG. 8, 1 is an electro-optical converter in the station, 2 is a photoelectric converter in the station, 3 is each line portion (optical cable) 3 1 , 3 2 , 3 3 ...
3n are connected respectively existing (current) of the optical line, 4 cabling point, 5 is switched optical lines (bypass cable), for example when switching line portion 3 2 optical line 3 for some reason, The switching optical line 5 has a predetermined cable connection point 4
Connected to.

ところで、上記光線路3は現用であるので、その切り替
えに際しては現用情報伝送に支障を与えてはならず、こ
れの対策として特開昭59−229938号公報に記載の無瞬断
切替方法がすでに提案されている。
By the way, since the optical line 3 is currently in use, the switching of the optical line 3 should not hinder the current information transmission. As a countermeasure against this, the hitless switching method described in Japanese Patent Laid-Open No. 59-229938 has already been proposed. Proposed.

この方法は、切替対象となる一本の線路部に対し、一本
の切替用光線路5が必要であるほか、第9図のごとく一
個の電光変換器6、二個の光電変換器7、2ルート位相
差検出用のパイロット信号検出器8、一個の比較器9、
可変遅延器10、合流器11等を備えてなる。
This method requires one switching optical line 5 for one line section to be switched, one electro-optical converter 6, two photoelectric converters 7, as shown in FIG. A pilot signal detector 8 for two-route phase difference detection, one comparator 9,
It comprises a variable delay device 10, a combiner 11 and the like.

第9図の方法の場合、2ルート間の光路長の差異により
生じる位相を、パイロット信号検出器8で検出し、比較
器9で比較して、その差分の補正を可変遅延器10により
行なっている。
In the case of the method shown in FIG. 9, the phase caused by the difference in optical path length between the two routes is detected by the pilot signal detector 8, compared by the comparator 9, and the difference is corrected by the variable delay device 10. There is.

これを行なう理由は、光ケーブル中の光の伝送速度が10
0Mbpsのように高速であり、1タイムスロット10nsに対
し、わずか2mの光路長でも次式のごとく一周期(10ns)
のずれが起こり、ビット誤りを生じるからである。
The reason for doing this is that the transmission speed of the light in the optical cable is 10
It is as fast as 0 Mbps, and even if the optical path length is only 2 m for one time slot of 10 ns, one cycle (10 ns) as shown in the following formula
This is because there is a shift in the bit and a bit error occurs.

Δτ=NL/C=1.5×2m/3×108 (m/s)=10ns Δτ:遅延時間の差 N:石英の屈折率 L:光路長 C:光速 『発明が解決しようとする問題点』 上述した第9図の方法では、光電変換器7、パイロット
信号検出器8などの高価機器が光ケーブル内の各光ファ
イバごとに必要となり、しかも複数の光ケーブルを切り
替えるときは、各光ケーブルごとに多数の高価機器が必
要となるので、これに要する費用が膨大となってしま
う。
Δτ = NL / C = 1.5 × 2 m / 3 × 10 8 (m / s) = 10 ns Δτ: Difference in delay time N: Refractive index of quartz L: Optical path length C: Speed of light "Problems to be solved by the invention" In the method of FIG. 9 described above, expensive equipment such as the photoelectric converter 7 and the pilot signal detector 8 is required for each optical fiber in the optical cable, and when switching a plurality of optical cables, a large number of optical cables are required for each optical cable. Since expensive equipment is required, the cost required for this becomes enormous.

他に、高速の光スイッチを用いて光線路を瞬時に切り替
える方法があるが、これは原理的に無瞬断とはいえず、
しかもこの方法では、実効上影響のない量として1/10
の周期を考えると、100Mbpsのビットレートに対し切替
速度1ns以上の高価な光スイッチが必要になるととも
に、その高価な光スイッチをあらかじめルート内の全ケ
ーブルに挿入しなければならず、そのためコストが非常
に高くなり、この際の挿入損失が高いという問題も生じ
る。
In addition, there is a method of instantly switching the optical line using a high-speed optical switch, but this is not a non-interruption in principle,
Moreover, with this method, there is a 1/10
Considering the cycle of, the cost requires an expensive optical switch with a switching speed of 1 ns or more for a bit rate of 100 Mbps, and the expensive optical switch must be inserted into all cables in the route in advance, which reduces the cost. It becomes very high, and there is a problem that the insertion loss at this time is high.

本発明は上記の問題点に鑑み、軽微な付加コストにより
光線路の切り替えが行なえる方法を提供しようとするも
のである。
In view of the above problems, the present invention aims to provide a method capable of switching optical lines with a small additional cost.

『問題点を解決するための手段』 本発明は所期の目的を達成するために、 可変光減衰器を備えた線路部とその両隣にある各線路部
とが、これらの各端末間に挿入された光合分波用の光素
子を介して接続されているとともに、可変光減衰器を備
えた現用光信号の折り返し端末が、各合分波用素子にそ
れぞれ接続されている現用光線路において、光パルスの
発生手段と位相差測定手段とを用いて、現用光線路にお
ける可変光減衰器付き線路部すなわち切替対象区間の線
路部を、可変光減衰器と可変光フィルタと可変遅延器と
を備えた切替用光線路に切り替える方法であること、 上記において切替対象区間の線路部を切替用光線路に切
り替えるときに、 はじめの工程として、 各折り返し端末の減衰量をこれらに備えつけられた可変
光減衰器により大きくて、該各折り返し端末を各合分波
用光素子から切り離すこと、 つぎの工程として、 自己の可変光フィルタ、可変光減衰器を介して測定用波
長光透過、現用波長光不透過の状態にされた切替用光線
路を両光合分波用光素子にわたって接続するとともに、
光パルス発生手段を一方の合分波用光素子、位相差測定
手段を他方の合分波用光素子にそれぞれ接続し、かつ、
現用波長光が一方の合分波用光素子を経由して位相差測
定手段に入力し、光パルス発生手段で発生させた測定用
波長光が他方の合分波用光素子、切替用光線路、一方の
合分波用光素子を経由して位相差測定手段に入力したと
きに、これら両波長光の位相差を位相差測定手段により
測定して、当該位相差を切替用光線路に備えつけられた
可変遅延器により補償すること、 その後の工程として、 光パルス発生手段、位相差測定手段を各合分波用光素子
から取り外し、かつ、切替用光線路を、これに備えつけ
られた可変光フィルタ、可変光減衰器により現用波長光
透過の状態にすること、 さらに、その後の工程として、 切替対象区間の線路部の減衰量をこれらに備えつけられ
た可変光減衰器により大きくして、当該線路部を両光合
分波用光素子間から取り除き、これら光合分波用光素子
に現用光信号の折り返し端末を接続することを特徴とす
る。
[Means for Solving the Problems] In order to achieve the intended purpose, the present invention inserts a line section provided with a variable optical attenuator and each line section on both sides of the line section between these terminals. While being connected via the optical element for optical multiplexing and demultiplexing, the terminal for turning back the optical signal for operation, which is equipped with a variable optical attenuator, is a current optical line connected to each element for multiplexing and demultiplexing, A line portion with a variable optical attenuator in the working optical line, that is, a line portion in a switching target section, is provided with a variable optical attenuator, a variable optical filter, and a variable delay device by using the optical pulse generating means and the phase difference measuring means. In the above, when switching the line part of the switching target section to the switching optical line in the above, the first step is to adjust the amount of attenuation of each return terminal to the variable optical attenuation provided in these. By vessel Large, separate each folding terminal from each multiplexing / demultiplexing optical element, and the next step is to pass the measurement wavelength light transmission and the working wavelength light non-transmission state through its own variable optical filter and variable optical attenuator. While connecting the switching optical line to the optical element for both optical multiplexing and demultiplexing,
The optical pulse generating means is connected to one of the multiplexing / demultiplexing optical elements, the phase difference measuring means is connected to the other of the multiplexing / demultiplexing optical elements, respectively, and
The working wavelength light is input to the phase difference measuring means via one of the multiplexing / demultiplexing optical elements, and the measuring wavelength light generated by the optical pulse generating means is the other of the multiplexing / demultiplexing optical elements and the switching optical line. , When inputting to the phase difference measuring means via one of the multiplexing / demultiplexing optical elements, the phase difference between these two wavelength lights is measured by the phase difference measuring means, and the phase difference is provided in the switching optical line. Compensation by the variable delay device provided, and as a subsequent step, the optical pulse generating means and the phase difference measuring means are removed from each optical multiplexer / demultiplexer, and the switching optical line is provided with the variable optical A filter and a variable optical attenuator are used to make the operating wavelength light transmissive state.Furthermore, as a subsequent step, the amount of attenuation in the line section of the switching target section is increased by the variable optical attenuator installed in these sections, and the line concerned is changed. Between both optical elements for optical multiplexing and demultiplexing It is characterized in that a terminal for returning the working optical signal is connected to the optical element for optical multiplexing / demultiplexing.

『実施例』 以下本発明方法の実施例につき、図面を参照して説明す
る。
[Examples] Examples of the method of the present invention will be described below with reference to the drawings.

第1図は切替前の現用光線路20における切替対象区間の
線路部21を示したものである。
FIG. 1 shows the line portion 21 in the switching target section of the working optical line 20 before switching.

上記光線路20は光ケーブルを接続することにより構成さ
れており、その各接続点には合分波用の光素子たるビー
ムスプリッタ22が挿入されている。
The optical line 20 is configured by connecting optical cables, and a beam splitter 22 as an optical element for multiplexing / demultiplexing is inserted at each connection point thereof.

したがって、上記線路部21の両端にビームスプリッタ22
があるが、これらビームスプリッタ22には、この際の挿
入損失を解消するため、ループ状の折返し端末23が接続
される。
Therefore, the beam splitter 22 is provided at both ends of the line portion 21.
However, in order to eliminate the insertion loss at this time, a loop-shaped folded terminal 23 is connected to these beam splitters 22.

さらに上記線路部21、折返し端末23には可変光減衰器2
4、25が設けられる。
Further, a variable optical attenuator 2 is provided in the line portion 21 and the folding terminal 23.
4, 25 are provided.

上記におけるビームスプリッタ22の入力路と分岐路との
分岐比は1:xであり、上記折返し端末23の長さをLとす
ると、その端末23の出力側には、τ=NL/Cごとに、振
幅1−x,x2,x2(1−x),x2(1−x)2,x2(1−x)
……が出力される。
The branching ratio between the input path and the branching path of the beam splitter 22 in the above is 1: x, and when the length of the folding terminal 23 is L, the output side of the terminal 23 has τ = NL / C every , Amplitude 1-x, x 2 , x 2 (1-x), x 2 (1-x) 2 , x 2 (1-x)
3 ... is output.

このとき、最初のn個のパルスを合成したパワー(Pou
t)は、入射パワーに対し、Pout=1−x+x2+x2(1
−x)+x2(1−x)……x2(1−x)n-1=1−x
(1−x)n-1となり、第2図のようになる。
At this time, the power (Pou
t) is Pout = 1−x + x 2 + x 2 (1
-X) + x 2 (1- x) 2 ...... x 2 (1-x) n -1 = 1-x
(1-x) n -1 , which is as shown in FIG.

さらにx=1/2,n=5のとき、上記合成パワーPoutは
第3図のようになる。
Further, when x = 1/2 and n = 5, the composite power Pout is as shown in FIG.

上述した遅延時間τが、パルス時間Tに対し充分小さい
ものであるとすると、すべてのパルスが出力に貢献す
る。
Assuming that the delay time τ is sufficiently smaller than the pulse time T, all the pulses contribute to the output.

したがってn=∞とした場合、Pout=1となり、原理的
にはビームスプリッタ23の挿入損失がゼロとなる。
Therefore, when n = ∞, Pout = 1, and in principle, the insertion loss of the beam splitter 23 becomes zero.

例えば、T=10ns(100Mbpsに相当)とし、折返し端末
(例えば両端にコネクタの付いた光コード)をL=10cm
とすると、τは0.5nsとなってパルス周期よりも充分小
さくなる。
For example, T = 10 ns (corresponding to 100 Mbps) and a folded terminal (for example, an optical cord with connectors at both ends) L = 10 cm
Then, τ becomes 0.5 ns, which is sufficiently smaller than the pulse period.

また、パルスが一周期分ずれたとき(n=20)、そのパ
ルスパワーは、入力パルスに対し、x=1/2において
約10-6と60dBのダウンになり、符号間干渉といった問題
が生じない。
Also, when the pulse is shifted by one cycle (n = 20), the pulse power is about 10 -6 and 60 dB down at x = 1/2 with respect to the input pulse, causing a problem such as intersymbol interference. Absent.

ただし、ビットレートがさらに上がり、Tが小さくなる
場合は、xは標準的な1/2(ハーフミラーを用いた3d
B分岐)と異なる値にし、符号間干渉を起こさない配慮
が必要である。
However, when the bit rate further increases and T decreases, x is a standard 1/2 (3d using a half mirror
It is necessary to consider the value so that it does not cause intersymbol interference.

前述のごとく、光ケーブル中の光の伝送速度は高速であ
り、わずかの光路長差でも周期ずれが起こり、ビット誤
りを生じる。
As described above, the transmission speed of light in the optical cable is high, and even a slight difference in optical path length causes a cycle shift, resulting in a bit error.

本発明では、切替対象区間の線路部と切替用光線路との
光路長差を以下のように測定し、その光路長差によって
生じる位相差を補償する。
In the present invention, the optical path length difference between the line portion in the switching target section and the switching optical line is measured as follows, and the phase difference caused by the optical path length difference is compensated.

はじめ、第1図の折返し端末23に設けられた可変光減衰
器25を減衰量を徐々に増やし、最終的には充分な減衰量
としてこれら折返し端末23をビームスプリッタ22から切
り離す。
First, the variable optical attenuator 25 provided in the folding terminal 23 of FIG. 1 is gradually increased in attenuation amount, and finally, the folding terminal 23 is separated from the beam splitter 22 with a sufficient attenuation amount.

こうすることにより、急激な受光パワーの変動を回避す
ることができる。
By doing so, it is possible to avoid a sudden change in the received light power.

つぎに第4図のごとく、可変光減衰器26、可変透過波長
型の光フィルタ27、可変遅延器28を備えた切替用光線路
29を両ビームスプリッタ22にわたって接続するととも
に、その一方のビームスプリッタ22には光電変換器30と
パルスモニタ31を、その他方のビームスプリッタ22には
電光変換器32とパルス発生器33をそれぞれ接続する。
Next, as shown in FIG. 4, a switching optical line provided with a variable optical attenuator 26, a variable transmission wavelength type optical filter 27, and a variable delay device 28.
29 is connected across both beam splitters 22, a photoelectric converter 30 and a pulse monitor 31 are connected to one of the beam splitters 22, and an electro-optical converter 32 and a pulse generator 33 are connected to the other beam splitter 22. .

第4図において、光フィルタ27が現用光線路20の波長の
光を透過させないものとすれば(このとき可変光減衰器
26の減衰量はゼロ)、切替用光線路29の通過光による現
用光への干渉が抑制できる。
In FIG. 4, it is assumed that the optical filter 27 does not transmit light of the wavelength of the working optical line 20 (at this time, the variable optical attenuator is used).
The attenuation amount of 26 is zero), and the interference of the passing light of the switching optical line 29 with the working light can be suppressed.

一方、上記光フィルタ27が、位相差測定用の波長の光を
透過させるものであるとき、その波長のパルスをモニタ
することにより、上記線路部21における遅延時間τ
切替用光線路29における遅延時間τとの差、すなわち
Δτが測定できる。
On the other hand, when the optical filter 27 transmits the light of the wavelength for phase difference measurement, the delay time τ 1 in the line portion 21 and the switching optical line 29 in the line portion 21 are monitored by monitoring the pulse of the wavelength. The difference from the delay time τ 2 , that is, Δτ can be measured.

この遅延期間差測定用の光の波長として、局にある現用
光検知器が無感度であるのものを使用すれば、現用光線
路20内の光に悪影響を及ぼすことがない。
As the wavelength of the light for measuring the delay period difference, if the active photodetector in the station is insensitive, the light in the active optical line 20 is not adversely affected.

例えば、現用光波長を0.85μmとした場合、その光検知
器としてシリコンダイオードが使用されるが、この際、
遅延時間差測定を1.3μmで行なえば、シリコンはこの
波長で感度がなく、影響がない。
For example, when the working light wavelength is 0.85 μm, a silicon diode is used as the photodetector.
If the delay time difference measurement is performed at 1.3 μm, silicon is not sensitive at this wavelength and has no effect.

つぎに切替用光線路29の可変遅延器28を介して光路長差
による位相差が補償できるとき、これを実施する。
Next, when the phase difference due to the optical path length difference can be compensated through the variable delay device 28 of the switching optical line 29, this is carried out.

この際の可変遅延器28としては、第5図に例示のごと
く、摺動可能な入力側光ファイバ34、出力側光ファイバ
35と、多重反射用の反射ミラー36等を備えたものが考え
られ、この図示のものは短い光路長差を正確に補償する
のに適する。
As the variable delay device 28 at this time, as shown in FIG. 5, the slidable input side optical fiber 34 and the output side optical fiber 34 can be used.
It is conceivable that the device 35 and a reflecting mirror 36 for multiple reflection are provided, and this one shown in the drawing is suitable for accurately compensating for a short optical path length difference.

その他、例えば光路長差が100mの場合、100回の多重反
射を経験したものでも1回当りの光路長として1mが必要
となり、実際上、100mもの長い光路長差を補償すること
は困難であるが、このような場合、光取り出し用のタッ
プを介して複数個の上記可変遅延器28を所定間隔ごとに
配置すればよい。
In addition, for example, if the optical path length difference is 100 m, even if one has experienced multiple reflections 100 times, 1 m is required as the optical path length per time, and it is actually difficult to compensate for a long optical path difference of 100 m. However, in such a case, the plurality of variable delay devices 28 may be arranged at predetermined intervals via the taps for extracting light.

上記のように位相差を補償した後、ビームスプリッタ22
から光電変換器30などの遅延時間差測定系を取り外し、
さらに切替用光線路29における可変光減衰器26の減衰量
を充分大きくして、光フィルタ27の波長特性を現用波長
が透過できる状態に切り替える。
After compensating for the phase difference as described above, the beam splitter 22
Remove the delay time difference measurement system such as photoelectric converter 30 from
Further, the amount of attenuation of the variable optical attenuator 26 in the switching optical line 29 is made sufficiently large to switch the wavelength characteristic of the optical filter 27 to a state where the working wavelength can be transmitted.

かかる透過波長を切り替えるものとしては、回折格子、
干渉膜フィルタなど、波長透過特性が入射角依存性をも
つものに対し、これらと光ファイバとの位置を相対的に
可動できるタイプがあげられる。
For switching the transmission wavelength, a diffraction grating,
There is a type in which the position of these and the optical fiber can be moved relative to an optical filter such as an interference film filter whose wavelength transmission characteristic has an incident angle dependency.

例えば、第6図のごとく入力側光ファイバア37、出力側
光ファイバ38と回転式回折格子39とが組み合わされたも
のがあげられる。
For example, as shown in FIG. 6, a combination of an input side optical fiber 37, an output side optical fiber 38 and a rotary diffraction grating 39 can be cited.

このとき、光フィルタ27の切替によるパワー変動は可変
光減衰器26の減衰量により抑制される。
At this time, the power fluctuation due to the switching of the optical filter 27 is suppressed by the attenuation amount of the variable optical attenuator 26.

したがって、上記切替用光線路29における可変光減衰器
26の減衰量をゼロとすれば、局における受光端では現用
光線路20、切替用光線路29を通過した二つの光を同時に
受光することになる。
Therefore, the variable optical attenuator in the switching optical line 29 is
If the attenuation amount of 26 is set to zero, the light receiving end of the station simultaneously receives the two lights that have passed through the working optical line 20 and the switching optical line 29.

以下は第7図のごとく、前記線路部21にある可変光減衰
器24の減衰量を大きくし当該線路部21を除去することに
より切替用光線路29のみとし、その切替用光線路29に前
記と同様の理由でビームスプリッタ22に折返し端末44を
設ける。
As shown in FIG. 7, the variable optical attenuator 24 in the line portion 21 is increased in amount and the line portion 21 is removed so that only the switching optical line 29 is provided. The beam splitter 22 is provided with the folding terminal 44 for the same reason.

かくて所定の無瞬断切替が完了する。Thus, the predetermined hitless switching is completed.

『発明の効果』 以上説明した通り、本発明方法では位相差測定用機器を
用いて切替対象区間の線路部と切替用光線路との光路長
差を測定し、その光路長差によって生じる位相差を補償
するが、当該位相差測定用機器は、これを所定の測定箇
所に挿入して光路長差を測定した後、その測定箇所から
取り外して他の測定箇所に使用できるから、光線路を構
成している複数心の光ケーブルを複数本切り替えるとし
ても、上記位相差測定用機器は一式あれば足り、高価な
位相差測定用機器を多数取り揃えるといった不経済が生
じない。
[Effects of the Invention] As described above, in the method of the present invention, the optical path length difference between the line portion of the switching target section and the switching optical line is measured using the phase difference measuring device, and the phase difference caused by the optical path length difference is measured. However, since the phase difference measuring device can be inserted into a predetermined measurement point to measure the optical path length difference and then removed from the measurement point to be used for another measurement point, the optical path is configured. Even if a plurality of optical cables having a plurality of fibers are switched, only one set of the above-mentioned phase difference measuring device is required, and the uneconomical situation of preparing a large number of expensive phase difference measuring devices does not occur.

一方、可変遅延器は、これを切替用光線路へ挿入する場
合においてそれぞれ必要であるが、可変遅延器は単一の
光部品であるので安価であり、また、同一ルートの切替
が複数回発生しても、上記光部品は共用できる。
On the other hand, a variable delay unit is required when inserting it into the switching optical line, but it is inexpensive because it is a single optical component, and switching of the same route occurs multiple times. However, the above optical components can be shared.

その他、可変光フィルタも安価に構成でき、切替用光線
路へ挿入するだけでよいから、経済的負担が軽い。
In addition, the variable optical filter can be constructed at a low cost and only needs to be inserted into the switching optical line, so that the economical burden is light.

ゆえに、本発明方法により光線路を無瞬断で切り替える
ときは、軽微な付加コストで当該切替を経済的に行ない
得る。
Therefore, when the optical line is switched without interruption by the method of the present invention, the switching can be economically performed at a slight additional cost.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第7図は本発明方法の一実施例を示したもので
あり、第1図は切替前における光線路の説明図、第2図
は上記光線路のビームスプリッタに設けられた折返し端
末の説明図、第3図はその折返し端末における出力側パ
ルスの合成パワー状況を示した説明図、第4図は本発明
方法における位相差測定の一例を示した説明図、第5図
は可変遅延器の一例を略示した説明図、第6図は光フィ
ルタの一例を略示した説図、第7図は光線路の切替完了
状態を示した説明図、第8図は光線路切替の概要を示し
た説明図、第9図は従来における光線路切替用方法を示
した説明図である。 20……現用光線路 21……切替対象区間の線路部 22……光素子たるビームスプリッタ 23、44……折返し端末 24、25……可変光減衰器 26……可変光減衰器 27……光フィルタ 28……可変遅延器 29……切替用光線路 30……光電変換器 31……パルスモータ 32……電光変換器 33……パルス発生器
1 to 7 show an embodiment of the method of the present invention. FIG. 1 is an explanatory view of an optical line before switching, and FIG. 2 is a folded portion provided on a beam splitter of the optical line. FIG. 3 is an explanatory view of a terminal, FIG. 3 is an explanatory view showing a combined power state of output side pulses in the folded terminal, FIG. 4 is an explanatory view showing an example of phase difference measurement in the method of the present invention, and FIG. FIG. 6 is a schematic diagram showing an example of a delay device, FIG. 6 is a schematic diagram showing an example of an optical filter, FIG. 7 is an explanatory diagram showing a switching completion state of an optical line, and FIG. FIG. 9 is an explanatory diagram showing an outline, and FIG. 9 is an explanatory diagram showing a conventional optical line switching method. 20 …… Current optical line 21 …… Line part of the section to be switched 22 …… Beam splitter which is an optical element 23,44 …… Folding terminal 24,25 …… Variable optical attenuator 26 …… Variable optical attenuator 27 …… Optical Filter 28 …… Variable delay device 29 …… Switching optical line 30 …… Photoelectric converter 31 …… Pulse motor 32 …… Electronic converter 33 …… Pulse generator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可変光減衰器を備えた線路部とその両隣に
ある各線路部とが、これらの各端末間に挿入された光合
分波用の光素子を介して接続されているとともに、可変
光減衰器を備えた現用光信号の折り返し端末が、各合分
波用光素子にそれぞれ接続されている現用光線路におい
て、光パルスの発生手段と位相差測定手段とを用いて、
現用光線路における可変光減衰器付き線路部すなわち切
替対象区間の線路部を、可変光減衰器と可変光フィルタ
と可変遅延器とを備えた切替用光線路に切り替える方法
であること、 上記において切替対象区間の線路部を切替用光線路に切
り替えるときに、 はじめの工程として、 各折り返し端末の減衰量をこれらに備えつけられた可変
光減衰器により大きくして、該各折り返し端末を各合分
波用光素子から切り離すこと、 つぎの工程として、 自己の可変光フィルタ、可変光減衰器を介して測定用波
長光透過、現用波長光不透過の状態にされた切替用光線
路を両光合分波用素子にわたって接続するとともに、光
パルス発生手段を一方の合分波用光素子、位相差測定手
段を他方の合分波用光素子にそれぞれ接続し、かつ、現
用波長光が一方の合分波用光素子を経由して位相差測定
手段に入力し、光パルス発生手段で発生させた測定用波
長光が他方の合分波用光素子、切替用光線路、一方の合
分波用光素子を経由して位相差測定手段に入力したとき
に、これら両波長光の位相差を位相差測定手段により測
定して、当該位相差を切替用光線路に備えつけられた可
変遅延器により補償すること、 その後の工程として、 光パルス発生手段、位相差測定手段を各合分波用光素子
から取り外し、かつ、切替用光線路を、これに備えつけ
られた可変光フィルタ、可変光減衰器により現用波長光
透過の状態にすること、 さらに、その後の工程として、 切替対象区間の線路部の減衰量をこれらに備えつけられ
た可変光減衰器により大きくして、当該線路部を両光合
分波用光素子間から取り除き、かつ、該各光合分波用光
素子に現用光信号の折り返し端末を接続することを特徴
とする光線路の無瞬断切替方法。
1. A line portion provided with a variable optical attenuator and respective line portions on both sides thereof are connected via an optical element for optical multiplexing / demultiplexing inserted between these respective terminals, Folding terminal of the working optical signal provided with a variable optical attenuator, in the working optical line respectively connected to each of the multiplexing and demultiplexing optical element, using the optical pulse generating means and the phase difference measuring means,
A method of switching a line part with a variable optical attenuator in a working optical line, that is, a line part of a switching target section to a switching optical line provided with a variable optical attenuator, a variable optical filter, and a variable delay device. When switching the line section of the target section to the switching optical line, the first step is to increase the attenuation of each return terminal by the variable optical attenuator installed in them, Separated from the optical device for use as the next step, the optical fiber for switching, which is in the state of transmitting the measuring wavelength light and not transmitting the working wavelength light through its own variable optical filter and variable optical attenuator, is used for both optical multiplexing and demultiplexing. The optical pulse generation means is connected to one of the multiplexing / demultiplexing optical elements and the phase difference measuring means is connected to the other of the multiplexing / demultiplexing optical elements, and the working wavelength light is Wavelength measuring light generated by the optical pulse generating means is input to the phase difference measuring means via the wave optical element, and the other wavelength division optical element, switching optical line, one wavelength division optical When input to the phase difference measuring means via the element, the phase difference between these two wavelength lights is measured by the phase difference measuring means, and the phase difference is compensated by the variable delay device provided in the switching optical line. As a subsequent step, the optical pulse generating means and the phase difference measuring means are detached from each optical element for multiplexing and demultiplexing, and the switching optical line is currently used by the variable optical filter and the variable optical attenuator provided for it. In the state where the wavelength light is transmitted, and in the subsequent process, increase the attenuation of the line sections in the section to be switched by the variable optical attenuator installed in these sections, and increase the line sections for both optical multiplexing and demultiplexing light. Removed from between the elements, and Hitless switching method of the optical line, characterized in that to connect the folded terminal active optical signals to the optical multiplexing and demultiplexing optical element.
JP60221476A 1985-10-04 1985-10-04 Switching the optical line without interruption Expired - Lifetime JPH0669167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60221476A JPH0669167B2 (en) 1985-10-04 1985-10-04 Switching the optical line without interruption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221476A JPH0669167B2 (en) 1985-10-04 1985-10-04 Switching the optical line without interruption

Publications (2)

Publication Number Publication Date
JPS6281824A JPS6281824A (en) 1987-04-15
JPH0669167B2 true JPH0669167B2 (en) 1994-08-31

Family

ID=16767311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221476A Expired - Lifetime JPH0669167B2 (en) 1985-10-04 1985-10-04 Switching the optical line without interruption

Country Status (1)

Country Link
JP (1) JPH0669167B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234819A (en) * 1988-03-16 1989-09-20 Fujitsu Ltd Light delay generator
US5280376A (en) * 1991-05-29 1994-01-18 Mitsubishi Denki Kabushiki Kaisha Light transmission system
SG52501A1 (en) * 1992-10-21 1998-09-28 At & T Corp Cascaded distortion compensation for analog optical systems
EP0637879A1 (en) * 1993-04-16 1995-02-08 Nec Corporation Hitless switching apparatus and method for optical network
JP4910129B2 (en) * 2006-04-14 2012-04-04 株式会社スターエナジー Long burner
JP4959448B2 (en) * 2007-07-09 2012-06-20 日本電信電話株式会社 Communication path switching method and control device
JP2009017498A (en) * 2007-07-09 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Detour method and detour device for communication path
JP4959447B2 (en) * 2007-07-09 2012-06-20 日本電信電話株式会社 Communication path switching method and control device
KR101105031B1 (en) * 2009-11-05 2012-01-16 재단법인 포항산업과학연구원 Burner for burning dual fuel
JP6047444B2 (en) * 2013-04-19 2016-12-21 日本電信電話株式会社 Optical communication line switching device and optical communication line switching method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133732A (en) * 1981-02-10 1982-08-18 Nec Corp Optical signal switching device
JPS59229938A (en) * 1983-06-10 1984-12-24 Nec Corp Phase synchronization system for two-route optical communication

Also Published As

Publication number Publication date
JPS6281824A (en) 1987-04-15

Similar Documents

Publication Publication Date Title
US5321541A (en) Passive optical communication network with broadband upgrade
US5285305A (en) Optical communication network with passive monitoring
US6708004B1 (en) Method and apparatus for reducing crosstalk between a monitoring channel and a data channel in a WDM optical communication system
EP2360858B1 (en) Method of switching optical path, and apparatus thereof
JPH03113930A (en) Optical fiber linkage test device of data communication network
JPH0669167B2 (en) Switching the optical line without interruption
US20050271321A1 (en) Test system of beam path for searching trouble in beam path from user optical terminal side
CN110176957A (en) A kind of device and method of high-precision, Larger Dynamic range monitoring WDM-PON failure
CN105959058A (en) Device and method for rapidly detecting time division multiplexing optical network link fault
US4430572A (en) Device for separating two light signals emitted by sources having different wavelengths and transmitted in a single optical fiber
JP4840869B2 (en) Optical fiber current sensor device
JPH0458736B2 (en)
JP4383162B2 (en) Optical branch line monitoring system
US5263109A (en) Optical transmission paths and methods of measuring their optical transmission times
JPH10327104A (en) Optical fiber fault point detector
JPH0669169B2 (en) Switching the optical line without interruption
JP4015091B2 (en) Optical line monitoring device
JP2009017498A (en) Detour method and detour device for communication path
KR100917562B1 (en) System for managing the optical subscriber loops
JPH0669168B2 (en) Switching the optical line without interruption
CN1248433C (en) Burst mode wavelength manager
CN117192703B (en) Optical chip, laser radar and mobile device
CN116773003A (en) Michelson optical fiber interferometer array based on time division multiplexing technology and implementation method
JP3376957B2 (en) Apparatus and method for measuring chromatic dispersion of optical fiber
JPH1127211A (en) Branch optical line checking device