JPH0458736B2 - - Google Patents

Info

Publication number
JPH0458736B2
JPH0458736B2 JP58152720A JP15272083A JPH0458736B2 JP H0458736 B2 JPH0458736 B2 JP H0458736B2 JP 58152720 A JP58152720 A JP 58152720A JP 15272083 A JP15272083 A JP 15272083A JP H0458736 B2 JPH0458736 B2 JP H0458736B2
Authority
JP
Japan
Prior art keywords
optical
fiber cable
points
optical fiber
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58152720A
Other languages
Japanese (ja)
Other versions
JPS6043929A (en
Inventor
Kunio Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58152720A priority Critical patent/JPS6043929A/en
Publication of JPS6043929A publication Critical patent/JPS6043929A/en
Publication of JPH0458736B2 publication Critical patent/JPH0458736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/258Distortion or dispersion compensation treating each wavelength or wavelength band separately
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To propagate an optical signal without phase difference between plural optical signals by using the phase difference between monotoring optical signals having two kinds of wavelengths, calculating the optical transmission path length between two points, and causing delays different in plural optical signals in response to the optical transmission path length. CONSTITUTION:Three optical signals modulated by wavelengths lambda1, lambda2 and lambda3 are made incident to an optical fiber cable 100. The pulse of a prescribed period is generated in a pulse generator 101. Electrooptic converting circuits 102 and 103 have output wavelengths of lambda4 and lambda5. An optical synthesizer 104 inputs those signals and an optical fiber cable 105 is connected to the output terminal. The optical signals having the wavelengths lambda1, lambda2 and lambda3 from an optical branching filter 106 are inputted to variable light delay elements 107, 108 and 109. The optical signals having the wavelengths lambda4 and lambda5 is led to photoelectric converting circuits 110, 111 and a control circuit 12 decides the amount of delay of elements 107, 108 and 109 depending on the said signal. The output of the elements 107, 108 and 109 is led to an optical synthesizer 113.

Description

【発明の詳細な説明】 本発明は波長多重された複数の光信号を伝送、
交換する光通信網における光分散補償方式に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention transmits a plurality of wavelength-multiplexed optical signals.
This paper relates to an optical dispersion compensation method in an optical communication network to be exchanged.

今日、光フアイバケーブルを伝送路とする光フ
アイバーケーブル伝送システムは細径、広帯域、
低損失、耐電磁誘導性等の多くの利点を有するこ
とから従来の同軸ケーブルによる伝送システムに
代わり公衆、専用を問わず各種の通信網に導入が
行なわれている。このような通信網におけるもう
一つの重要な構成要素である交換機においては光
フアイバーケーブルによつて送られて来た光信号
を、電気信号に変換した後に交換接続を行ない、
再び光信号に変換して光フアイバーケーブルに送
出しているのが現状である。
Today, optical fiber cable transmission systems that use optical fiber cable as a transmission route are small diameter, wideband,
Because it has many advantages such as low loss and resistance to electromagnetic induction, it has been introduced into various communication networks, both public and private, in place of conventional coaxial cable transmission systems. Switching equipment, which is another important component in such communication networks, converts optical signals sent through optical fiber cables into electrical signals and then connects them to the switch.
Currently, the signal is converted back into an optical signal and sent out over an optical fiber cable.

しかしながら近年、たとえば電子通信学会技術
研究報告vol.78、73〜79頁「空間分割光交換機の
一試み」等に見られるように光フアイバーケーブ
ルによつて送られて来た光信号を光のまま交換接
続し、再び光フアイバーケーブルに送出する光交
換機の研究開発が進められており、近い将来光信
号を光のまま伝送、交換することのできる光通信
網の出現が予想される。
However, in recent years, as seen in the Institute of Electronics and Communication Engineers Technical Report vol. 78, pp. 73-79, "An Attempt at Space-Division Optical Switching", optical signals sent via optical fiber cables have been Research and development is progressing on optical switching equipment that exchanges and connects signals and sends them out again to optical fiber cables, and it is expected that in the near future an optical communication network that will be able to transmit and exchange optical signals as they are will emerge.

このような光通信網においては、相互に時間的
な関連を有する複数の情報を互いに異なる複数の
波長によつて変調し、1つの光伝送路上を多重伝
送することによつて光伝送路を有効利用すること
が考えられる。
In such optical communication networks, multiple pieces of information that are temporally related to each other are modulated using multiple different wavelengths, and multiplexed transmission is performed on one optical transmission line to make the optical transmission line effective. It is possible to use it.

しかしながら一般に光フアイバケーブルにおい
ては構造分散、材料分散等によつて各波長毎に伝
播速度が異なる為に、光フアイバケーブルを伝播
するにつれて前記複数の情報間に位相差が生じる
という欠点を有しており、更にこの位相差は伝送
路の距離に依存する為に、光通信網においては光
伝送路が設定される毎に異なつた値を示す。
However, optical fiber cables generally have different propagation speeds for each wavelength due to structural dispersion, material dispersion, etc., so they have the disadvantage that a phase difference occurs between the plurality of pieces of information as they propagate through the optical fiber cable. Furthermore, since this phase difference depends on the distance of the transmission path, it exhibits a different value each time an optical transmission path is set up in an optical communication network.

本発明の目的は波長多重された複数の光信号を
伝送、交換する光通信網において、光伝送路が設
定された任意の2点間を、前記複数の光信号間に
位相差を生ずることなく伝播することのできる光
分散補償方式を提供することにある。
An object of the present invention is to transmit and exchange a plurality of wavelength-multiplexed optical signals between any two points on which an optical transmission line is set up in an optical communication network, without causing a phase difference between the plurality of optical signals. The object of the present invention is to provide an optical dispersion compensation system that can propagate.

本発明によれば複数の情報によつてそれぞれ互
いに波長の異なつた複数の光を変調且つ合波する
ことによつて得られた光信号を情報と波長との対
応を保つたまま伝送並びに交換を行なう光通信網
において径路選択の行なわれた任意の2点間の一
端から前記複数の光とは異なる第1および第2の
波長によつて変調されたモニタ用光信号を送出
し、前記2点間の他端に得られた前記第1の波長
および第2の波長を有するモニタ用光信号間の位
相差によつて前記2点間の光伝送路長を算出し前
記光伝送路長に応じて前記複数の光信号に対して
それぞれ異なる遅延を与える光分散補償方式が得
られる。
According to the present invention, optical signals obtained by modulating and combining multiple pieces of light having different wavelengths using multiple pieces of information can be transmitted and exchanged while maintaining the correspondence between information and wavelength. A monitoring optical signal modulated by first and second wavelengths different from those of the plurality of lights is transmitted from one end between any two points at which a route has been selected in an optical communication network, and calculating the optical transmission path length between the two points based on the phase difference between the monitoring optical signals having the first wavelength and the second wavelength obtained at the other end of the optical transmission path; As a result, an optical dispersion compensation system can be obtained which gives different delays to the plurality of optical signals.

更に本発明によれば複数の情報によつてそれぞ
れ互いに波長の異なつた複数の光を変調且つ合波
することによつて得られた光信号を、情報と波長
との対応を保つたまま伝送並びに交換する光通信
網において径路選択の行なわれた任意の2点間の
一端から前記複数の光とは異なる波長を有するモ
ニタ用光信号を入射し、前記2点間の他端にて反
射することによつて前記2点間の一端に得られた
反射モニタ用光信号と前記入射モニタ用光信号と
の位相差によつて前記2点間の光伝送路長を算出
し前記光伝送路長に応じて前記複数の光信号に対
してそれぞれ異なる遅延を与える光分散補償方式
が得られる。
Furthermore, according to the present invention, an optical signal obtained by modulating and combining a plurality of lights each having a different wavelength using a plurality of pieces of information can be transmitted and multiplexed while maintaining the correspondence between the information and the wavelength. Injecting a monitoring optical signal having a wavelength different from the plurality of lights from one end between any two points where a path has been selected in the optical communication network to be exchanged, and reflecting it at the other end between the two points. The optical transmission path length between the two points is calculated based on the phase difference between the reflected monitoring optical signal obtained at one end between the two points and the incident monitoring optical signal, and the optical transmission path length is calculated as the optical transmission path length. Accordingly, an optical dispersion compensation system can be obtained that provides different delays to the plurality of optical signals.

次にこの発明について図面を参照して説明す
る。
Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例を示す図であ
る。
FIG. 1 is a diagram showing a first embodiment of the present invention.

第1図によれば本発明の第1の実施例は、一端
に波長λ1,λ2,λ3によつて変調された3つの光信
号を入射される光フアイバケーブル100と、一
定周期のパルス列を発生するパルス発生回路10
1と、このパルス発生回路101の出力に入力を
それぞれ接続されそれぞれλ4,λ5の出力波長を有
する電気−光変換回路102,103と、この電
気−光変換回路102,103の出射端に第1、
第2の入射端を、前記光フアイバケーブル100
の他端に第3の入射端をそれぞれ導びかれた光合
波器104とこの光合波器104の出射端に一端
を接する光フアイバケーブル105と、この光フ
アイバケーブル105の他端に入射端を接する光
分波器106と、この光分波器106の波長λ1
λ2,λ3の光信号を出射する第1、第2、第3の出
射端にそれぞれ一端を導びかれた可変光遅延素子
107,108,109と、前記光分波器106
の波長λ4,λ5の光信号を出射する第4、第5の出
射端にそれぞれ入射端を導びかれた光−電気変換
回路110,111と、この光−電気変換回路1
10,111の出力にそれぞれ第1、第2の入力
を接続されこの2つの入力信号に応じて前記可変
光遅延素子107,108,109の遅延量を定
める制御回路112と、前記可変光遅延素子10
7,108,109の他端にそれぞれ第1、第
2、第3の入射端を接する光合波器113と、こ
の光合波器113の出射端に一端を接する光フア
イバケーブル114とを含む。
According to FIG. 1, the first embodiment of the present invention comprises an optical fiber cable 100 having one end injected with three optical signals modulated by wavelengths λ 1 , λ 2 , and λ 3 , and Pulse generation circuit 10 that generates a pulse train
1, electrical-to-optical conversion circuits 102 and 103 whose inputs are respectively connected to the output of this pulse generation circuit 101 and have output wavelengths of λ 4 and λ 5 , respectively; First,
The second input end is connected to the optical fiber cable 100.
An optical multiplexer 104 having a third input end led to the other end, an optical fiber cable 105 having one end in contact with the output end of the optical multiplexer 104, and an input end connected to the other end of the optical fiber cable 105. The adjacent optical demultiplexer 106 and the wavelength λ 1 of this optical demultiplexer 106,
variable optical delay elements 107, 108, 109 each having one end guided to the first, second, and third output ends for outputting optical signals of λ 2 and λ 3 ; and the optical demultiplexer 106.
optical-to-electrical conversion circuits 110 and 111 whose input ends are respectively guided to fourth and fifth output ends that output optical signals with wavelengths λ 4 and λ 5 , and this optical-to-electrical conversion circuit 1
a control circuit 112 having first and second inputs connected to the outputs of the variable optical delay elements 10 and 111, respectively, and determining the amount of delay of the variable optical delay elements 107, 108, and 109 according to these two input signals; 10
It includes an optical multiplexer 113 whose first, second, and third input ends are in contact with the other ends of the optical multiplexers 7, 108, and 109, respectively, and an optical fiber cable 114 whose one end is in contact with the output end of the optical multiplexer 113.

第1図において光フアイバケーブル100の一
端に入射した波長λ1,λ2,λ3を有する光信号は、
光合波器104を経て光フアイバケーブル105
の一端に入射され光フアイバケーブル105内を
伝播した後に光フアイバケーブル105の他端に
到達する。
In FIG. 1, the optical signals having wavelengths λ 1 , λ 2 , and λ 3 incident on one end of the optical fiber cable 100 are as follows:
Optical fiber cable 105 via optical multiplexer 104
The light enters one end of the optical fiber cable 105, propagates within the optical fiber cable 105, and then reaches the other end of the optical fiber cable 105.

一般に光フアイバーケーブル105は構造分
散、材料分散等によつて各波長毎に異なつた伝播
速度を有する。このため光フアイバケーブル10
5の線路長l、光フアイバケーブル105の波長
λ1,λ2,λ3における伝播速度をそれぞれv(λ1)、
v(λ2)、v(λ3)とすると、光フアイバケーブル
105の他端では波長λ1を有する光信号と波長λ2
を有する光信号との間には T12=l/v(λ1)−v(λ2) ……(1) の位相差が生じる。同じように波長λ1を有する光
信号と波長λ3を有する光信号との間には T13=l/v(λ1)−v(λ3) ……(2) の位相差が生じることとなる。
Generally, the optical fiber cable 105 has different propagation velocities for each wavelength due to structural dispersion, material dispersion, and the like. Therefore, the optical fiber cable 10
5, the line length l and the propagation speed at the wavelengths λ 1 , λ 2 , and λ 3 of the optical fiber cable 105 are respectively v(λ 1 ),
When v(λ 2 ) and v(λ 3 ), at the other end of the optical fiber cable 105, an optical signal having a wavelength λ 1 and an optical signal having a wavelength λ 2
A phase difference of T 12 =l/v(λ 1 )−v(λ 2 ) (1) occurs between the optical signal and the optical signal having the following. Similarly, between an optical signal having wavelength λ 1 and an optical signal having wavelength λ 3 , a phase difference of T 13 =l/v(λ 1 )−v(λ 3 ) ……(2) occurs. becomes.

このようにして光フアイバケーブル105の他
端に得られた波長λ1,λ2,λ3を有する光信号は光
分波器106によつて分波された後にそれぞれ可
変光遅延素子107,108,109を経て光合
波器113の第1、第2、第3の入射端に加えら
れる。波長λ1,λ2,λ3を有する光信号は更に合波
器113によつて合波された後に光フアイバケー
ブル114の一端に送出される。
The optical signals having wavelengths λ 1 , λ 2 , and λ 3 thus obtained at the other end of the optical fiber cable 105 are demultiplexed by an optical demultiplexer 106 and then transferred to variable optical delay elements 107 and 108, respectively. , 109 and are applied to the first, second, and third input ends of the optical multiplexer 113. The optical signals having wavelengths λ 1 , λ 2 , and λ 3 are further multiplexed by a multiplexer 113 and then sent to one end of an optical fiber cable 114 .

第1図に示した本発明の第1の実施例において
は、更にパルス発生回路101の出力を電気−光
変換回路102,103によつてそれぞれ波長
λ4,λ5を有する光信号に変換した後に光合波器1
04を通して光フアイバケーブル105の一端に
送出する。このようにして光フアイバケーブル1
05を伝播した波長λ4,λ5を有する光信号は光分
波器106によつて分波された後に光−電気変換
回路110,111によつてそれぞれ電気信号に
変換され制御回路112の2つの入力に加えられ
る。ここで光フアイバケーブル105の波長λ4
λ5における伝播速度v(λ4),v(λ5)が既知であ
れば制御回路112の入力に加えられる2つの電
気信号間の位相差Tによつて光フアイバケーブル
105の線路長lを次式のように算出することが
できる。
In the first embodiment of the present invention shown in FIG. 1, the output of the pulse generation circuit 101 is further converted into optical signals having wavelengths λ 4 and λ 5 by electro-optical conversion circuits 102 and 103, respectively. Later optical multiplexer 1
04 to one end of the optical fiber cable 105. In this way, the optical fiber cable 1
The optical signals having wavelengths λ 4 and λ 5 propagated through 05 are demultiplexed by the optical demultiplexer 106 and then converted into electrical signals by the optical-to-electrical conversion circuits 110 and 111, respectively. added to one input. Here, the wavelength λ 4 of the optical fiber cable 105,
If the propagation velocities v(λ 4 ) and v(λ 5 ) at λ 5 are known, the line length l of the optical fiber cable 105 can be determined by the phase difference T between the two electrical signals applied to the input of the control circuit 112. It can be calculated as shown in the following formula.

l={v(λ4)−v(λ5)}T ……(3) 制御回路112は第(3)式より求められた線路長
lから第(1)、(2)式を用いて位相差T12,T13を算
出し可変遅延素子108,109の遅延量をそれ
ぞれT12,T13に設定する。このようにして可変
光遅延素子107,108,109の他端に得ら
れる波長λ1,λ2,λ3を有する光信号の位相を合わ
せることができる。
l={v( λ4 )−v( λ5 )}T...(3) The control circuit 112 uses equations (1) and (2) from the line length l obtained from equation (3). Phase differences T 12 and T 13 are calculated, and the delay amounts of variable delay elements 108 and 109 are set to T 12 and T 13 , respectively. In this way, the phases of the optical signals having wavelengths λ 1 , λ 2 , λ 3 obtained at the other ends of the variable optical delay elements 107 , 108 , 109 can be matched.

第1図では光合波器104の出射端から光分波
器106に到る光伝送路として光フアイバケーブ
ル105のみを示したがたとえば電子通信学会技
術研究報告vol.78、73〜79頁「空間分割光交換機
の一試み」に見られるような複数の光交換機や数
リンクの光フアイバケーブルによつて構成されそ
の時のトラヒツクに応じて異なる接続経路が選択
される場合においても常に光分散によつて複数の
波長多重された光信号間に生ずる位相差を補整す
ることができる。
In FIG. 1, only the optical fiber cable 105 is shown as an optical transmission path from the output end of the optical multiplexer 104 to the optical demultiplexer 106. Even in cases where the system is configured with multiple optical switches or several links of optical fiber cables, and different connection routes are selected depending on the traffic at the time, as seen in "An Attempt at a Split Optical Switch," optical dispersion is always used. It is possible to compensate for the phase difference that occurs between a plurality of wavelength-multiplexed optical signals.

第2図は第1図に示した可変光遅延素子10
7,108,109の具体例を示す図である。第
2図によれば可変光遅延素子は、第1の入力を光
フアイバケーブル200の一端に、第1の出力を
光フアイバケーブル201の一端にそれぞれ接続
された導波形光スイツチ202と、この導波形光
スイツチ202の第2の入力および第2の出力に
それぞれ一端を接続された光フアイバケーブル2
03,204と、この光フアイバケーブル20
3,204の他端に第1の出力および第1の入力
をそれぞれ接続された導波形光スイツチ205
と、この導波形光スイツチ205の第2の入力お
よび第2の出力にそれぞれ一端を接続された光フ
アイバケーブル206,207と、この光フアイ
バケーブル206,207の他端にそれぞれ第1
の出力および第1の入力を接続された導波形光ス
イツチ208と、この導波形光スイツチ208の
第2の入力および第2の出力にそれぞれ一端を接
続された光フアイバケーブル209,210と、
この光フアイバケーブル209,210の他端に
それぞれ第1の出力および第1の入力を接続され
た導波形光スイツチ211と、この導波形光スイ
ツチ211の第2の入力および第2の出力にそれ
ぞれ一端を接続された光フアイバケーブル21
2,213と、この光フアイバケーブル212,
213の他端にそれぞれ第1の出力および第1の
入力を接続された導波形光スイツチ214と、こ
の導波形光スイツチ214の第2の入力に一端
を、第2の出力に他端をそれぞれ接続された光フ
アイバケーブル215とを含む。
FIG. 2 shows the variable optical delay element 10 shown in FIG.
7, 108, and 109 are diagrams showing specific examples. According to FIG. 2, the variable optical delay element includes a waveguide optical switch 202 having a first input connected to one end of an optical fiber cable 200 and a first output connected to one end of an optical fiber cable 201, and a waveguide optical switch 202 connected to the optical fiber cable 201. an optical fiber cable 2 having one end connected to a second input and a second output of the waveform optical switch 202;
03,204 and this optical fiber cable 20
A waveguide optical switch 205 having a first output and a first input respectively connected to the other end of 3,204.
, optical fiber cables 206 and 207 each have one end connected to the second input and second output of this waveguide optical switch 205, and a first end connected to the other end of this optical fiber cable 206 and 207, respectively.
a waveguide optical switch 208 connected to the output and a first input of the waveguide optical switch 208; and optical fiber cables 209 and 210 each having one end connected to a second input and a second output of the waveguide optical switch 208,
A waveguide optical switch 211 has a first output and a first input connected to the other ends of the optical fiber cables 209 and 210, respectively, and a second input and a second output of the waveguide optical switch 211, respectively. Optical fiber cable 21 connected at one end
2,213 and this optical fiber cable 212,
A waveguide optical switch 214 has a first output and a first input connected to the other end of the waveguide optical switch 213, and one end is connected to the second input and the other end is connected to the second output of the waveguide optical switch 214. and a connected fiber optic cable 215.

第2図に示した導波形光スイツチ202,20
5,208,211,214はそれぞれ制御入力
端子216,217,218,219,220に
加えられる2値の電圧によつて第1の入力と第1
の出力および第2の入力と第2の出力とがそれぞ
れ接続された状態(以後バー状態と称する。)と
第1の入力と第2の出力および第2の入力と第1
の出力とがそれぞれ接続された状態(以後クロス
状態と称する。)との間の切り換えが行なわれる。
このような導波形光スイツチはたとえば電子通信
学会技術研究報告OEQ81−79「単一モード光フア
イバアレイ付1.3μm用L;NbO34×4光スイツ
チ」に記載されている。
Waveguide optical switches 202, 20 shown in FIG.
5, 208, 211, and 214 are connected to the first input and the first
The state in which the output, the second input, and the second output are connected (hereinafter referred to as the bar state), the first input and the second output, and the second input and the first
Switching is performed between a state in which the outputs of the two terminals are connected to each other (hereinafter referred to as a cross state).
Such a waveguide type optical switch is described in, for example, IEICE technical research report OEQ81-79 "1.3 .mu.m L; NbO 3 4.times.4 optical switch with single mode optical fiber array".

第2図に示した可変光遅延素子において導波形
光スイツチ202をバー状態とすると光フアイバ
ケーブル200から導波形光スイツチ202の第
1の入力に入射した光信号は、ほぼ遅延を受けず
に第1の出力から光フアイバケーブル201に送
出される。次に導波形光スイツチ202,205
をそれぞれクロス状態、バー状態に設定すると、
光フアイバケーブル200から導波形光スイツチ
の第1の入力に入射した光信号は光フアイバケー
ブル204−導波形光スイツチ205−光フアイ
バケーブル203を経由して導波形光スイツチ2
02の第1の出力から光フアイバケーブル201
に送出される。したがつてこの場合光フアイバケ
ーブル200から導波形光スイツチ202に入射
した光信号は光フアイバケーブル203,204
の伝播遅延を経た後に光フアイバケーブル201
に送出される。更に導波形光スイツチ202,2
05,208をそれぞれクロス状態、クロス状
態、バー状態に設定すると、光フアイバケーブル
200から入射した光信号は導波形光スイツチ2
02−光フアイバケーブル204−導波形光スイ
ツチ205−光フアイバケーブル207−導波形
光スイツチ208−光フアイバケーブル206−
導波形光スイツチ205−光フアイバケーブル2
03−導波形光スイツチ202を経て光フアイバ
ケーブル201に送出される。この場合の導波形
光スイツチ202の第1の入力から第1の出力に
到る遅延時間は光フアイバケーブル204,20
7,206,203の伝播遅延の和となる。同様
にして第2図に示した可変光遅延素子は制御入力
216,217,218,219,220にそれ
ぞれ2値の制御電圧を印加することによつて遅延
時間を0から5段階の範囲で所望の値に設定する
ことができる。
When the waveguide optical switch 202 is in the bar state in the variable optical delay element shown in FIG. 1 to the optical fiber cable 201. Next, waveguide optical switches 202 and 205
When set to cross state and bar state respectively,
The optical signal input from the optical fiber cable 200 to the first input of the waveguide optical switch is transmitted to the waveguide optical switch 2 via the optical fiber cable 204 - waveguide optical switch 205 - optical fiber cable 203.
fiber optic cable 201 from the first output of 02
will be sent to. Therefore, in this case, the optical signal input from the optical fiber cable 200 to the waveguide optical switch 202 is transmitted to the optical fiber cables 203 and 204.
fiber optic cable 201 after a propagation delay of
will be sent to. Further, waveguide optical switches 202,2
When 05 and 208 are set to a cross state, a cross state, and a bar state, respectively, the optical signal incident from the optical fiber cable 200 is transmitted to the waveguide optical switch 2.
02 - Optical fiber cable 204 - Waveguide optical switch 205 - Optical fiber cable 207 - Waveguide optical switch 208 - Optical fiber cable 206 -
Waveguide optical switch 205-optical fiber cable 2
03-Sent to optical fiber cable 201 via waveguide optical switch 202. In this case, the delay time from the first input to the first output of the waveguide optical switch 202 is
This is the sum of propagation delays of 7, 206, and 203. Similarly, the variable optical delay element shown in FIG. can be set to a value of

第3図は本発明の第2の実施例を示す図であ
る。
FIG. 3 is a diagram showing a second embodiment of the present invention.

第3図において第1図と同一番号を付したもの
は第1図と同一の構成要素を示す。
In FIG. 3, the same numbers as in FIG. 1 indicate the same components as in FIG.

第3図に示した本発明の第2の実施例は第1の
実施例と異なりパルス発生回路101が光フアイ
バケーブルの受信端に設けられている。第3図に
おいてパルス発生回路101の出力は電気−光変
換回路300によつて波長λ4を有する光信号に変
換された後にハーフミラー301、光分波器10
6を通して光フアイバケーブル105の一端に送
出される。この波長λ4を有する光信号は光フアイ
バケーブル105を伝播し光合波器104を経て
光フアイバケーブル302の一端に入射される。
この波長λ4を有する光信号は更に光フアイバケー
ブル302の他端に設けられたミラー303によ
つて反射された後に再び光フアイバケーブル30
2−光合波器104−光フアイバケーブル105
−光分波器106−ハーフミラー301を経由し
て光−電気変換回路304の入射端に到る。この
ようにして光−電気変換回路304の入射端に得
られた波長λ4を有する光信号は、光−電気変換回
路304によつて電気信号に変換された後に制御
回路112の一方の入力に加えられる。制御回路
112はこのようにして得られた電気信号とパル
ス発生回路101の出力との位相差Tに応じて可
変光遅延素子107,108,109の遅延時間
を設定する。この場合光フアイバケーブル105
の波長λ4における伝播速度をv(λ4)とすると、
光フアイバケーブル105の線路長lは次式によ
つて算出することができる。
The second embodiment of the present invention shown in FIG. 3 differs from the first embodiment in that a pulse generating circuit 101 is provided at the receiving end of the optical fiber cable. In FIG. 3, the output of the pulse generation circuit 101 is converted into an optical signal having a wavelength λ 4 by an electrical-optical conversion circuit 300, and then a half mirror 301 and an optical demultiplexer 10
6 to one end of the optical fiber cable 105. This optical signal having the wavelength λ 4 propagates through the optical fiber cable 105, passes through the optical multiplexer 104, and enters one end of the optical fiber cable 302.
This optical signal having the wavelength λ 4 is further reflected by a mirror 303 provided at the other end of the optical fiber cable 302, and then returned to the optical fiber cable 302.
2-Optical multiplexer 104-Optical fiber cable 105
It reaches the input end of the optical-to-electrical conversion circuit 304 via the optical demultiplexer 106 and the half mirror 301. The optical signal having the wavelength λ 4 thus obtained at the input end of the optical-to-electrical conversion circuit 304 is converted into an electrical signal by the optical-to-electrical conversion circuit 304 and then input to one input of the control circuit 112. Added. The control circuit 112 sets the delay times of the variable optical delay elements 107, 108, and 109 according to the phase difference T between the electrical signal obtained in this way and the output of the pulse generation circuit 101. In this case, the optical fiber cable 105
Let v(λ 4 ) be the propagation velocity at the wavelength λ 4 of
The line length l of the optical fiber cable 105 can be calculated using the following equation.

l=1/2v(λ4)T ……(4) 第3図に示した本発明の第2の実施例は第1の
実施例と異なり一組の電気−光、光−電気変換回
路で済むためより経済的に構成することができる
と言う利点を有する。
l=1/2v(λ 4 )T...(4) The second embodiment of the present invention shown in FIG. This has the advantage that it can be constructed more economically.

なお第1図および第3図に示した本発明の第1
および第2の実施例ではいずれも光フアイバケー
ブル105の受信端に光分散を補償する可変光遅
延素子107,108,109を設ける例を示し
たが、例えば第1図に示した本発明の第1の実施
例においてパルス発生回路101、電気−光変換
回路102,103を光フアイバケーブル105
の受信端に、可変光遅延素子107,108,1
09等を光フアイバケーブル105の送信端にそ
れぞれ設けることによつてあらかじめ波長λ1
λ2,λ3を有する光信号に対してそれぞれ光フアイ
バケーブル105で生ずる光分散に対応する位相
差を与えて光フアイバケーブル105に送出して
も同様の効果が得られる。
Note that the first aspect of the present invention shown in FIGS. 1 and 3
In both the second embodiment and the second embodiment, variable optical delay elements 107, 108, and 109 for compensating for optical dispersion are provided at the receiving end of the optical fiber cable 105. In the embodiment 1, the pulse generation circuit 101 and the electrical-to-optical conversion circuits 102 and 103 are connected to an optical fiber cable 105.
variable optical delay elements 107, 108, 1 at the receiving end of
09 etc. at the transmitting end of the optical fiber cable 105, the wavelength λ 1 ,
A similar effect can be obtained by giving optical signals having λ 2 and λ 3 a phase difference corresponding to the optical dispersion occurring in the optical fiber cable 105 and sending them to the optical fiber cable 105.

同様にして第3図に示した本発明の第2の実施
例においてミラー303を光フアイバケーブル1
05の受信端に、可変光遅延素子107,10
8,109、パルス発生回路101等を光フアイ
バケーブル105の送信端にそれぞれ設けること
によつても同様な効果が得られることは明らかで
ある。
Similarly, in the second embodiment of the present invention shown in FIG.
At the receiving end of 05, variable optical delay elements 107, 10
It is clear that the same effect can be obtained by providing the pulse generating circuit 101, 8, 109, etc. at the transmitting end of the optical fiber cable 105, respectively.

以上述べたように本発明によれば波長多重され
た複数の光信号を伝送交換する光通信網におい
て、光伝送路が設定された任意の2点間を、前記
複数の光信号間に位相差を生ずることなく伝播す
ることができる。
As described above, according to the present invention, in an optical communication network that transmits and exchanges a plurality of wavelength-multiplexed optical signals, the phase difference between the plurality of optical signals can be It can be propagated without causing any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す図、第2
図は第1図に示した可変光遅延素子107,10
8,109の具体例を示す図、第3図は本発明の
第2の実施例を示す図である。 図において101はパルス発生回路、102,
103,300は電気−光変換回路、104,1
13は合波器、106は分波器、107,10
8,109は可変光遅延素子、110,111,
304は光−電気変換回路、112は制御回路、
301はハーフミラー、303はミラーをそれぞ
れ表わす。
FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG.
The figure shows variable optical delay elements 107 and 10 shown in FIG.
8 and 109, and FIG. 3 is a diagram showing a second embodiment of the present invention. In the figure, 101 is a pulse generation circuit, 102,
103,300 is an electric-optical conversion circuit, 104,1
13 is a multiplexer, 106 is a demultiplexer, 107, 10
8, 109 are variable optical delay elements, 110, 111,
304 is a photo-electric conversion circuit, 112 is a control circuit,
301 represents a half mirror, and 303 represents a mirror.

Claims (1)

【特許請求の範囲】 1 複数の情報によつてそれぞれ互いに波長の異
なつた複数の光を変調且つ合波することによつて
得られた光信号を情報と波長との対応を保つたま
ま伝送並びに交換を行なう光通信網において径路
選択の行なわれた任意の2点間の一端から前記複
数の光とは異なる第1および第2の波長によつて
変調されたモニタ用光信号を送出し、前記2点間
の他端に得られた前記第1の波長および第2の波
長を有するモニタ用光信号間の位相差によつて前
記2点間の光伝送路長を算出し前記光伝送路長に
応じて前記複数の光信号に対してそれぞれ異なる
遅延を与えることを特徴とする光分散補償方式。 2 複数の情報によつてそれぞれ互いに波長の異
なつた複数の光を変調且つ合波することによつて
得られた光信号を、情報と波長との対応を保つた
まま伝送並びに交換する光通信網において径路選
択の行なわれた任意の2点間の一端から前記複数
の光とは異なる波長を有するモニタ用光信号を入
射し、前記2点間の他端にて反射することによつ
て前記2点間の一端に得られた反射モニタ用光信
号と前記入射モニタ用光信号との位相差によつて
前記2点間の光伝送路長を算出し前記光伝送路長
に応じて前記複数の光信号に対してそれぞれ異な
る遅延を与えることを特徴とする光分散補償方
式。
[Claims] 1. Transmitting and combining an optical signal obtained by modulating and combining a plurality of lights each having a different wavelength using a plurality of pieces of information while maintaining the correspondence between the information and the wavelength. Sending out a monitoring optical signal modulated by first and second wavelengths different from the plurality of lights from one end between any two points where a route has been selected in an optical communication network for exchanging, The length of the optical transmission path between the two points is calculated based on the phase difference between the monitoring optical signals having the first wavelength and the second wavelength obtained at the other end between the two points, and the length of the optical transmission path is calculated between the two points. An optical dispersion compensation system characterized in that a different delay is given to each of the plurality of optical signals depending on the optical signals. 2. An optical communication network that transmits and exchanges optical signals obtained by modulating and combining multiple pieces of light with different wavelengths using multiple pieces of information while maintaining the correspondence between information and wavelength. A monitoring optical signal having a wavelength different from that of the plurality of lights is inputted from one end between any two points where the path selection has been performed in , and is reflected at the other end between the two points. The length of the optical transmission path between the two points is calculated based on the phase difference between the reflection monitoring optical signal obtained at one end between the points and the incident monitoring optical signal, and the length of the optical transmission path between the two points is calculated according to the optical transmission path length. An optical dispersion compensation method that is characterized by giving different delays to optical signals.
JP58152720A 1983-08-22 1983-08-22 System for compensating light dispersion Granted JPS6043929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152720A JPS6043929A (en) 1983-08-22 1983-08-22 System for compensating light dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152720A JPS6043929A (en) 1983-08-22 1983-08-22 System for compensating light dispersion

Publications (2)

Publication Number Publication Date
JPS6043929A JPS6043929A (en) 1985-03-08
JPH0458736B2 true JPH0458736B2 (en) 1992-09-18

Family

ID=15546672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152720A Granted JPS6043929A (en) 1983-08-22 1983-08-22 System for compensating light dispersion

Country Status (1)

Country Link
JP (1) JPS6043929A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677618A (en) * 1985-04-04 1987-06-30 International Business Machines Corporation Method and apparatus for deskewing WDM data transmitted through a dispersive medium
JP2787583B2 (en) * 1988-12-08 1998-08-20 富士通株式会社 Wavelength multiplexed optical signal receiver
JP2827619B2 (en) * 1991-10-21 1998-11-25 日本電気株式会社 Optical repeater transmission system and method
EP1156606A3 (en) * 1991-10-21 2004-02-04 Nec Corporation An optical transmission system
EP0556960A3 (en) * 1992-02-20 1995-02-01 Optical Metrology Ltd Measurement apparatus using heterodyne phase conversion techniques
US5473719A (en) * 1993-11-15 1995-12-05 At&T Corp. Optical dispersion compensator
JP3050299B2 (en) 1997-11-17 2000-06-12 日本電気株式会社 WDM transmission equipment
JP4517423B2 (en) * 1999-12-03 2010-08-04 住友電気工業株式会社 Dispersion compensation module, line switching device, and optical communication system
JP2006054660A (en) * 2004-08-11 2006-02-23 Nippon Telegr & Teleph Corp <Ntt> Optical transmission apparatus and optical transmission system
JP5849123B2 (en) * 2014-04-21 2016-01-27 大学共同利用機関法人自然科学研究機構 Chromatic dispersion compensation method and chromatic dispersion compensation apparatus for broadband optical transmission signal

Also Published As

Publication number Publication date
JPS6043929A (en) 1985-03-08

Similar Documents

Publication Publication Date Title
EP0591042B1 (en) Arrayed-wave guide grating multi/demultiplexer with loop-back optical paths
US5471332A (en) Hitless switching apparatus and method for optical network
JPH03219793A (en) Wavelength division optical exchange
US6956998B2 (en) Compact optical delay lines
US5654812A (en) Light-receiving device, optoelectronic transmission apparatus, and optical demultiplexing method
JPH0458736B2 (en)
US7212705B2 (en) All optical decoding systems for decoding optical encoded data symbols across multiple decoding layers
US7272317B2 (en) Optical multiplexing communication system using ultra high speed signal transmission
US6678080B2 (en) Optical add/drop multiplexer
JP3388947B2 (en) All-optical time division optical pulse demultiplexing circuit
US7130539B2 (en) All optical decoding systems for optical encoded data symbols
US20040208571A1 (en) All optical cross routing using decoding systems for optical encoded data symbols
JP3201566B2 (en) Optical demultiplexing circuit
EP1263156B1 (en) Optical pulse addition device
KR100264950B1 (en) Wavelength-variable light extraction / transmission filter for WDM communication without feedback noise
JP3201564B2 (en) Optical multiplexing circuit
Imaoka et al. Accurate time/frequency transfer method using bi-directional WDM transmission
JPH0119778B2 (en)
JPH04179392A (en) Optical self-routing circuit
JP2669006B2 (en) Optical amplifier
JPS63110828A (en) Wavelength divided multiplex optical communication equipment
JP2004312630A (en) Access system network apparatus
JP3052452B2 (en) Time Division Multiplexing / Optical Wavelength Division Multiplexing Hybrid Transmission System and Node Equipment for Optical Local Area Network System
JPH0754994B2 (en) Optical time division exchange method and device
JPS6361132A (en) Single mode light testing circuit