JPS6361132A - Single mode light testing circuit - Google Patents

Single mode light testing circuit

Info

Publication number
JPS6361132A
JPS6361132A JP61203735A JP20373586A JPS6361132A JP S6361132 A JPS6361132 A JP S6361132A JP 61203735 A JP61203735 A JP 61203735A JP 20373586 A JP20373586 A JP 20373586A JP S6361132 A JPS6361132 A JP S6361132A
Authority
JP
Japan
Prior art keywords
optical
terminal
wavelength
coupling
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61203735A
Other languages
Japanese (ja)
Other versions
JPH0690115B2 (en
Inventor
Makoto Sumita
真 住田
Yasubumi Yamada
泰文 山田
Masao Kawachi
河内 正夫
Morio Kobayashi
盛男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20373586A priority Critical patent/JPH0690115B2/en
Publication of JPS6361132A publication Critical patent/JPS6361132A/en
Publication of JPH0690115B2 publication Critical patent/JPH0690115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To simplify circuit constitution and to enhance mounting efficiency, by making it possible to perform the alignment of monitor light and the emission/reception of pulse light by one four-terminal directional coupler satisfying a predetermined condition. CONSTITUTION:This test circuit is constituted of a four-terminal directional coupler having the first terminal inputting and outputting light signals of wavelengths lambda1, lambda2, the second terminal outputting and inputting the light signals of the wavelengths lambda1, lambda2, the third terminal coupling with the first terminal and the light signal of the wavelength lambda1 and having a signal level monitor apparatus connected thereto and the fourth terminal coupling with the second terminal and the light signal of a wavelength lambda3 and having a light pulse tester connected thereto. Now, when the length of the coupling part of the four-terminal directional coupler is set to (l), the perfect coupling length to an arbitrary wavelength lambda is set to L(lambda) and coupling efficiency is set to eta(lambda), these variables are given by the relation of formula I. The length (lambda) of the coupling part setting the coupling efficiency eta(lambda1) of the wavelength lambda1 to almost 100%, the coupling efficiency eta(lambda2) of the wavelength lambda2 to almost 0% and the coupling efficiency of the wavelength lambda3 to eta(0%<=eta<=100%) is determined by the integer values (m), (n), (p) satisfying the relation of formula II or III.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、単一モード光伝送方式における送出光信号パ
ワーレベルのモニタ及び光フアイバ伝送路の障害探索を
回線導通状態で行うための単一モード光試験回路に関す
るものである。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to a single mode optical transmission system for monitoring the power level of a transmitted optical signal in a single mode optical transmission system and searching for a fault in an optical fiber transmission line while the line is in continuity. This relates to optical test circuits.

(従来技術とその問題点) 第1図は、この種の光試験回路を用いた光伝送システム
構成を説明する為の図であって、左側は局側、右側は加
入者側である。1と9は電気信号(下り)、2と12は
電気〜光変換器、3は光信号(下り)、18は光信号(
上り)、4と7は光合分波器、5は光試験回路、6は光
フアイバ伝送路、8と13は光−電気変換器、10は端
末装置、11と14は電気信号(上り)、15は信号レ
ベルモニタ装置、16は光パルス試験器、17はパルス
光である0局側での電話、ファクシミリ、画像等の電気
信号(下り)1は、電気−光変換器2で波長λ1なる光
信号(下り)3に変換される。この光信号(下り)3は
光合分波器4と光試験回路5を通過し、光フアイバ伝送
路6に送出される。光フアイバ伝送路6中を伝搬した光
信号(下り)3は、加入者側において光合分波器7を通
り、光−電気変換器13で電気信号(下り)9に変換さ
れ、最終的には電話。
(Prior art and its problems) FIG. 1 is a diagram for explaining the configuration of an optical transmission system using this type of optical test circuit, with the left side being the station side and the right side being the subscriber side. 1 and 9 are electrical signals (downstream), 2 and 12 are electrical to optical converters, 3 is optical signals (downstream), and 18 is optical signals (
4 and 7 are optical multiplexers/demultiplexers, 5 is an optical test circuit, 6 is an optical fiber transmission line, 8 and 13 are optical-to-electrical converters, 10 is a terminal device, 11 and 14 are electrical signals (upstream), 15 is a signal level monitor device, 16 is an optical pulse tester, and 17 is pulsed light. 0 Electrical signals (downstream) such as telephone, facsimile, image, etc. at the office side are converted to wavelength λ1 by an electric-to-optical converter 2. It is converted into an optical signal (downlink) 3. This optical signal (downlink) 3 passes through an optical multiplexer/demultiplexer 4 and an optical test circuit 5, and is sent to an optical fiber transmission line 6. The optical signal (downstream) 3 propagated through the optical fiber transmission line 6 passes through an optical multiplexer/demultiplexer 7 on the subscriber side, is converted into an electrical signal (downstream) 9 by an optical-to-electrical converter 13, and finally phone.

ファクシミリ、画像の情報として端末装置10から出力
される。
The information is output from the terminal device 10 as facsimile and image information.

一方、加入者側からの電話、ファクシミリ、画像の情報
は、まず電気信号(上り)11として電気−光信号変換
器12に入力され、波長λ2なる光信号(上り) 18
に変換される。光信号(上り) 18は光合分波器7を
介して光フアイバ伝送路6に送出される。この光信号(
上り)18は局側において光試験回路5と光合分波器4
を通過し、光−電気変換器8により電気信号(上り)1
4になり、加入者側からの各種情報が局側に送られる。
On the other hand, telephone, facsimile, and image information from the subscriber side is first input as an electrical signal (upstream) 11 to an electrical-to-optical signal converter 12, and is converted into an optical signal (upstream) 18 with wavelength λ2.
is converted to The optical signal (upstream) 18 is sent to the optical fiber transmission line 6 via the optical multiplexer/demultiplexer 7. This optical signal (
Up) 18 is an optical test circuit 5 and an optical multiplexer/demultiplexer 4 on the station side.
The electrical signal (upstream) 1 is transmitted by the optical-to-electrical converter 8.
4, and various information from the subscriber side is sent to the station side.

信号レベルモニタ装置15は光試験回路5と結合をなし
、波長λ1なる光信号3の光パワーレベルを常時モニタ
するものであり、通常モニタレベルとして光信号(下り
)の数%の光パワーレベルをを要する。光パルス試験器
16は、波長λ、なるパルス光17を光フアイバ伝送路
6に送出し、常時その伝送路の障害点探索を行う。この
ように光試験回路5は光信号(下り)3の光パワーレベ
ルモニタと光フアイバ伝送路の障害点探索のための光信
号を分岐・挿入する機能を有し、光伝送網の保守並びに
信転性確保の為不可欠な構成物品である。
The signal level monitor device 15 is coupled to the optical test circuit 5, and constantly monitors the optical power level of the optical signal 3 with wavelength λ1, and usually sets an optical power level of several percent of the optical signal (downstream) as the monitor level. It takes. The optical pulse tester 16 sends out pulsed light 17 having a wavelength λ to the optical fiber transmission line 6, and constantly searches for a fault point on the transmission line. In this way, the optical test circuit 5 has the functions of monitoring the optical power level of the optical signal (downlink) 3 and branching and adding optical signals for searching for fault points in the optical fiber transmission line, and is useful for maintenance of the optical transmission network and It is an essential component to ensure conversion properties.

第2図に光試験回路5の基本機能を説明するための2波
長双方向通信用光試験回路構成の概略図を示す。ボート
Aは光合分波器4と、ボートBは光フアイバ伝送路6と
、ボートCは信号レベルモニタ装置15と、ボートDは
光パルス試験器16と、それぞれ、結合をなす。光試験
回路5は、光信号(下り)3の光パワーの一部を信号レ
ベルモニタ装置15に送出する為の光分岐回路Iと光フ
アイバ伝送路6の障害点を探索する為の光合分岐回路■
から成る。光フアイバ伝送路の障害点探索は、ボー)C
と結合をなす光パルス試験器16からの試験光パルスを
干渉膜フィルタ等の波長選択素子を含む光合分岐回路■
を介して光フアイバ伝送路6中へ送出し、この光フアイ
バ伝送路長手方向に沿った散乱光のパワー分布の観測に
より可能である。
FIG. 2 shows a schematic diagram of the configuration of an optical test circuit for two-wavelength bidirectional communication for explaining the basic functions of the optical test circuit 5. Boat A is coupled to the optical multiplexer/demultiplexer 4, boat B is coupled to the optical fiber transmission line 6, boat C is coupled to the signal level monitor device 15, and boat D is coupled to the optical pulse tester 16. The optical test circuit 5 includes an optical branch circuit I for sending a part of the optical power of the optical signal (downstream) 3 to the signal level monitor device 15 and an optical combiner branch circuit for searching for a fault point in the optical fiber transmission line 6. ■
Consists of. Fault point search for optical fiber transmission line is performed using baud)C
The test light pulse from the optical pulse tester 16 is connected to an optical combining/branching circuit including a wavelength selection element such as an interference film filter.
This is possible by transmitting the scattered light into the optical fiber transmission line 6 through the optical fiber transmission line 6 and observing the power distribution of the scattered light along the longitudinal direction of this optical fiber transmission line.

この際、パルス光の波長は通信回線を切断することなく
障害点探索を行う為、光信号上り及び下りと異なる波長
に設定する必要がある。
At this time, the wavelength of the pulsed light needs to be set to a different wavelength for the upstream and downstream optical signals in order to search for a fault point without disconnecting the communication line.

光合分岐回路■を介して観測した後方散乱光の光フアイ
バ伝送路長手方向の強度分布を第3図に示す、同図で障
害発生前は実線で示す後方散乱光の強度分布を得るが、
例えば、A地点にて障害が発生した時は破線で示すレベ
ルまでA地点以降の後方散乱光強度が減少する為、障害
点の特定が可能である。以下に第2図の原理により動作
する従来のバルク形及び導波形光試験回路の概要を記す
Figure 3 shows the intensity distribution of the backscattered light in the longitudinal direction of the optical fiber transmission line observed through the optical combiner/branching circuit ■. In the figure, before the failure occurs, the intensity distribution of the backscattered light is shown by the solid line.
For example, when a failure occurs at point A, the intensity of backscattered light after point A decreases to the level shown by the broken line, making it possible to identify the point of failure. The following is an outline of conventional bulk type and waveguide type optical test circuits that operate according to the principle shown in FIG.

第4図に従来のバルク形光試験回路の模式図を示す。1
9はレンズ付光ファイバコリメータ、20はモニタ光取
り出し用反射面、21は障害点探索のための光パルス入
出力用反射面、22はガラスブロックである。第4図に
示すバルク形光試験回路では、ガラスブロック22の高
精度研磨、光ファイバへのレンズ取付け、ガラスブロッ
ク研磨面への反射面20、22の形成等繁雑な作業及び
これらの個別部品を高精度に相互の位置関係を保ちつつ
固定する高度な技術を要する為、製造性の低下は避けら
れず、光試験回路自体非常に高価なものとなる。また、
屈折率が相互に異なるレンズ及びガラスブロック等の個
別素子を基本構成としている為、その個別素子間を伝搬
する際の光のフレネル反射による損失並びにレンズ系で
構成することによる光フアイバ間の結合損失は本質的な
問題で不可避と考えられる。
FIG. 4 shows a schematic diagram of a conventional bulk type optical test circuit. 1
9 is an optical fiber collimator with a lens, 20 is a reflective surface for extracting monitor light, 21 is a reflective surface for optical pulse input/output for searching for fault points, and 22 is a glass block. The bulk type optical test circuit shown in FIG. 4 requires complicated operations such as high-precision polishing of the glass block 22, attaching lenses to optical fibers, and forming reflective surfaces 20 and 22 on the polished surface of the glass block, as well as these individual components. Since sophisticated technology is required to fix the components while maintaining their mutual positional relationship with high precision, a decrease in productivity is inevitable, and the optical test circuit itself becomes extremely expensive. Also,
Since the basic configuration is made up of individual elements such as lenses and glass blocks with mutually different refractive indexes, there is a loss due to Fresnel reflection of light when propagating between the individual elements, and a coupling loss between optical fibers due to the configuration with a lens system. is considered to be an essential problem and unavoidable.

第5図は従来の導波形光試験回路で、23は光導波路、
24は光信号パワーの一部を取出す為の反射板、25は
波長選択機能を有する干渉膜フィルタ、26は光ファイ
バ、27はSt基板である。この導波形光試験回路はS
t基板27上に石英系導波膜を堆積後、フォトリソグラ
フィ技術により不要部分を除去し先導波路23を形成し
たもので、量産性に冨む技術を用いる為、安価な光回路
の製造が可能である。
Figure 5 shows a conventional waveguide type optical test circuit, where 23 is an optical waveguide;
24 is a reflection plate for extracting a part of the optical signal power, 25 is an interference film filter having a wavelength selection function, 26 is an optical fiber, and 27 is an St substrate. This waveguide optical test circuit is S
After depositing a quartz-based waveguide film on the T-substrate 27, unnecessary parts are removed using photolithography technology to form the leading waveguide 23. Since the technology is suitable for mass production, inexpensive optical circuits can be manufactured. It is.

又、この導波形光試験回路では、光ファイバ26と結合
をなす各ボート間の光路は、光導波路形成時に確定して
いるため、バルク形光試験回路で必要な繁雑且つ高度な
光軸合わせは不要である利点を有す0以上述べたように
実装並びに組立能率に関しては従来のバルク形光試験回
路に比して優れているが、この導波形光試験回路では、
干渉膜フィルタ25及び反射板24挿入用の先導波路2
3中に設けた間隙及び導波路分岐部での導波構造を有し
ていない部分での光の放射損失は原理的に不可避である
。この間隙での損失は、マルチモード先導波路で約3 
dB、単一モード光導波路で約1dB程度であり、光フ
アイバ伝送路の長尺化に対してはさらに光回路を低損失
にする必要がある。
In addition, in this waveguide type optical test circuit, the optical path between each boat that couples with the optical fiber 26 is determined at the time of forming the optical waveguide, so the complicated and sophisticated optical axis alignment required in the bulk type optical test circuit is not required. As mentioned above, this waveguide type optical test circuit is superior to conventional bulk type optical test circuits in terms of mounting and assembly efficiency.
Guide wave path 2 for inserting interference film filter 25 and reflection plate 24
In principle, radiation loss of light is unavoidable in the gap provided in the waveguide 3 and in the part of the waveguide branch that does not have a waveguide structure. The loss in this gap is approximately 3
dB, about 1 dB for a single mode optical waveguide, and as optical fiber transmission lines become longer, it is necessary to further reduce the loss of optical circuits.

(発明の目的) 本発明の目的は、従来の光試験回路組立に要する素子実
装作業の繁雑さ及び挿入損失特性上の問題を解決した組
立て容易にして且つ低損失な光信号モニタならびに障害
点探索のために適用できる光試験回路を提供することに
ある。
(Object of the Invention) The object of the present invention is to provide an optical signal monitor and fault point search that is easy to assemble and has low loss, solving problems related to the complexity of element mounting work and insertion loss characteristics required in conventional optical test circuit assembly. The objective is to provide an optical test circuit that can be applied to

(発明の構成と特徴) 以下本発明の詳細な説明する。(Structure and characteristics of the invention) The present invention will be explained in detail below.

本発明は、基板上に形成した隣接する2本の単一モード
光導波路から成る一つの4端子方向性結合器により3波
長の光路切り分けを行うことを最も主要な特徴とする単
一モード光試験回路である。
The present invention is a single-mode optical test whose main feature is to perform optical path separation into three wavelengths using one four-terminal directional coupler consisting of two adjacent single-mode optical waveguides formed on a substrate. It is a circuit.

従来の技術では、波長の異なる光信号並びに光パルスの
切り分けもしくは光信号パワーの一部取り出しを干渉膜
フィルタ等の個別素子により行っていた為、それに伴う
素子実装上の繁雑な作業は不可避であった0本発明によ
れば、基板上に形成した方向性結合部のみにより波長毎
の光路切り分けが可能な為、素子実装作業を必要としな
い。又、素子実装に伴う損失増及び従来の光試験回路固
有の不可避な損失がなく低損失な光試験回路の構成が可
能である。
In conventional technology, the separation of optical signals and optical pulses with different wavelengths, or the extraction of a portion of the optical signal power, was performed using individual elements such as interference film filters, and the associated complicated work of mounting the elements was unavoidable. According to the present invention, optical paths can be separated for each wavelength using only the directional coupling portion formed on the substrate, so there is no need for element mounting work. Further, it is possible to construct a low-loss optical test circuit without the increase in loss associated with element mounting and the unavoidable loss inherent in conventional optical test circuits.

(発明の原理) 第6図は本発明の基礎をなす方向性結合部の動作原理を
説明する為の図であり、29及び30は単一モード光導
波路である。方向性結合器は、数μIオーダに近接し配
置した2本の平行単一モード光導波路29.30から成
り、これらの2本の平行単一モード先導波路は相互に結
合し、一方の先導波路を伝搬する光は、他方の光導波路
へ徐々にそのエネルギーを移行させる。完全にエネルギ
ーを移行させるに必要な導波路長を完全結合長L(λ)
といい、方向性結合器を構成する2本の平行単一モード
先導波路間の結合効率η(λ)は、結合部全長l。
(Principle of the Invention) FIG. 6 is a diagram for explaining the operating principle of the directional coupling unit that forms the basis of the present invention, and 29 and 30 are single mode optical waveguides. The directional coupler consists of two parallel single-mode optical waveguides 29 and 30 arranged close to each other on the order of a few μI. The light propagating through gradually transfers its energy to the other optical waveguide. The waveguide length required for complete energy transfer is the perfect coupling length L(λ)
The coupling efficiency η(λ) between the two parallel single-mode leading waveguides constituting the directional coupler is the total length of the coupling portion l.

波長λ等で決まり、次式で与えられる。It is determined by the wavelength λ, etc., and is given by the following formula.

例えば、2つの波長λ1.λ2が単一モード光導波路3
0を伝搬している場合、これらの光を切り分ける為の分
波条件は、結合部の長さlが各々の波長に対する完全結
合長しくλI)およびL(λ2)の偶数倍又は奇数倍に
なるように設定すればよい。すなわち、次式を満足する
整数値m、  nにより波長λ1及びλfの分波が可能
である。
For example, two wavelengths λ1. λ2 is single mode optical waveguide 3
0, the demultiplexing conditions for separating these lights are such that the length l of the coupling part is an even or odd multiple of the complete coupling length λI) and L(λ2) for each wavelength. Just set it like this. That is, wavelengths λ1 and λf can be separated by integer values m and n that satisfy the following equation.

1  = (2m+1)  ・ L(λ +) =2n
  −L(λ 2 )       (1)又は /=2nL(λz) = (2m+1)L(λI)  
   (2)例えば(11式の場合、波長λ1の光の方
向性結合部での結合効率η(λ、)は100%、波長λ
2の光の結合効率η(λt)は0%となり、波長λ1の
光は第6図に示す単一モード光導波路29を伝搬し、波
長λ2の光は単一モード光導波路30を伝搬する。
1 = (2m+1) ・L(λ +) =2n
−L(λ 2 ) (1) or /=2nL(λz) = (2m+1)L(λI)
(2) For example, in the case of (11), the coupling efficiency η(λ,) at the directional coupling part for light with wavelength λ1 is 100%, and the wavelength λ
The coupling efficiency η(λt) of the light of wavelength λ1 is 0%, the light of wavelength λ1 propagates through the single mode optical waveguide 29 shown in FIG. 6, and the light of wavelength λ2 propagates through the single mode optical waveguide 30.

以下に一つの方向性結合器により3波長を合分波する場
合の設計例を述べる。
A design example in which three wavelengths are multiplexed and demultiplexed using one directional coupler will be described below.

第7図は、設計に用いた石英系光導波路からなる方向性
結合部の断面図であり、31はコア部、32はクラッド
部、33は基板である。以下述べる設計例では、第7図
に示す方向性結合部のコア部31の屈折率nを1.46
4.クラッド部32の屈折率を1.460゜コア部形状
を10μmX10μmとした。
FIG. 7 is a cross-sectional view of a directional coupling section made of a silica-based optical waveguide used in the design, in which 31 is a core section, 32 is a cladding section, and 33 is a substrate. In the design example described below, the refractive index n of the core part 31 of the directional coupling part shown in FIG. 7 is 1.46.
4. The refractive index of the cladding portion 32 was 1.460°, and the shape of the core portion was 10 μm×10 μm.

第8図に2つの導波路間隔Sに対する完全結合長しくλ
)の変化を、波長をパラメータとして示す。
Figure 8 shows the perfect coupling length λ for the two waveguide spacing S.
) is shown using wavelength as a parameter.

同図においては、設計例として波長を実用に供されてい
る1、2μm、 1.3μre、 1.55μIとした
。例えば、光導波路間隔を2μmに設定した場合、完全
結合長は1.2 p reで約2.9m、 1.3μs
で約2.4m。
In the figure, as a design example, the wavelengths are set to 1, 2 μm, 1.3 μre, and 1.55 μI, which are used practically. For example, when the optical waveguide spacing is set to 2 μm, the complete coupling length is 1.2 pre, approximately 2.9 m, and 1.3 μs.
Approximately 2.4m.

1.55μmで1.8nである。このように、完全結合
長は各波長により異なる値を示していることがわかる。
It is 1.8n at 1.55 μm. Thus, it can be seen that the complete bond length shows different values depending on each wavelength.

第9図は第7図の光導波路間隔Sを2μmに設定したと
きの方向性結合部の結合部長lを変化させたときの結合
効率η(λ)を前記3波長に対して計算した例である0
図から各々の波長に対して完全結合長L(λ)で決定さ
れる結合部長に対する結合効率の周期が異なる為、結合
部長を選択することにより、3波長の結合効率η(λ)
は1つの方向性結合器で任意に設定できることがわかる
Figure 9 shows an example of calculating the coupling efficiency η(λ) for the three wavelengths when the coupling length l of the directional coupling part is changed when the optical waveguide spacing S in Figure 7 is set to 2 μm. Some 0
From the figure, since the period of coupling efficiency with respect to the coupling length determined by the complete coupling length L(λ) for each wavelength is different, by selecting the coupling length, the coupling efficiency of the three wavelengths η(λ)
It can be seen that can be arbitrarily set with one directional coupler.

一方、光試験回路においては、3つの波長に対し方向性
結合器の結合特性を例えばパルス試験を行う波長に対し
て100%、光信号(上?J)に対しては0%、光信号
(下り)に対しては数%に設定する必要がある。このよ
うな要求に対し例えば、第9図に示すように結合部長l
を14.hnに設定した場合、波長1.2μmは結合効
率100%、波長1.3μmは結合効率O%、波長1.
55μmは結合効率5%となる。
On the other hand, in an optical test circuit, the coupling characteristics of a directional coupler for three wavelengths are 100% for the wavelength for pulse testing, 0% for the optical signal (upper? J), and 0% for the optical signal (upper? For downlink), it is necessary to set it to several percent. In response to such a request, for example, as shown in FIG.
14. When set to hn, the coupling efficiency is 100% for a wavelength of 1.2 μm, the coupling efficiency is 0% for a wavelength of 1.3 μm, and the coupling efficiency is 0% for a wavelength of 1.2 μm.
At 55 μm, the coupling efficiency is 5%.

(実施例) 第10図は光導波路が、製造制御性の高い火災堆積法及
びフォトリソグラフィ技術による石英系導波路からなる
本発明の第1の実施例を示したものであり、図中の点線
はクラッド内に埋込まれた光導波路を示す。第10図に
示す4端子方向性結合器に対し、例えば、前述の導波路
構成では、下り信号の波長λ、を1.55μmに、上り
信号の波長λ2を1.3μmに、パルス光の波長λ3を
1.2μmに設定すれば光試験回路として機能する。こ
の実施例によれば、基板上に形成した先導波回路のみで
3波長の合分波が可能である為、従来のバルク形光試験
回路で要した実装作業は不要であり、回路の信顛性も向
上する。
(Example) Figure 10 shows a first example of the present invention in which the optical waveguide is a quartz-based waveguide manufactured by the fire deposition method and photolithography technology, which has high manufacturing controllability, and the dotted line in the figure indicates an optical waveguide embedded in the cladding. For the four-terminal directional coupler shown in FIG. 10, for example, in the waveguide configuration described above, the wavelength λ of the downstream signal is set to 1.55 μm, the wavelength λ2 of the upstream signal is set to 1.3 μm, and the wavelength of the pulsed light is set to 1.55 μm. If λ3 is set to 1.2 μm, it functions as an optical test circuit. According to this embodiment, since it is possible to multiplex and demultiplex three wavelengths using only the leading wave circuit formed on the board, there is no need for the mounting work required for conventional bulk type optical test circuits, and the reliability of the circuit is improved. Sexuality also improves.

又、第10図において、下り信号のモニタ出力レベルは
、 !!、 = (2m−1) ・L(λ+)=2nL(λ
z)=p−L(λ3)+ −5in−’(fi )L(
λ、)π 又は 1 =  (2m−1) ・L(λυ=2n−L(7g
)=p!、、(λ3)−−5in−’(fi )L(λ
3) π なる関係を満足する整数値m、n、pにより決まる結合
長に方向性結合器の結合部長lを設定することにより0
〜100%の範囲で任意に選べる。
Also, in FIG. 10, the monitor output level of the downstream signal is ! ! , = (2m-1) ・L(λ+)=2nL(λ
z)=p-L(λ3)+-5in-'(fi)L(
λ, )π or 1 = (2m-1) ・L(λυ=2n-L(7g
)=p! ,,(λ3)−−5in−′(fi)L(λ
3) By setting the coupling length l of the directional coupler to the coupling length determined by the integer values m, n, and p that satisfy the relationship π,
It can be arbitrarily selected within the range of ~100%.

以上の実施例では石英系先導波路を例に述べたが、Li
NbO5系またはGaAs系等の材料からなる光導波路
であっても適用可能である。
In the above embodiments, a quartz-based leading waveguide was described as an example, but Li
Optical waveguides made of NbO5-based or GaAs-based materials are also applicable.

第11図は本発明の第2の実施例を示したものであり、
34及び35は光ファイバ、36は発光素子、37は受
光素子、38はモニタ用受光素子、39は光合分波回路
部である。同図では、第1図に示す光合分波回路4を光
試験回路と同一基板内に同時形成し機能の複合化を図っ
たものである。
FIG. 11 shows a second embodiment of the present invention,
34 and 35 are optical fibers, 36 is a light emitting element, 37 is a light receiving element, 38 is a monitoring light receiving element, and 39 is an optical multiplexing/demultiplexing circuit section. In this figure, the optical multiplexing/demultiplexing circuit 4 shown in FIG. 1 is simultaneously formed on the same substrate as the optical test circuit, so that the functions can be combined.

(発明の効果) 以上説明したように、従来は、光信号モニタ用分岐回路
及び障害点探索用分岐回路の2つの回路から光試験回路
が構成されていたのに対し、本発明では一つの4端子方
向性結合器でモニタ光の抽出並びにパルス光の送出・受
入が行える為、回路構成が非常に簡略化された。その結
果個別素子を集合した構造の従来回路に比して大幅な実
装能率向上を可能とした。
(Effects of the Invention) As explained above, conventionally, an optical test circuit was composed of two circuits: an optical signal monitoring branch circuit and a fault point searching branch circuit, whereas the present invention consists of one four-channel branch circuit. The circuit configuration has been greatly simplified because the terminal directional coupler can extract the monitor light and send and receive pulsed light. As a result, it has become possible to significantly improve packaging efficiency compared to conventional circuits that have a structure of aggregating individual elements.

又、光試験回路の対向する端子間が1本の単一モード光
導波路のみで結合している為、従来のものに比して損失
特性の大幅改善及び素子実装に伴う損失増の抑制が可能
となった。本発明による光試験回路の作製技術は量産性
に冨むフォトリソグラフィ技術により支えられているこ
とにより、光通信網の経済的な構築に寄与することは大
である。
In addition, since the opposing terminals of the optical test circuit are coupled using only one single mode optical waveguide, it is possible to significantly improve loss characteristics and suppress increase in loss due to element mounting compared to conventional ones. It became. Since the optical test circuit manufacturing technology according to the present invention is supported by photolithography technology that is highly suitable for mass production, it greatly contributes to the economical construction of optical communication networks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光試験回路を用いた光伝送システム構成例を示
すブロック図、第2図は光試験回路構成図、第3図は光
線路障害位置モニタ例を示す略図、第4図は従来のバル
ク形光試験回路構成例を示す斜視図、第5図は従来の導
波形光試験回路構成例を示す斜視図、第6図は方向性結
合器の機能を説明する為の方向性結合部構成例を示す略
図、第7図は方向性結合器の結合部断面図、第8図は光
導波路間隔と完全結合長の関係を示す特性図、第9図は
結合部長と結合効率の関係を示す特性図、第10図は本
発明の第1の実施例を示す斜視図、第11図は光合分波
回路を備えた本発明の第2の実施例を示す斜視図である
。 1、・・・電気信号(下り)、 2・・・電気光変換器
、3・・・光信号(下り)、 4・・・光合分波器、5
・・・光試験回路、 6・・・光フアイバ伝送路、7・
・・光合分波器、 8・・・光−電気変換器、9・・・
電気信号(下り)、 10・・・端末装置、11・・・
電気信号(上り)、 12・・・電気−光変換器、13
・・・光−電気変換器、 14・・・電気信号(上り)
、15・・・信号レベルモニタ装置、16・・・光パル
ス試験器、 17・・・パルス光、 18・・・光信号
(上り)、19・・・レンズ付光ファイバ、 20・・
・モニタ光取出し用反射面、 21・・・光パルス入出
力用反射面、22・・・ガラスブロック、 23・・・
先導波路、24・・・反射板、 26・・・干渉膜フィ
ルタ、27・・・光ファイバ、 2日・・・Si基板、
 29・・・単一モド先導波路、 30・・・単一モー
ド先導波路、31・・・コア部、 32・・・クラッド
部、 33・・・基板、34・・・光ファイバ、 35
・・・光ファイバ、 36・・・発光素子、 37・・
・受光素子、 38・・・モニタ用受光素子、 39・
・・光合分波回路部。
Figure 1 is a block diagram showing a configuration example of an optical transmission system using an optical test circuit, Figure 2 is a configuration diagram of an optical test circuit, Figure 3 is a schematic diagram showing an example of an optical line fault position monitor, and Figure 4 is a conventional FIG. 5 is a perspective view showing an example of a configuration of a conventional waveguide type optical test circuit; FIG. 6 is a directional coupling section configuration for explaining the function of a directional coupler. A schematic diagram showing an example, Fig. 7 is a cross-sectional view of the coupling part of a directional coupler, Fig. 8 is a characteristic diagram showing the relationship between the optical waveguide spacing and perfect coupling length, and Fig. 9 shows the relationship between the coupling length and coupling efficiency. FIG. 10 is a perspective view showing a first embodiment of the present invention, and FIG. 11 is a perspective view showing a second embodiment of the present invention equipped with an optical multiplexing/demultiplexing circuit. DESCRIPTION OF SYMBOLS 1. Electrical signal (downlink), 2... Electro-optical converter, 3... Optical signal (downlink), 4... Optical multiplexer/demultiplexer, 5
... Optical test circuit, 6. Optical fiber transmission line, 7.
... Optical multiplexer/demultiplexer, 8... Optical-electrical converter, 9...
Electrical signal (downstream), 10...Terminal device, 11...
Electrical signal (up), 12... Electrical-optical converter, 13
...Optical-electrical converter, 14... Electrical signal (up)
, 15... Signal level monitor device, 16... Optical pulse tester, 17... Pulse light, 18... Optical signal (up), 19... Optical fiber with lens, 20...
- Reflective surface for monitor light extraction, 21... Reflective surface for optical pulse input/output, 22... Glass block, 23...
Leading waveguide, 24... Reflection plate, 26... Interference film filter, 27... Optical fiber, 2nd... Si substrate,
29... Single mode leading waveguide, 30... Single mode leading waveguide, 31... Core part, 32... Clad part, 33... Substrate, 34... Optical fiber, 35
...Optical fiber, 36...Light emitting element, 37...
・Light-receiving element, 38... Light-receiving element for monitor, 39-
...Optical multiplexing/demultiplexing circuit section.

Claims (1)

【特許請求の範囲】[Claims] (1)波長λ_1およびλ_2の光信号を入力および出
力する第1の端子と、 波長λ_1およびλ_2の光信号を出力および入力する
第2の端子と、 前記第1の端子と、波長λ_1の光信号が結合し、かつ
信号レベルモニタ装置が接続される第3の端子と、 前記第2の端子と波長λ_3の光信号が結合しかつ光パ
ルス試験器が接続される第4の端子とを有する4端子方
向性結合器からなる単一モード光試験回路であって、前
記4端子方向性結合器の結合部長をl、任意の波長λに
対する完全結合長をL(λ)及び4端子方向性結合器の
結合効率をη(λ)としたとき、これら変数は、η(λ
)=sin^2(πl/2L(λ))の関係で与えられ
、この時 波長λ_1の結合効率η(λ_1)を略100%に、波
長λ_2の結合効率η(λ_2)略0%に、波長λ_3
の結合効率をη(0%≦η≦100%)にする前記結合
部長lの条件が l=(2m−1)・L(λ_1)=2n・L(λ_2)
=p・L(λ_3)+[2/π]−sin^−^1(√
η)L(λ_3)又は l=(2m−1)・L(λ_1)=2n・L(λ_2)
=p・L(λ_3)−[2/π]−sin^−^1(√
η)L(λ_3)なる関係を満足する整数値m、n、p
により決まる結合部長lであることを特徴とする単一モ
ード光試験回路。
(1) A first terminal that inputs and outputs optical signals with wavelengths λ_1 and λ_2, a second terminal that outputs and inputs optical signals with wavelengths λ_1 and λ_2, and the first terminal and light with wavelength λ_1. a third terminal to which a signal is coupled and to which a signal level monitor device is connected; and a fourth terminal to which an optical signal of wavelength λ_3 is coupled to the second terminal and to which an optical pulse tester is connected. A single mode optical test circuit consisting of a 4-terminal directional coupler, where the coupling length of the 4-terminal directional coupler is l, the complete coupling length for an arbitrary wavelength λ is L(λ), and the 4-terminal directional coupler is When the coupling efficiency of the device is η(λ), these variables are η(λ
)=sin^2(πl/2L(λ)), and in this case, the coupling efficiency η(λ_1) for the wavelength λ_1 is approximately 100%, the coupling efficiency η(λ_2) for the wavelength λ_2 is approximately 0%, Wavelength λ_3
The condition for the coupling length l that makes the coupling efficiency η (0%≦η≦100%) is l=(2m-1)・L(λ_1)=2n・L(λ_2)
=p・L(λ_3)+[2/π]−sin^−^1(√
η) L(λ_3) or l=(2m-1)・L(λ_1)=2n・L(λ_2)
=p・L(λ_3)−[2/π]−sin^−^1(√
Integer values m, n, p that satisfy the relationship η)L(λ_3)
A single mode optical test circuit characterized in that the coupling length l is determined by .
JP20373586A 1986-09-01 1986-09-01 Single-mode optical test circuit Expired - Lifetime JPH0690115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20373586A JPH0690115B2 (en) 1986-09-01 1986-09-01 Single-mode optical test circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20373586A JPH0690115B2 (en) 1986-09-01 1986-09-01 Single-mode optical test circuit

Publications (2)

Publication Number Publication Date
JPS6361132A true JPS6361132A (en) 1988-03-17
JPH0690115B2 JPH0690115B2 (en) 1994-11-14

Family

ID=16478986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20373586A Expired - Lifetime JPH0690115B2 (en) 1986-09-01 1986-09-01 Single-mode optical test circuit

Country Status (1)

Country Link
JP (1) JPH0690115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210241A (en) * 1988-06-29 1990-01-16 Sumitomo Electric Ind Ltd Method for testing optical fiber line
JP2016513417A (en) * 2013-02-22 2016-05-12 ゼットティーイー コーポレイション Optical transceiver and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210241A (en) * 1988-06-29 1990-01-16 Sumitomo Electric Ind Ltd Method for testing optical fiber line
JP2016513417A (en) * 2013-02-22 2016-05-12 ゼットティーイー コーポレイション Optical transceiver and method

Also Published As

Publication number Publication date
JPH0690115B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US5170451A (en) Optical wdm (wavelength division multiplex) coupler
CN103370888B (en) Optical network communication system with optical line terminal transceiver and method of operation thereof
EP0296247B1 (en) Optical multiplexer/demultiplexer and use of the same in an optical module
US9780903B2 (en) Optical wavelength demultiplexer having optical interference filters connected in cascade
US20210349264A1 (en) Integrated optical device based on coupling between optical chips
Laude et al. Wavelength division multiplexing/demultiplexing (WDM) using diffraction gratings
CN101819299A (en) Extensible and reconfigurable light path add/drop multiplexer
JPH10221560A (en) Optical wavelength filter and optical demultiplexer
CN104969565B (en) A kind of wave division multiplexing WDM receiver apparatus and passive optical network
CA2235050A1 (en) Wavelength dividing circuit with arrayed-waveguide grating monitor port
EP1089097A2 (en) Duplicated-port waveguide grating router having substantially flat passbands
JPH0458736B2 (en)
JPS60172841A (en) Optical switch
JPS6361132A (en) Single mode light testing circuit
JP6298906B1 (en) Wavelength filter
CN109709643A (en) One kind being based on single chip integrated dual-polarization mode multiplexing-demultiplexing chip
WO2003056737A1 (en) A on-line dispersion compensation apparatus of high-speed wavelength division optical transmission system
US6834141B1 (en) Wide pass-band interferometric optical device utilizing an optical ring-resonator
CN110941048B (en) High extinction ratio coarse wavelength division multiplexer/demultiplexer based on multi-mode interference principle
US7418168B2 (en) Optical add/drop module
JP6476265B1 (en) Optical waveguide device
JP2016180867A (en) Optical element, mach-zehnder wavelength filter and ring resonator
JP2014071318A (en) Optical element and usage method of the same, and optical integrated circuit and inspection method of the same
JP7070738B1 (en) Optical wavelength filter
JP6771600B2 (en) Optical waveguide circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term