JPH01234819A - Light delay generator - Google Patents

Light delay generator

Info

Publication number
JPH01234819A
JPH01234819A JP6219388A JP6219388A JPH01234819A JP H01234819 A JPH01234819 A JP H01234819A JP 6219388 A JP6219388 A JP 6219388A JP 6219388 A JP6219388 A JP 6219388A JP H01234819 A JPH01234819 A JP H01234819A
Authority
JP
Japan
Prior art keywords
light
voltage
delay
crystal body
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6219388A
Other languages
Japanese (ja)
Inventor
Shinichi Wakana
伸一 若菜
Yoshiaki Goto
後藤 善朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6219388A priority Critical patent/JPH01234819A/en
Publication of JPH01234819A publication Critical patent/JPH01234819A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve resolution and to control the delay of a light signal with high accuracy by applying a voltage to an electrooptic crystal body, and varying its refractive index to light with the voltage and varying the length of an optical path. CONSTITUTION:The voltage is applied between a lead-out wire 14 and an electrode 13 and varied to control the delay time of a light signal which passes through the crystal body 8. Namely, the light passed through a half-mirror 2 varies in refractive index with the voltage from a voltage applying circuit 9, and consequently the optical path of the light becomes long, so that the light is delayed finely and projected from the crystal body 8. The projecting light is sent to a receiving circuit 22 through a half-mirror 5 and a PIN photodiode 19, so the receiving circuit 22 receives two light pulses which have a fine time interval. At the time interval of the light pulses, the light pulses are accurately received with high accuracy without any variation in pulse width. Consequently, the high-accuracy, high-resolution light delay generating circuit is obtained.

Description

【発明の詳細な説明】 〔概要〕 光信号の遅延発生器に関し、11号を高分解能、高精度
に遅延の制御することを目的とし、電気光学結晶体と、
該結晶体に電圧印加するための電極とを設け、該電極に
印加する電圧を制御することにより該結ル体内を伝播す
る光の光路長を変化させ光の伝flj!延時間を変える
ことを特徴とする光遅延発生器で構成する。
[Detailed Description of the Invention] [Summary] Regarding a delay generator for optical signals, the purpose is to control the delay of No. 11 with high resolution and high precision, and an electro-optic crystal,
An electrode for applying a voltage to the crystal body is provided, and by controlling the voltage applied to the electrode, the optical path length of the light propagating within the crystal body is changed, and the light propagation flj! It consists of an optical delay generator that is characterized by changing the delay time.

〔産業上の利用分野〕[Industrial application field]

本発明は元信号の遅延発生器に関する。近年情報伝送に
光を使用した光通信技術の進歩は著しく、すでに多くの
方面で実用化されている。光通信分野において、光の遅
延を高分解能、高n度に制御する技術は重要なものの一
つとなっている。
The present invention relates to an original signal delay generator. Optical communication technology that uses light for information transmission has made remarkable progress in recent years, and has already been put into practical use in many fields. In the field of optical communications, technology for controlling optical delay with high resolution and high n-degrees has become one of the important technologies.

〔従来の技術〕[Conventional technology]

第5図は従来の光遅延発生回路の構成例を示すものであ
る。
FIG. 5 shows an example of the configuration of a conventional optical delay generation circuit.

レーザ発生器1から発射された元パルス信号はハーフミ
ラ−2に到達すると、反射光と透過光に分離され、反射
光はさらにミラー3,4で反射されハーフミラ−5を透
過して透過光aとなって光受光器7で受信される。なお
ハーフミラ−2を透過した光はさらに一部がハーフミラ
−5を通過してミラー6に直進し、ミラー6で反射して
点線で示す径路でもどって再度ハーフミラ−5で一部が
反射され、反射2bとなって受光器で受信される。
When the original pulse signal emitted from the laser generator 1 reaches the half mirror 2, it is separated into reflected light and transmitted light, and the reflected light is further reflected by mirrors 3 and 4 and transmitted through the half mirror 5 to become transmitted light a. The light is then received by the optical receiver 7. Note that a part of the light that has passed through the half mirror 2 further passes through the half mirror 5, goes straight to the mirror 6, is reflected by the mirror 6, returns along the path shown by the dotted line, and is partially reflected again by the half mirror 5. It becomes a reflection 2b and is received by a light receiver.

ここで、受光器7で受信される光aと光すの間で微少な
遅延が生じ、この遅延時間はミラー6を機械的に前後に
移動させることにより調節できる。
Here, a slight delay occurs between the light a received by the light receiver 7 and the light beam, and this delay time can be adjusted by mechanically moving the mirror 6 back and forth.

〔発明が解決しようとするa題〕[Problem a that the invention attempts to solve]

上記従来の技術はミラーを機械的に移動させるものでお
り、従って再現性、安定性の面で困難がありた。
The above conventional technique moves the mirror mechanically, and therefore has difficulties in terms of reproducibility and stability.

本発明は上記従来の課題を解決するもので、高分解能に
、かつ高梢度に元信号の遅延を制御できる技術を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a technique that can control the delay of an original signal with high resolution and high precision.

〔課題を解決するだめの手段〕[Failure to solve the problem]

第1図は本発明の原理説明図である。 FIG. 1 is a diagram explaining the principle of the present invention.

元発元器1から出射された元は電気光学結晶体8を通過
する間に、結晶体8に電圧印加回路9から印加されたα
圧により、屈折率の変化が発生し、光の光路長が変化し
、その結果遅延が発生して結晶体8から出射される。
While the source emitted from the source generator 1 passes through the electro-optic crystal 8, α is applied to the crystal 8 from the voltage application circuit 9.
The pressure causes a change in the refractive index and changes the optical path length of the light, resulting in a delay before the light is emitted from the crystal body 8.

〔作用〕[Effect]

本発明では第1囚に示す如く、vL電気光学結晶体電圧
を印加し、この電圧の値により光の屈折率を色々と変化
させて光の光路長を変え、光が結晶体8t−通過する時
間を調節している。
In the present invention, as shown in Figure 1, a vL electro-optic crystal voltage is applied, and the refractive index of light is varied depending on the value of this voltage to change the optical path length of the light, so that the light passes through the crystal 8t. adjusting the time.

〔実施例〕〔Example〕

第2図は本発明の実施例構成図である。 FIG. 2 is a configuration diagram of an embodiment of the present invention.

8は電気光学結晶体であり、KDI) (KH,PO4
) 。
8 is an electro-optic crystal, KDI) (KH, PO4
).

ADP (NR1R2P O4) 、 L i Nbo
、 、 L + T ao、 、 GaAs等の結晶体
が知られている。
ADP (NR1R2P O4), L i Nbo
, , L+Tao, , GaAs, and other crystals are known.

この結晶体8の上面にはアルミニュム等の蒸着で形成さ
れた電極11が破着され、下面には金属の電極13が形
成されている、光の入射面には誘電体多層膜で形成され
た反射防止膜12が被着されている。
An electrode 11 formed by vapor deposition of aluminum or the like is broken on the upper surface of this crystal body 8, and a metal electrode 13 is formed on the lower surface.A dielectric multilayer film is formed on the light incident surface. An antireflection film 12 is applied.

引出線14と電極13の間に電圧が印加され、この電圧
を変化させることにより結晶体8を通過する光信号の遅
延時間を調節する。
A voltage is applied between the lead wire 14 and the electrode 13, and by changing this voltage, the delay time of the optical signal passing through the crystal body 8 is adjusted.

結晶体8に入射する光は直線偏光15であシ、この直線
偏光の偏光方向と、結晶体8に電圧を印加することによ
り誘起される複屈折@y(複屈折$楕円体主軸]と平行
となるように光15を入射させると印加電圧に比例した
屈折率変化Δnが発生する。
The light incident on the crystal body 8 is linearly polarized light 15, and the polarization direction of this linearly polarized light is parallel to the birefringence @y (birefringence $ellipsoid principal axis) induced by applying a voltage to the crystal body 8. When the light 15 is made incident such that the refractive index change Δn is proportional to the applied voltage.

結晶体8の物理的長さをlとし、光速度をCとすると、
元が結晶中を通過する時間は Δ(=Δn6 l/c            (11
だけ変化する。
If the physical length of the crystal 8 is l and the speed of light is C, then
The time it takes for the element to pass through the crystal is Δ(=Δn6 l/c (11
only changes.

Δnと印加電圧■の関係式は次のif’lである。The relational expression between Δn and the applied voltage ■ is the following if'l.

ここで結晶体は里方晶系43III型結晶(GaAs 
Here, the crystal is a 43III type crystal (GaAs
.

InP等)の場合であり、noは常屈折率、γ4.はポ
ッケルス定数、dは結晶体の厚さを示す。
InP, etc.), where no is the ordinary refractive index and γ4. is the Pockels constant, and d is the thickness of the crystal.

第3図は本発明の光遅延発生器を適泪した光遅延発生回
路の実施例を示す。
FIG. 3 shows an embodiment of an optical delay generation circuit adapted to the optical delay generator of the present invention.

16は電源回路で、17は半導体レーザ等で構成したパ
ルスレーザ発生回路である。トリガー信号発生回路20
からのトリガー信号によりパルスレーザ発生回路17か
ら幅の狭い直線偏光パルスが発射される。
16 is a power supply circuit, and 17 is a pulse laser generating circuit composed of a semiconductor laser or the like. Trigger signal generation circuit 20
A narrow linearly polarized light pulse is emitted from the pulse laser generating circuit 17 in response to a trigger signal from the pulse laser generating circuit 17.

この光はハーフミラ−2で分離され、反射光はミラー3
.4′t−経てハーフミラ−5に到達し、反射光がPI
Nホトダイオード19で受信され電気信号に変換され受
信回路22に送られる。
This light is separated by half mirror 2, and the reflected light is reflected by mirror 3.
.. 4't-, the reflected light reaches the half mirror 5, and the reflected light reaches the PI
The signal is received by the N photodiode 19, converted into an electrical signal, and sent to the receiving circuit 22.

一方ハーフミラー2を透過した光は電気光学結晶体8を
通過するが、この間電圧印加回路9からの電圧により屈
折率が変化し、このため光の光路が長くなり、微少な光
信号の遅延を受けて結晶体8から出射する。この出射し
た光がハーフミラ−55に到達し、透過光がPINホト
ダイオード19にて受イさされ、電気信号に変換され受
信回路22へ送られる。
On the other hand, the light that has passed through the half mirror 2 passes through the electro-optic crystal 8, but during this time the refractive index changes due to the voltage from the voltage application circuit 9, which lengthens the optical path of the light and causes a slight delay in the optical signal. It is received and emitted from the crystal body 8. This emitted light reaches the half mirror 55, and the transmitted light is received by the PIN photodiode 19, converted into an electrical signal, and sent to the receiving circuit 22.

従って受イ3回路22では微少な時間幅をもった2つの
元パルスを受信する。
Therefore, the receiver A3 circuit 22 receives two original pulses having a minute time width.

そしてこの元パルスの時間間隔は・電圧印加回路9から
結晶体8に印加する電圧1fLを匍制御することにより
正確に、かつパルス幅の変化もなく高分解能にて受信す
ることができる。
By controlling the voltage 1fL applied to the crystal body 8 from the voltage application circuit 9, the time interval of the original pulse can be received accurately and with high resolution without any change in pulse width.

第4図は本発明の他の実施例による光遅延発生器であり
、電気光学結晶体8の2つの側面に反射膜が蒸着されて
おり、反射膜のない結晶体8の一部から斜めに入射され
た光は結晶体8内部で何回も反射しながら進行し、反射
膜のない他の一部から出射される。この場合は結晶体8
を通過する実質的な長さを大きくすることができ、より
大きな遅延時間の制御が可能となる。なお以上の実施例
ではバルク結晶の場合であるが、導波路構造として、き
わめて小をな光遅延発生器を得ることもできる。又電気
光学結晶体構造も上記構造に限定されることなく、他の
構造の結晶体を使用することができる。
FIG. 4 shows an optical delay generator according to another embodiment of the present invention, in which a reflective film is deposited on two sides of an electro-optic crystal body 8, and a reflective film is deposited diagonally from a part of the crystal body 8 that does not have a reflective film. The incident light travels inside the crystal body 8 while being reflected many times, and is emitted from the other part where there is no reflective film. In this case, crystal 8
It is possible to increase the actual length through which the signal passes through, making it possible to control a greater delay time. Although the above embodiment uses a bulk crystal, it is also possible to obtain an extremely small optical delay generator using a waveguide structure. Further, the electro-optic crystal structure is not limited to the above structure, and crystals having other structures can be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によると、高精度でかつ高分
解な光遅延発生回路を実現することができる。
As described above, according to the present invention, a highly accurate and highly resolved optical delay generation circuit can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は本発明の実施例
構成図、第3図は本発明の光遅延発生器を適用した光遅
延発生回路の実施例ブロック図、第4図は本発明の他の
実施例構成図、第5図は従来の光遅延発生回路を示す。 図において1は元発光器、2.5はハーフミラ−13,
4はミラー、8は電気光学結晶体、9は電圧印加回路、
11゜13は電極、12は反射防止膜、15は入射光、
16は1!源、17はパルスレーザ発生回路、19はP
INホトダイオード、20にトリガー信号発生回路、2
2は受信回路、23は反射膜を示す。 本発明f)屑自里犯 算 1 目 本発明/)笑符遡1駁明劇 % 2偲 多4図
FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a configuration diagram of an embodiment of the present invention, FIG. 3 is a block diagram of an embodiment of an optical delay generation circuit to which the optical delay generator of the present invention is applied, and FIG. 4 is a block diagram of another embodiment of the present invention, and FIG. 5 shows a conventional optical delay generation circuit. In the figure, 1 is the original light emitter, 2.5 is the half mirror 13,
4 is a mirror, 8 is an electro-optic crystal, 9 is a voltage application circuit,
11° 13 is an electrode, 12 is an antireflection film, 15 is incident light,
16 is 1! 17 is a pulse laser generation circuit, 19 is P
IN photodiode, 20 trigger signal generation circuit, 2
2 is a receiving circuit, and 23 is a reflective film. This invention f) Kuzujiri crime calculation 1st invention/) Laughter retro 1 Pierreme drama% 2 memories 4 figures

Claims (1)

【特許請求の範囲】[Claims] 電気光学結晶体10と、該結晶体に電圧印加するための
電極11、13とを設け、該電極11、13に印加する
電圧を制御することにより該結晶体内を伝播する光の光
路長を変化させ光の伝播遅延時間を変えることを特徴と
する光遅延発生器。
An electro-optic crystal 10 and electrodes 11 and 13 for applying voltage to the crystal are provided, and by controlling the voltage applied to the electrodes 11 and 13, the optical path length of light propagating within the crystal is changed. An optical delay generator characterized by changing the propagation delay time of light.
JP6219388A 1988-03-16 1988-03-16 Light delay generator Pending JPH01234819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6219388A JPH01234819A (en) 1988-03-16 1988-03-16 Light delay generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6219388A JPH01234819A (en) 1988-03-16 1988-03-16 Light delay generator

Publications (1)

Publication Number Publication Date
JPH01234819A true JPH01234819A (en) 1989-09-20

Family

ID=13193066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6219388A Pending JPH01234819A (en) 1988-03-16 1988-03-16 Light delay generator

Country Status (1)

Country Link
JP (1) JPH01234819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019762A1 (en) * 1996-04-08 1999-04-22 Herutsu Kogyo Kabushiki Kaisha Multiple reflection device
JP2015210527A (en) * 2014-04-24 2015-11-24 キヤノン株式会社 Device for controlling chirp of optical signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971028A (en) * 1982-10-18 1984-04-21 Nec Corp Optical phase modulator
JPS61163739A (en) * 1985-01-14 1986-07-24 Matsushita Electric Ind Co Ltd Transmitting device
JPS6281824A (en) * 1985-10-04 1987-04-15 Furukawa Electric Co Ltd:The Hitless switching method for optical line
JPS6371824A (en) * 1986-09-16 1988-04-01 Japan Atom Energy Res Inst Pulse width expanding device provided with pulse delaying mechanism using optical glass with high refraction factor applied to pulsed laser beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971028A (en) * 1982-10-18 1984-04-21 Nec Corp Optical phase modulator
JPS61163739A (en) * 1985-01-14 1986-07-24 Matsushita Electric Ind Co Ltd Transmitting device
JPS6281824A (en) * 1985-10-04 1987-04-15 Furukawa Electric Co Ltd:The Hitless switching method for optical line
JPS6371824A (en) * 1986-09-16 1988-04-01 Japan Atom Energy Res Inst Pulse width expanding device provided with pulse delaying mechanism using optical glass with high refraction factor applied to pulsed laser beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999019762A1 (en) * 1996-04-08 1999-04-22 Herutsu Kogyo Kabushiki Kaisha Multiple reflection device
JP2015210527A (en) * 2014-04-24 2015-11-24 キヤノン株式会社 Device for controlling chirp of optical signal

Similar Documents

Publication Publication Date Title
US5715058A (en) Method and device for the optical determination of a physical quantity
CA1070810A (en) Optical projection device and an optical reader incorporating this device
US4688940A (en) Heterodyne interferometer system
US4115747A (en) Optical modulator using a controllable diffraction grating
US4273445A (en) Interferometer gyroscope formed on a single plane optical waveguide
US4684828A (en) Apparatus to transform a single frequency, linearly polarized laser beam into a beam with two, orthogonally polarized frequencies
US3485552A (en) Phased array-type beam scanner with dispersion compensation
JPH02179626A (en) Light wavelength converter
JPH01234819A (en) Light delay generator
US5091913A (en) Quartz crystal tuning he-ne double frequency laser
JPS5975108A (en) Method and device for optical measurement of fine cap
JPH0370915B2 (en)
US4549300A (en) Semiconductor laser device
US3295912A (en) Light deflection device
US3730609A (en) Thermally compensated ultrasonic light modulator
JPH1183894A (en) Optical accelerometer
US3471804A (en) Frequency stabilized laser
US5373360A (en) Method and apparatus for reducing rotational bias in a ring laser
JPH01152781A (en) Laser light source
JPS6226406B2 (en)
CN114924422B (en) Ultrafast laser pulse sequence modulator and modulation method
JPH0782036B2 (en) Optical fiber type voltage sensor
JP2809727B2 (en) Fabry-Perot resonator
JPS60133776A (en) Semiconductor laser device
US5007060A (en) Linear laser with two-swept frequencies of controlled splitting