JPS63160027A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS63160027A
JPS63160027A JP61306073A JP30607386A JPS63160027A JP S63160027 A JPS63160027 A JP S63160027A JP 61306073 A JP61306073 A JP 61306073A JP 30607386 A JP30607386 A JP 30607386A JP S63160027 A JPS63160027 A JP S63160027A
Authority
JP
Japan
Prior art keywords
recording medium
gaseous
annealing
optical recording
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61306073A
Other languages
Japanese (ja)
Other versions
JPH0444811B2 (en
Inventor
Yoshimitsu Kobayashi
喜光 小林
Michikazu Horie
通和 堀江
Takanori Tamura
田村 孝憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61306073A priority Critical patent/JPS63160027A/en
Priority to CA000529093A priority patent/CA1258974A/en
Priority to EP87301046A priority patent/EP0242942B1/en
Priority to DE8787301046T priority patent/DE3776386D1/en
Priority to KR1019870000966A priority patent/KR910009072B1/en
Publication of JPS63160027A publication Critical patent/JPS63160027A/en
Publication of JPH0444811B2 publication Critical patent/JPH0444811B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To execute stable annealing at a low temp. in a short period and to obtain stabilized crystal structure by executing reactive sputtering in a gaseous mixture composed of gaseous fluoride and gaseous Ar by using a Te ofr Te-contg. alloy target material to obtain a deposited film contg. Te and F and annealing said film at a prescribed temp., thereby forming a recording layer. CONSTITUTION:The inside of a vacuum vessel 1 for manufacturing optical recording media is evacuated to a prescribed atm. and the gaseous Ar is introduced from a gas introducing port 5 into the vessel 1 to maintain a prescribed internal pressure therein. A high-frequency valtage is in succession impressed between electrodes 2 to generate electric discharge and to cleans the surface of the target 3 consisting of Te or the metal contg. Fe. The inside of the vessel 1 is thereafter evacuated again to the prescribed pressure and the gaseous mixture composed of the various gaseous fluorides and gaseous Ar is introduced at a prescribed ratio into the vessel. Reactive sputtering is executed in the gaseous mixture and the deposited film contg. Te and F obtd. in such a manner is annealed at 60-130 deg.C. Then heat treatment temp. is kept at 60-100 deg.C so that the recording layer after the treatment has the polycrystal structure having <1,000Angstrom crystal grain size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学的記録用媒体に関する。詳しくは、レーザ
ービームを照射して局部的に加熱し。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical recording medium. Specifically, it is heated locally by irradiating it with a laser beam.

その加熱部に穴もしくは凹部又は凸部を形成することに
よって記録する光学的記録用媒体に関するものである。
The present invention relates to an optical recording medium in which recording is performed by forming holes, depressions, or projections in the heating section.

(従来の技術及びその問題点) 基板上に形成された薄膜にレーザービームを照射して穴
もしくは凹部又は凸部全形成するようKした光学的記録
媒体として、従来よ#)Teを使用することが知られて
いる。 Teは光吸収係数が大きく、低融点、低熱伝導
度であるために上記方法による記録において高い感度を
示す。
(Prior art and its problems) Te is conventionally used as an optical recording medium in which a thin film formed on a substrate is irradiated with a laser beam to form all holes, depressions, or projections. It has been known. Since Te has a large optical absorption coefficient, low melting point, and low thermal conductivity, it exhibits high sensitivity in recording by the above method.

しかし、 Teは酸化され易く酸化されると光吸収の効
率が悪化し、記録感度が劣化するという問題がある。
However, Te is easily oxidized, and when it is oxidized, there is a problem that the light absorption efficiency deteriorates and the recording sensitivity deteriorates.

上記問題点を改良したものとして、 Teの他にB@f
含ませ合金化したもの、 Teの低酸化物、T@を有機
物重合膜中に分散させたもの等がある(例えば特開昭!
r3−3itoi1号公報、特開昭5g−5弘33g号
公報、特開昭3グー9g39’1号公報)。
As an improvement on the above problem, in addition to Te, B@f
There are alloyed materials containing Te, low oxides of Te, and materials in which T@ is dispersed in an organic polymer film (for example, JP-A-Sho!).
r3-3itoi1, JP-A-5G-5-K33G, JP-A-Sho3-9G39'1).

上記記録媒体は真空蒸着法、イオンプレーテ法によるこ
とが多い。
The above-mentioned recording medium is often produced by a vacuum evaporation method or an ion plate method.

本発明者らはArをスパッタリングガスとし。The present inventors used Ar as a sputtering gas.

TeまたはTeを含む金属をターゲット材としkTe 
系記録媒体について検討した結果、これらの媒体には基
板上の膜全面において、数千又から数μm の大きさの
結晶グレインが発生しやすいことがX線及び電子線回折
、さらには透過′電子顕微鏡像によって確認され、これ
ゆえに膜の平滑性、ビット形状、記録感度が悪く、レー
ザ忘 一光による信号再生時のノイズが高いこと形見い出した
。また、上記結晶グレインを有する堆積膜の結晶構造は
不安定で、このため反射率は。
kTe using Te or a metal containing Te as a target material
As a result of a study of these recording media, it was found that crystal grains of several thousand to several micrometers in size are likely to occur in these media over the entire surface of the film on the substrate. This was confirmed by microscopic images, and it was found that this resulted in poor film smoothness, poor bit shape, poor recording sensitivity, and high noise during signal reproduction using laser light. Furthermore, the crystal structure of the deposited film having crystal grains is unstable, and therefore the reflectance is low.

温度bsc、相対湿度trotsの加速試験において、
コダ時間以内に初期反射率のへ3倍近くにまで増加し、
経時安定性が極めて悪いととも明らかKなった。上記問
題点を解決するために、記録層の構造を非晶質あるいは
微結晶構造とし。
In accelerated tests of temperature bsc and relative humidity trots,
Within a short time, the initial reflectance increased to nearly three times,
It was also obvious that the stability over time was extremely poor. In order to solve the above problems, the structure of the recording layer is made to be amorphous or microcrystalline.

これらが結晶粒径の大きい多結晶構造に転移する温度す
なわち結晶化温度を高くシ、室瀉における結晶構造の安
定化をはかる方法がある。具体的には記録層として、T
eを母材とし、 G@、Pb、Sm等を含む合金薄膜を
用いることが桔げられる(特公昭!?−J!、3!rル
)。
There is a method of increasing the temperature at which these crystals transform into a polycrystalline structure with a large crystal grain size, that is, the crystallization temperature, in order to stabilize the crystal structure in the chamber. Specifically, as a recording layer, T
It is recommended to use an alloy thin film containing G@, Pb, Sm, etc. using E as a base material (Special Publications Sho!?-J!, 3!r).

さらに、 Teを反応性スパッタによって有機物中に分
散させることによっても同等の効果が得られる場合があ
る(%開5クー16Sコ9コ、特開5クークtr3ql
I )。
Furthermore, the same effect may be obtained by dispersing Te in organic matter by reactive sputtering (% open 5 k 16S 9 k, JP 5 k tr 3 ql).
I).

しかし、これらの媒体においてもなお結晶構造の変化に
伴い反射率(透過率)の経時変化。
However, even in these media, the reflectance (transmittance) changes over time due to changes in the crystal structure.

長時間の再生光照射による劣化が生じる。 Teを生成
分とする以上上記のような手段では長期的に、その結晶
構造を安定に保つことは困難で。
Deterioration occurs due to long-term reproduction light irradiation. As long as Te is used as a product, it is difficult to maintain a stable crystal structure over a long period of time using the above methods.

むしろ、アニールして安定化する方が望ましい。Rather, it is preferable to stabilize it by annealing.

しかし上記記録層はアニールによって初期の一様な非晶
質あるいは微結晶構造が失なわれ。
However, the recording layer loses its initial uniform amorphous or microcrystalline structure due to annealing.

グレインサイズの大きな結晶粒に転移したシ。The crystals have been transferred to crystal grains with large grain size.

また、十分な熱処理に要する温度が高過ぎてプラスチッ
ク製基板が使用できないという欠点がある。
Another drawback is that the temperature required for sufficient heat treatment is too high, making it impossible to use plastic substrates.

(問題点を解決するための手段) 本発明者らは1反応性スパッタリング法によって成膜し
fc鴇々の Te系記録媒体について検討した結果アニ
ール後においても結晶粒径が十分小さくかつ、低湛、短
時間のアニールで十分な結晶構造の安定化が可能な記録
媒体を化1本発明に到達した。
(Means for Solving the Problems) The present inventors investigated various fc Te-based recording media formed by one-reactive sputtering method, and found that the crystal grain size is sufficiently small even after annealing, and the crystal grain size is low. In this invention, we have achieved a recording medium whose crystal structure can be sufficiently stabilized by short-time annealing.

すなわち1本発明の要旨は基板上に記録層を設けてなる
光学的記録用媒体において、記録層が、Te又はTe含
有合金をターゲット材として。
That is, one aspect of the present invention is an optical recording medium comprising a recording layer provided on a substrate, in which the recording layer uses Te or a Te-containing alloy as a target material.

フッ化物ガスと Arガスとの混合ガス中で反応性スパ
ッタリングして得られた Te及びFを含む堆積膜を6
0℃〜i、yocの温度でアニールしたものであること
を特徴とする光学的記録用媒体に存する。
A deposited film containing Te and F obtained by reactive sputtering in a mixed gas of fluoride gas and Ar gas was
An optical recording medium characterized in that it is annealed at a temperature of 0° C. to i, yoc.

(発明の構成) 以下、本発明の詳細な説明する。(Structure of the invention) The present invention will be explained in detail below.

まず本発明に係る記録媒体の基板としては。First, the substrate of the recording medium according to the present invention.

アクリル樹脂、ポリカーボネート樹脂等のプラスチック
、アルミニウム等の金属又はガラス。
Plastics such as acrylic resin and polycarbonate resin, metals such as aluminum, or glass.

さらにはこれら基板上に熱硬化性あるいは光硬化性樹脂
を塗布したもの等が挙げられる。特に。
Further examples include substrates coated with thermosetting or photocurable resins. especially.

グラスチックは安価、加工が容易で、光学的特性に秀れ
ているという利点がある。
Glasstic has the advantages of being inexpensive, easy to process, and having excellent optical properties.

通常行なわれているような基、仮を通してレーザー光を
入射し、記録媒体からの反射光を検出することによって
再生を行なうような光学的信号再生システムにおいてに
、基板の複屈折が再生光強度の変動の要因となるため、
複屈折の経時的変化は好ましくない。
In optical signal reproducing systems that are commonly used, in which laser light is incident through a substrate and reproduced by detecting the reflected light from the recording medium, the birefringence of the substrate affects the intensity of the reproduced light. Because it is a factor of fluctuation,
Changes in birefringence over time are undesirable.

本発明においては、アニールによって上記プラスチック
基板の複屈折の値を安定化させることができる。特に、
アニール後の基板面に垂直な方向の複屈折がJ Onm
 以下であるようなプラスチック基板を用いれば、基板
を通して再生光を検出する方法によって複屈折に由来す
る再生光の変動によるノイズが無視しうる程度にまで低
減される。
In the present invention, the birefringence value of the plastic substrate can be stabilized by annealing. especially,
The birefringence in the direction perpendicular to the substrate surface after annealing is J Onm
If a plastic substrate as described below is used, noise due to fluctuations in the reproduced light due to birefringence can be reduced to a negligible level by the method of detecting the reproduced light through the substrate.

本発明記録媒体は、プラスチック基板の使用が適してい
るが、アニールによる記録媒体の結晶構造の安定化は、
他の基板に対しても有効である。
Although it is suitable for the recording medium of the present invention to use a plastic substrate, stabilization of the crystal structure of the recording medium by annealing is
It is also effective for other substrates.

本発明においてはこの基板上に1反応性スパッタリング
法によシ、Te 及びFを含む堆積膜を形成させる。
In the present invention, a deposited film containing Te and F is formed on this substrate by a single-reactive sputtering method.

本発明においては、Te又はTe f含む合金をターゲ
ット材としてアルゴン(Ar )ガス及びフッ化物ガス
の一種以上からなる反応性ガスとの混合ガスを導入した
真空容器内でグロー放電を行なう事によシ基板上に T
e及びFi含む堆積膜を形成する。放電に際しては高周
波法又は直流法の常法によることができる。
In the present invention, glow discharge is performed in a vacuum vessel into which a mixed gas of argon (Ar) gas and a reactive gas consisting of one or more of fluoride gases is introduced, using Te or an alloy containing Tef as a target material. T on the board
A deposited film containing e and Fi is formed. The discharge can be carried out by a conventional method such as a high frequency method or a direct current method.

スパッタリング時の基板温度は室温ないし基板の軟化点
よシ十分低い温度例えばポリカーボネートの場合11Q
−!OC程度保持される。スパッタリング堆積膜の厚み
は一〇Q〜1000X程度が望ましい。
The substrate temperature during sputtering is room temperature or sufficiently lower than the softening point of the substrate, for example 11Q in the case of polycarbonate.
-! It is maintained at about OC level. The thickness of the sputtering deposited film is desirably about 10Q to 1000X.

ターゲット材としてはTeまたはTIヲ母材として、 
 8e、  Pb、B1. Sb、S!1.  In、
 Go。
The target material is Te or TI as the base material.
8e, Pb, B1. Sb, S! 1. In,
Go.

As  等を含む合金が挙げられる。Examples include alloys containing As and the like.

本発明において、  Arと混合されるべきフッ化物ガ
スとは有機又は無機フッ化物の一種以上を含むガスであ
り1例えば四フッ化メタン、四フッ化エチレン、クロル
トリフルオロエチレン。
In the present invention, the fluoride gas to be mixed with Ar is a gas containing one or more organic or inorganic fluorides, such as tetrafluoromethane, tetrafluoroethylene, and chlorotrifluoroethylene.

三フッ化エチレン、六フッ化プロピレン、フッ化ビニル
、フン化ビニリデンなどのフッ化炭素ガス、フッ化炭化
水素ガス、フッ化塩化炭素ガス、六フッ化硫黄、六フッ
化テルルなどのフッ化カルコゲンガス、三フッ化窒累な
どのフン化窒素 ゛      ガス、さらに四フッ化
シリコン、四フッ化ゲルマニウム等のフッ化金属ガスな
どが用いられる。
Fluorocarbon gases such as trifluoroethylene, hexafluoropropylene, vinyl fluoride, vinylidene fluoride, fluorinated hydrocarbon gases, fluorochlorinated carbon gases, fluorinated chalcogens such as sulfur hexafluoride, tellurium hexafluoride, etc. Gases, nitrogen fluoride gases such as nitrogen trifluoride, and metal fluoride gases such as silicon tetrafluoride and germanium tetrafluoride are used.

上記フッ化物反応性ガスのうち/aまたは一種以上と、
 Arガスとの混合ガス中において。
/a or one or more of the above fluoride-reactive gases;
In a mixed gas with Ar gas.

該反応性ガスの比率は、得られるスパッタリング堆積膜
が非晶質となり、かつ、基板に多大なダメージを与えな
いように選ばれる。放電条件。
The proportion of the reactive gas is selected so that the resulting sputter-deposited film is amorphous and does not cause significant damage to the substrate. discharge conditions.

反応性ガスの種類によってその範囲は異なるが。The range varies depending on the type of reactive gas.

一般に1−ro%c体積比)の間にある。結果としてア
ニール後に0./〜30原子憾のフッ素原子を含んでい
ることが望ましい。さらに堆積膜中に S@ヲ含ませる
ためにはターゲットとして TeSe合金を用いたシ1
反応性ガスとしてS@FbとArとの混合ガスを用いた
りすれば良い。
generally between 1-ro%c volume ratio). As a result, after annealing 0. It is desirable to contain fluorine atoms of /~30 atoms. Furthermore, in order to include S@ into the deposited film, a film using a TeSe alloy as a target was used.
A mixed gas of S@Fb and Ar may be used as the reactive gas.

上記のように基板上に Te及びフッ素を含むスパッタ
リング堆積膜を形成した後、アニール処理して充分安定
化させる。アニールは、真空中、あるいは乾燥した大気
または窒素雰囲気中等のいずれの雰囲気であっても良い
が、アニール雰囲気を均一に保つためには乾燥した大気
または窒素雰囲気が望ましい。アニールは60℃以上t
3O℃未満、好ましくは60℃以上io。
After a sputtering deposited film containing Te and fluorine is formed on a substrate as described above, it is sufficiently stabilized by annealing. Annealing may be performed in vacuum, or in any atmosphere such as dry air or nitrogen atmosphere, but dry air or nitrogen atmosphere is preferable in order to maintain a uniform annealing atmosphere. Annealing is over 60℃
less than 30°C, preferably 60°C or more io.

℃未満、更に好ましくは60℃以上90℃以下の雰囲気
で行う。プラスチック基板を用いる場合にはその軟化点
より十分低い温度が望ましく。
It is carried out in an atmosphere of less than 0.degree. C., more preferably 60.degree. C. or more and 90.degree. C. or less. When using a plastic substrate, the temperature is preferably sufficiently lower than its softening point.

例えば、ポリカーボネート樹脂基板に対しては90C以
下が望ましい。
For example, 90C or less is desirable for a polycarbonate resin substrate.

アニールは記録媒体の結晶構造が十分安定するまで行う
必要があるが1本発明記録媒体に対しては10分間橿度
で十分である。ただし、Te系記録媒体特有のニンニク
臭を除去するために。
Annealing must be performed until the crystal structure of the recording medium is sufficiently stabilized, but 10 minutes of hardness is sufficient for the recording medium of the present invention. However, in order to remove the garlic odor peculiar to Te-based recording media.

1時間程度のアニールを行うことは有効である。It is effective to perform annealing for about one hour.

アニールはスパッタリング終了後引続き昇温して行って
もよいが、通常は一旦系外に取出し室温になったものを
昇温し処理する。
Annealing may be performed by raising the temperature after sputtering is completed, but normally the material is taken out of the system and brought to room temperature, then heated and processed.

本発明における記録媒体はアニール前には一様な非晶質
構造であり、アニール後も結晶粒径が70001未満の
多結晶構造である。特に。
The recording medium in the present invention has a uniform amorphous structure before annealing, and has a polycrystalline structure with a crystal grain size of less than 70,001 even after annealing. especially.

結晶粒径を数百又以下にすることが可能でこの程度の結
晶粒径では、再生光へのノイズの生起あるいは、ビット
形状の乱れなどの悪影響を全く生じない。なお5本発明
にいう非晶質構造とは1通常のX線回折法において、明
確な結晶ピークを見い出し得ない膜構造を言い1粒径数
十又程度のいわゆる微結晶が存在するような構造をも含
めて言う。また、結晶粒径t000A未満の多結晶構造
とは、膜中の最大の結晶粒径が1000に未満であるよ
うなすべての結晶構造を言い、非晶質、微結晶、多結晶
あるいはこれらが混合したベテロ楊造等をも含めて言う
。このような構造は正確には透過電子顕微鈍を用い。
It is possible to reduce the crystal grain size to several hundreds of degrees or less, and with a crystal grain size of this order, there will be no adverse effects such as generation of noise in the reproduction light or disturbance of the bit shape. 5. The amorphous structure referred to in the present invention refers to a film structure in which no clear crystalline peak can be found in ordinary X-ray diffraction, and a structure in which so-called microcrystals with a grain size of about several dozen or so exist. It also includes. In addition, a polycrystalline structure with a crystal grain size of less than t000A refers to all crystal structures in which the maximum crystal grain size in the film is less than 1000A, and includes amorphous, microcrystalline, polycrystalline, or a mixture of these. This includes Betello Yangzo and others. To be precise, such a structure is created using a transmission electron microscope.

膜の透過像、回折像、あるいは格子像を観察することに
よシ確認できる。
This can be confirmed by observing a transmission image, a diffraction image, or a lattice image of the film.

アニール後に上記のように安定で微細な結晶構造を得る
ためには、アニール後の膜中に含まれるフッ素の含有量
が0./ % 、7θ原子秀であることが望ましい。よ
シ望ましくはl−一〇原子チであ)、フッ素含有量が1
%未満ではアニール後の結晶が1oooXより大きくな
りやすい傾向がある。また、フッ素原子はダ0原子チ程
度まで含ませることができるが、3o原子チを越すとビ
ット形状が乱れるため望ましくない。
In order to obtain a stable and fine crystal structure as described above after annealing, the fluorine content in the film after annealing must be 0. /%, 7θ atomic strength is desirable. (preferably 1-10 atoms), and the fluorine content is 1
%, the crystals after annealing tend to be larger than 10ooX. Although fluorine atoms can be contained up to about 0 atoms, it is not desirable to include more than 3 atoms because the bit shape will be disturbed.

また、コOチを越すと、結晶化温度が高くなる傾向があ
る。
In addition, when the temperature exceeds 0.05 to 100%, the crystallization temperature tends to become high.

上記記録媒体の結晶構造は、100℃以上io。The crystal structure of the recording medium is 100° C. or higher.

c未満、特にqOC以下の温度のアニールによって、十
分安定化されることが望ましい。本発明記録媒体は反応
性ガスと Arガスとの混合比を制御することKよって
、結晶構造の転移温度を上記範囲内に制御することが可
能である。
It is desirable that sufficient stabilization be achieved by annealing at a temperature below c, especially below qOC. In the recording medium of the present invention, the transition temperature of the crystal structure can be controlled within the above range by controlling the mixing ratio of the reactive gas and the Ar gas.

本発明記録媒体においては、FがTe の未結合手を終
端するために Teの酸化を防ぐ効果もあるが、さらに
耐酸化性を増すために、Te、rの他にS@ を!〜コ
!原原子チオせることは効果的である。該Te 、F及
びS@ヲ含むスパッタリング堆積膜においてもアニール
による結晶構造の安定化は有効である。
In the recording medium of the present invention, since F terminates the dangling bonds of Te, it has the effect of preventing oxidation of Te, but in order to further increase the oxidation resistance, S@ is added in addition to Te and r! ~Ko! It is effective to dissolve the atom atoms. Stabilization of the crystal structure by annealing is also effective in sputtering deposited films containing Te, F, and S@.

本発明に係る記録媒体は上記のように基板上にスパッタ
リング堆積膜を形成させているが。
In the recording medium according to the present invention, a sputtering deposited film is formed on the substrate as described above.

さらに基板と該スパッタ膜との間に記録感度の向上、ビ
ット形状の改善等のために下引き層を設けることもでき
、さらには記録媒体保護のために該記録媒体上に保護膜
を設けることもできる。特に、下引き層としてはフルオ
ロカーボン下引きMe用いることが有効である。
Further, an undercoat layer may be provided between the substrate and the sputtered film to improve recording sensitivity, improve bit shape, etc. Furthermore, a protective film may be provided on the recording medium to protect the recording medium. You can also do it. In particular, it is effective to use fluorocarbon undercoat Me as the undercoat layer.

以下、実施例を以って本発明の詳細な説明する。実施例
1においてはアニール後の結晶構造の微細化及び結晶化
温度の制御方法の例を挙げ。
Hereinafter, the present invention will be explained in detail with reference to Examples. In Example 1, an example of a method for controlling the refinement of the crystal structure and the crystallization temperature after annealing is given.

実施例コにおいてアニールによる結晶構造安定化の効果
について明らかにした。
In Example 2, the effect of crystal structure stabilization by annealing was clarified.

(実施例1〜r)(比較例1.コ) 第1図は不発8AlC係る光学的記録媒体の製造のため
の装置の一例である。図中(1)は真空容器。
(Examples 1 to r) (Comparative Example 1.) FIG. 1 is an example of an apparatus for manufacturing an optical recording medium using unexploded 8AlC. In the figure (1) is a vacuum container.

(2)は電極、(3)はT@またはT@を含む金属ター
ゲラ)、(4)は基板、(5)はガス導入口、(6)は
シャッター、(力は排気口である。まず、真空容器(1
)を/ 0−@Terr台まで排気した後Arガスを導
入口(5)よシ導入し、真空容器(1)の内圧をrxi
o−”Terr程度とする。引き続き電極(2)の間に
高周波電圧を印加し、放電を起こさせる。この状態をI
O分間程度保持して表1に示した金属ターゲット(3)
表面を清浄にする。その後真空容器内を再びIQ″″’
 Terr台まで排気し1表7に示すような各種フッ化
物ガスと Arガスを同表中に示すような流量比にて導
入口(5)よ)導入し、電極(2)の間に高周波電圧を
印加し放電を起こさせる。
(2) is the electrode, (3) is T@ or a metal target layer containing T@), (4) is the substrate, (5) is the gas inlet, (6) is the shutter, (force is the exhaust port. , vacuum container (1
) is evacuated to / 0-@Terr level, Ar gas is introduced through the inlet (5), and the internal pressure of the vacuum vessel (1) is set to rxi.
o-”Terr.Subsequently, a high frequency voltage is applied between the electrodes (2) to cause discharge.This state is called I
Metal target (3) shown in Table 1 after being held for about 0 minutes
Clean the surface. After that, the inside of the vacuum container is again IQ'''''
After exhausting to the Terr level, various fluoride gases and Ar gas as shown in Table 7 were introduced through the inlet (5) at the flow rate ratio shown in the table, and a high frequency voltage was applied between the electrodes (2). is applied to cause discharge.

放電電力及び真空容器(1)内の圧力は表1に示されて
いる通りである。なお、基板としては厚さ12mのガラ
ス基板を用いた。得られたスパッタリング堆積膜の厚み
はいずれも300〜ダOθ又であった。アニール後の膜
中のフッ累含有量(FA子%)は表1に示す通9である
。上記スパッタリング堆積膜の結晶構造の安定化に必要
なアニール温度を評価するためガラス基板上の記録媒体
の透過率の1度変化を測定した。透過率の温度変化のパ
ターンの一例として表1中の実施例(6)の場合につい
てX2図に示す。同図に示すような狭い温度範囲での透
過率の速やかな変化は膜の結晶構造の変化、すなわち、
結晶粒径の増大とその安定化によるものであることがX
線及び電子線回折さらには透過電子顕微鏡像によって確
認された。5表1に透過率が変化する温度、すなわち、
膜の結晶化温度(第一図の破線の点にあたる)及び結晶
化後の結晶粒径の最大値を示す。
The discharge power and the pressure inside the vacuum vessel (1) are as shown in Table 1. Note that a glass substrate with a thickness of 12 m was used as the substrate. The thickness of the obtained sputtering deposited film was 300 to 0.0 degrees. The cumulative fluorine content (FA%) in the film after annealing was 9 as shown in Table 1. In order to evaluate the annealing temperature required to stabilize the crystal structure of the sputtering deposited film, a 1 degree change in the transmittance of the recording medium on the glass substrate was measured. As an example of the pattern of temperature change in transmittance, the case of Example (6) in Table 1 is shown in diagram X2. The rapid change in transmittance in a narrow temperature range as shown in the figure is due to a change in the crystal structure of the film, that is,
X is due to the increase in crystal grain size and its stabilization.
This was confirmed by ray and electron diffraction as well as transmission electron microscopy images. 5 Table 1 shows the temperature at which the transmittance changes, that is,
The crystallization temperature of the film (corresponding to the dotted line in Figure 1) and the maximum value of the crystal grain size after crystallization are shown.

実施例(1)〜(8)においてはアニールによシ安定で
均一かつ微細な結晶構造が形成され、再生光へのノイズ
等の悪影響を及ぼさない。またビット形成に要するレー
ザー光エネルギー、すなわち、感度の場所ムラはほとん
どなく、かつ均一なピットが形成された。比較例(IL
 (2)としてフッ化物ガスを用いなかった場合及びフ
ッ化ガスに代えてCB、ガスを用いた場合を示す。比較
例(1)及び(2)の場合は結晶粒径が大きいため、再
生光ノイズが高くまたピット形状も不均一であった。
In Examples (1) to (8), a stable, uniform, and fine crystal structure is formed by annealing, and there is no adverse effect such as noise on the reproduction light. Further, there was almost no local unevenness in the laser light energy required for bit formation, that is, the sensitivity, and uniform pits were formed. Comparative example (IL
(2) shows the case where fluoride gas was not used and the case where CB or gas was used instead of fluoride gas. In the case of Comparative Examples (1) and (2), since the crystal grain size was large, the reproduction light noise was high and the pit shape was non-uniform.

上記実施例かられかるように、本発明記録媒体のアニー
ル後の結晶粒径は十分小さく、また。
As can be seen from the above examples, the crystal grain size of the recording medium of the present invention after annealing is sufficiently small.

結晶化温度の制御が可能で特にqo℃以下にすることが
可能である。
It is possible to control the crystallization temperature, and in particular, it is possible to keep it below qo°C.

(実施例9) 実施例(6)の記録媒体をトラッキング用の案内溝(ト
ラック)をつけた円板状のポリカーボネート樹脂基板上
に成膜し、アニール前後でのディスク特性の変化を検討
した。ただし、アニールはざ0℃で1時間大気中にて行
った。
(Example 9) The recording medium of Example (6) was formed into a film on a disc-shaped polycarbonate resin substrate with guide grooves (tracks) for tracking, and changes in disk characteristics before and after annealing were examined. However, the annealing was performed in the air at 0° C. for 1 hour.

了ニールによる微細な結晶構造の形成に伴い。With the formation of a fine crystal structure due to clearing.

記録媒体の反射率は初期の値の1.1倍程度になって安
定化する。これにより再生光ノイズを増加させることな
く、信号強度全増加させることができ、全体として一〜
3dBのC/N比(Carrierto noirs 
ratio )  の改善ができた。上記記録媒体の光
学的特性は4jC110%RHの加速試験において全く
安定であった。また、再生光を同一トラック上に繰シ返
し照射することによる記録媒体の変質を検討したところ
、アニール前では再生光パワー八3 mm  で媒体の
変質が始まシ。
The reflectance of the recording medium becomes about 1.1 times the initial value and stabilizes. This allows the total signal strength to be increased without increasing the reproduced optical noise, resulting in an overall
3dB C/N ratio
ratio) was improved. The optical properties of the recording medium were completely stable in the 4jC110%RH accelerated test. Furthermore, when we examined the deterioration of the recording medium due to repeated irradiation of the same track with the reproducing light, we found that the deterioration of the medium began at a reproducing light power of 83 mm before annealing.

正確な再生ができなくなるのに対し、アニール後には全
く安定であった。
While accurate reproduction was no longer possible, it was completely stable after annealing.

以上によシアニールにより記録媒体の構造の安定化が十
分達成されていることは明らかである。
It is clear from the above that the structure of the recording medium is sufficiently stabilized by cyanyl.

実施例(1)〜(7)の媒体については、すべて同様の
効果が認められた。実施例(8)は上記と同等の効果を
得るために90℃以上の温度でのアニールが必要であり
、ポリカーボネート樹脂基板の使用には適さない。
Similar effects were observed for all the media of Examples (1) to (7). Example (8) requires annealing at a temperature of 90° C. or higher in order to obtain the same effect as above, and is not suitable for use with a polycarbonate resin substrate.

なお、上記ポリカーボネート樹脂基板のアニール後の複
屈折が’I Onm 速度の場合とコQ nm程度の場
合について再生光ノイズに与える影響を検討したところ
、該複屈折がコOnm 程度の場合には約λ〜、7 d
B  のノイズレベルの低下が見られ、 C/N比の改
善に効果があった。
In addition, when we examined the effect on the reproduction light noise when the birefringence after annealing of the polycarbonate resin substrate is at a speed of 'I Onm and when it is around Q nm, we found that when the birefringence is around Q nm, it is approximately λ~, 7 d
A decrease in the noise level of B was observed, and it was effective in improving the C/N ratio.

(発明の効果) 本発明によれば均一で微細かつ安定な結晶構造を有する
光学的記録媒体を得ることができ。
(Effects of the Invention) According to the present invention, an optical recording medium having a uniform, fine, and stable crystal structure can be obtained.

これにより、長期間に亘って安定で高品質な情報の記録
再生が可能となった。
This has made it possible to record and reproduce stable, high-quality information over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の記録媒体を製造する際に用いる装置の
概略説明図、第2図は本発明の記録媒体の一例の温度変
化による透過率変化を示すグラフである。 図中lは真空容器、コは′IIL&、 Jはターゲラ)
、 IIは基板、jはガス導入口、6はシャッター、7
は排気口をそれぞれ示す。 出願人  三便化成工業株式会社 代理人  弁理士 長谷用  − 〇ほか1名) 第1 図 男2図 温7皮σC)
FIG. 1 is a schematic explanatory diagram of an apparatus used in manufacturing the recording medium of the present invention, and FIG. 2 is a graph showing changes in transmittance due to temperature changes of an example of the recording medium of the present invention. In the figure, l is a vacuum container, C is 'IIL &, J is Tagera)
, II is the substrate, j is the gas inlet, 6 is the shutter, 7
indicates the exhaust port. Applicant Sanbin Kasei Kogyo Co., Ltd. Agent Patent attorney Hase Yo - 〇 and 1 other person)

Claims (7)

【特許請求の範囲】[Claims] (1)基板上に記録層を設けてなる光学的記録用媒体に
おいて、記録層が、Te又はTe含有合金をターゲット
材として、フッ化物ガスとArガスとの混合ガス中で反
応性スパッタリングして得られたTe及びFを含む堆積
膜を60℃〜130℃の温度でアニールしたものである
ことを特徴とする光学的記録用媒体。
(1) In an optical recording medium having a recording layer provided on a substrate, the recording layer is formed by reactive sputtering in a mixed gas of fluoride gas and Ar gas using Te or a Te-containing alloy as a target material. An optical recording medium characterized in that the obtained deposited film containing Te and F is annealed at a temperature of 60°C to 130°C.
(2)熱処理後の記録層が、結晶粒径が1,000Å未
満の多結晶構造であることを特徴とする特許請求の範囲
第1項記載の光学的記録用媒体。
(2) The optical recording medium according to claim 1, wherein the recording layer after heat treatment has a polycrystalline structure with a crystal grain size of less than 1,000 Å.
(3)上記熱処理が60℃以上100℃未満の温度で行
なわれることを特徴とする特許請求の範囲第1項記載の
光学的記録用媒体。
(3) The optical recording medium according to claim 1, wherein the heat treatment is performed at a temperature of 60°C or more and less than 100°C.
(4)記録層中のフッ素の含有量が0.1〜30原子%
であることを特徴とする特許請求の範囲第1項記載の光
学的記録用媒体。
(4) Fluorine content in the recording layer is 0.1 to 30 at%
An optical recording medium according to claim 1, characterized in that:
(5)記録層がさらにSeを5〜25原子%含むことを
特徴とする特許請求の範囲第1項記載の光学的記録用媒
体。
(5) The optical recording medium according to claim 1, wherein the recording layer further contains 5 to 25 atom % of Se.
(6)上記基板が少なくとも光学的記録及び再生を行う
光の波長において透明であり、かつ、アニール後の基板
面に垂直な方向の複屈折が30nm以下であることを特
徴とする特許請求の範囲第1項記載の光学的記録用媒体
(6) Claims characterized in that the substrate is transparent at least at the wavelength of light used for optical recording and reproduction, and has birefringence in the direction perpendicular to the substrate surface after annealing of 30 nm or less The optical recording medium according to item 1.
(7)記録層と基板との間にフルオロカーボン膜からな
る引下き層を設けたことを特徴とする特許請求の範囲第
1項記載の光学的記録用媒体。
(7) The optical recording medium according to claim 1, further comprising a pull-down layer made of a fluorocarbon film between the recording layer and the substrate.
JP61306073A 1986-04-24 1986-12-22 Optical recording medium Granted JPS63160027A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61306073A JPS63160027A (en) 1986-12-22 1986-12-22 Optical recording medium
CA000529093A CA1258974A (en) 1986-04-24 1987-02-05 Optical recording medium and process for producing the same
EP87301046A EP0242942B1 (en) 1986-04-24 1987-02-05 Optical recording medium and process for producing the same
DE8787301046T DE3776386D1 (en) 1986-04-24 1987-02-05 OPTICAL RECORDING MEDIUM AND METHOD FOR THE PRODUCTION THEREOF.
KR1019870000966A KR910009072B1 (en) 1986-04-24 1987-02-05 Optical recording carrier and manufacturing process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61306073A JPS63160027A (en) 1986-12-22 1986-12-22 Optical recording medium

Publications (2)

Publication Number Publication Date
JPS63160027A true JPS63160027A (en) 1988-07-02
JPH0444811B2 JPH0444811B2 (en) 1992-07-22

Family

ID=17952714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61306073A Granted JPS63160027A (en) 1986-04-24 1986-12-22 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS63160027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469390A (en) * 1987-09-10 1989-03-15 Daicel Chem Optical information recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469390A (en) * 1987-09-10 1989-03-15 Daicel Chem Optical information recording medium

Also Published As

Publication number Publication date
JPH0444811B2 (en) 1992-07-22

Similar Documents

Publication Publication Date Title
US4238803A (en) Information recording methods using lasers
JPS6034897A (en) Rewritable optical recording medium
Togami et al. Amorphous GdCo disk for thermomagnetic recording
US4839207A (en) Optical recording medium and process for producing the same
US20050045587A1 (en) Method for producing a master disk of a recording medium, method for producing a stamper, method for producing a recording medium, master disk of a recording medium, stamper of a recording medium, and recording medium
JPH01196743A (en) Information recording medium
JPS63160027A (en) Optical recording medium
JPH02171286A (en) Information recording medium
KR910009072B1 (en) Optical recording carrier and manufacturing process therefor
JPS6297885A (en) Laser beam recording member and production thereof
JPH0462556B2 (en)
JPH02171289A (en) Information recording medium
JP2825059B2 (en) Optical disc and method of manufacturing the same
CA1258974A (en) Optical recording medium and process for producing the same
JPS6395983A (en) Optical recording medium
JPH0444812B2 (en)
JPS60147392A (en) Optical information recording medium
JPS59198543A (en) Medium for optical recording and manufacture thereof
JPS62154241A (en) Medium for optical recording
JP2924650B2 (en) Optical disc and method of manufacturing the same
JPH02147393A (en) Information recording medium
JPH02147394A (en) Information recording medium
JPH02171290A (en) Information recording medium
JPH0530195B2 (en)
JPH0449175B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term