JPH02147394A - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JPH02147394A
JPH02147394A JP63300920A JP30092088A JPH02147394A JP H02147394 A JPH02147394 A JP H02147394A JP 63300920 A JP63300920 A JP 63300920A JP 30092088 A JP30092088 A JP 30092088A JP H02147394 A JPH02147394 A JP H02147394A
Authority
JP
Japan
Prior art keywords
layer
recording layer
recording
amorphous
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300920A
Other languages
Japanese (ja)
Inventor
Katsumi Suzuki
克己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63300920A priority Critical patent/JPH02147394A/en
Publication of JPH02147394A publication Critical patent/JPH02147394A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To enable overwriting by providing sequentially a first amorphous silicon layer, a recording layer, a second amorphous silicon layer and a metallic layer on a substrate, and forming the recording layer of an alloy with a specified composition. CONSTITUTION:A substrate 11 is formed from a material being transparent and showing little change with time, for example, a glass or polycarbonate. An a-Si layer 12, a recording layer 13, an a-Si layer 14, a metallic layer 15 and a protective layer 16 are provided on the substrate 11. The recording layer 13 is formed of an In-Sb-Te alloy capable of showing a phase change between a crystalline phase and an amorphous phase, the alloy having an enthalpy of mixing in liquid phase of less than -5,000J/mol. The recording layer 13 is in the crystalline phase in an initialized state, and an amorphous record mark 19 is formed upon irradiation with a laser beam 18 under predetermined conditions. The a-Si layers 12, 14 heat-insulate the recording layer 13, whereas the metallic layer 15 rapidly cools the irradiated part, and the protective layer 16 prevents generation of flaws or the like.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、レーザビーム等の光ビームを照射すること
により記録層に結晶 と非晶質 との間の相変化を生じ
させて情報を情報を記録又は消去することができる光デ
ィスク等の情報記録媒体に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention produces a phase change between crystal and amorphous in a recording layer by irradiating it with a light beam such as a laser beam. The present invention relates to an information recording medium such as an optical disk on which information can be recorded or erased.

(従来の技術及び発明が解決しようとする課題) 従来より、情報の消去が可能な光ディスクとして相変化
型のものが知られている。このような相変化型の光ディ
スクにおいては、記録層に照射するレーザビームの照射
条件により、記録層の照射部分を相異なる2つの構造状
態の間で可逆的に変化させることにより情報を記録・消
去する。
(Prior Art and Problems to be Solved by the Invention) Phase change type optical discs have been known as optical discs from which information can be erased. In such phase-change optical discs, information is recorded and erased by reversibly changing the irradiated portion of the recording layer between two different structural states depending on the irradiation conditions of the laser beam irradiated to the recording layer. do.

このような光ディスクに使用される材料としては、例え
ばTe、Ge、TeGe、InSe。
Examples of materials used for such optical discs include Te, Ge, TeGe, and InSe.

5bSe、5bTe等の半導体、半導体化合物、又は金
属間化合物が知られている。これらは、し−ザビームの
照射条件により、結晶相及び非晶質相の2つの状態をと
り得、各状態における複素屈折率N−n−1kが相違す
るので、レーザビームによる熱処理で記録層のレーザビ
ーム照射部分の状態を結晶相と非晶質相との間で可逆的
に変化させることにより情報を記録・消去することがで
きる(S、R,0vshInsky et al、Me
tal IurglcalTransactlons 
2.641 (1971) )。
Semiconductors, semiconductor compounds, or intermetallic compounds such as 5bSe and 5bTe are known. These can take two states, a crystalline phase and an amorphous phase, depending on the laser beam irradiation conditions, and the complex refractive index N-n-1k in each state is different, so heat treatment with a laser beam can change the recording layer. Information can be recorded and erased by reversibly changing the state of the laser beam irradiated area between a crystalline phase and an amorphous phase (S, R, 0vshInsky et al, Me
tal Urgcal Transactlons
2.641 (1971)).

一方、これとは異なり、レーザビームの照射条件により
2つの結晶相の間で可逆的に相変化させて情報を記録・
消去する光ディスクも知られている。このような相変化
が生じる材料としてはIn−5b合金がある。In−S
b合金薄膜は、比較的長めのレーザビームパルスの照射
により一旦溶融され、その後徐冷凝固されることにより
微細な結晶となり、また、短いレーザビームパルスの照
射により微細な結晶が短時間に比較的大きな結晶に成長
する。これら2つの結晶構造は異なる複素屈折率を有し
、レーザビームを照射して情報を再生する場合に、例え
ば反射光量の差で結晶状態を区別する。
On the other hand, unlike this, information can be recorded by reversibly changing the phase between two crystal phases depending on the laser beam irradiation conditions.
Erasable optical discs are also known. In-5b alloy is an example of a material in which such a phase change occurs. In-S
The b-alloy thin film is melted once by irradiation with a relatively long laser beam pulse, and then slowly cooled and solidified to become fine crystals, and fine crystals are melted in a relatively short time by irradiation with a short laser beam pulse. Grows into large crystals. These two crystal structures have different complex refractive indices, and when reproducing information by irradiating with a laser beam, the crystal states are distinguished, for example, by the difference in the amount of reflected light.

ところで、上述のような相変化型の情報記録媒体におい
ては、近時、単一レーザビームによるオーバーライド機
能を可能にずべく、盛んに研究されている。オーバーラ
イドとは、単一のレーザビームから放射されるレーザビ
ームを2段階のパワーレベルPE  (消去)及びPw
  (記録)(Pw>PE)の間でパワー変調し、これ
により既に記録された情報を消去しながら新しい情報を
重ね書きする方式のことである。
Incidentally, in the above-mentioned phase change type information recording medium, active research has recently been conducted in order to enable an override function using a single laser beam. Override means that the laser beam emitted from a single laser beam is changed to two levels of power levels PE (erasure) and Pw.
(Recording) This is a method in which power is modulated between (Pw>PE) and new information is overwritten while erasing already recorded information.

しかしながら、従来開発されている相変化型の情報記録
媒体は、パルスレーザを用いて情報を記録し、連続発光
のレーザビームで消去するという方式が一般的であり、
この方式により良好な記録及び消去特性が得られている
ものの、オーバーライドに関しては未だ十分な特性が得
られていないのが現状である。
However, conventionally developed phase change information recording media generally record information using a pulsed laser and erase it using a continuous laser beam.
Although good recording and erasing characteristics have been obtained using this method, the current situation is that sufficient characteristics regarding override have not yet been obtained.

この発明はかかる事情に鑑みてなされたものであって、
オーバーライドが可能であり、特性が良好な情報記録媒
体を提供することを目的とする。
This invention was made in view of such circumstances, and
The purpose of the present invention is to provide an information recording medium that can be overridden and has good characteristics.

[発明の構成] (課題を解決するための手段) この発明に係る情報記録媒体は、基板と、光ビームの照
射条件により結晶相と非晶質相との間で可逆的に相変化
する記録層と、前記基板と前記記録層との間に設けられ
た第1のアモルファスシリコン層と、記録層の上に設け
られた第2のアモルファスシリコン層と、この第2のア
モルファスシリコン層の上に設けられた金属層とを有し
、前記記録層はI nx Sb、Tea  (ただし、
XrY*2は夫々原子%で表されており、x+y+z−
100である)で示される組成の合金で形成され、これ
らx、y、zは、その合金の液相の混合エンタルピーが
一5000J/molよりも小さくなるように設定され
ていることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) An information recording medium according to the present invention includes a substrate and a recording medium whose phase changes reversibly between a crystalline phase and an amorphous phase depending on the irradiation conditions of a light beam. a first amorphous silicon layer provided between the substrate and the recording layer, a second amorphous silicon layer provided on the recording layer, and a first amorphous silicon layer provided on the second amorphous silicon layer; The recording layer has a metal layer provided with Inx Sb, Tea (however,
XrY*2 is each expressed in atomic %, x+y+z-
100), and these x, y, and z are set such that the mixing enthalpy of the liquid phase of the alloy is less than 15000 J/mol. .

(作用) このような構成によれば、記録層は結晶相と非晶質相と
の間で相変化することが可能であり、このような記録層
を、断熱効果が高い第1及び第2のアモルファスシリコ
ン層により挟んでいるので、オーバーライドにおいて良
好な消去特性を得ることができる。また、金属層の放熱
効果により、オーバーライドにおける記録用パワーのレ
ーザビーム照射部位を急冷することができるので良好な
記録特性を得ることができる。すなわち、オーバーライ
ドが可能であり、しかも良好なオーバーライド特性を得
ることができる。
(Function) According to such a configuration, the recording layer can undergo a phase change between a crystalline phase and an amorphous phase, and such a recording layer can be connected to the first and second layers having a high heat insulating effect. Since it is sandwiched between two amorphous silicon layers, good erasing characteristics can be obtained in overwriting. Further, due to the heat dissipation effect of the metal layer, the area irradiated with the laser beam of the recording power during override can be rapidly cooled, so that good recording characteristics can be obtained. That is, overriding is possible and good overriding characteristics can be obtained.

(実施例) 以下、この発明について具体的に説明する。(Example) This invention will be specifically explained below.

相変化型の情報記録媒体は、結晶−非晶質間で相変化す
るタイプ、結晶間で相変化するタイプのいずれも、例え
ば第4図に示すような構造を有している。すなわち、透
明な基板1上に、化学的及び熱的に安定な誘電体材料か
らなる保護層2、相変化型の記録層3、保護層2と同様
の材料からなる保護層4、及び紫外線硬化樹脂(UV樹
脂)からなり取扱い玉虫じる傷を防止するための保護層
5がこの順に形成されている。
Phase change type information recording media, both types that undergo a phase change between crystalline and amorphous states and types that undergo a phase change between crystals, have a structure as shown in FIG. 4, for example. That is, a protective layer 2 made of a chemically and thermally stable dielectric material, a phase change type recording layer 3, a protective layer 4 made of the same material as the protective layer 2, and an ultraviolet curing layer are formed on a transparent substrate 1. A protective layer 5 made of resin (UV resin) to prevent scratches during handling is formed in this order.

これらの中で、保護層2.4は以下のような機能を有し
ている。
Among these, the protective layer 2.4 has the following functions.

■レーザビームを記録層3に照射した際に、その照射部
分が蒸発して穴が形成されることを防止すると共に、記
録・消去の繰返しによる記録層3の変形を防止する機能
(2) A function that prevents the formation of holes due to evaporation of the irradiated portion when the recording layer 3 is irradiated with a laser beam, and also prevents deformation of the recording layer 3 due to repeated recording and erasing.

■光学的な干渉を利用して再生信号をエンハンスする機
能。
■A function that enhances the playback signal using optical interference.

■記録層3にレーザビームを照射した際に、所望の相変
化が生じるように記録層3の温度をコントロールする機
能。
(2) A function to control the temperature of the recording layer 3 so that a desired phase change occurs when the recording layer 3 is irradiated with a laser beam.

上記■に関しては、記録層3が結晶−非晶質間で相変化
するタイプの場合には、記録用のレーザビームを照射す
ることにより発生した熱を記録層3から速やかに放出さ
せて急冷非晶質化を容易にすることが要求される。また
、記録層3が結晶間で相変化するタイプの場合には、記
録層3を断熱して記録層3からの熱の放出を抑制する機
能が要求される。すなわち、記録層3にレーザビームを
照射して溶融させた後、徐冷して結晶相聞の相変化を補
助するのである。
Regarding (2) above, if the recording layer 3 is of a type that undergoes a phase change between crystalline and amorphous, the heat generated by irradiation with the recording laser beam is quickly released from the recording layer 3 to rapidly cool it. It is required to facilitate crystallization. Further, in the case where the recording layer 3 is of a type that undergoes a phase change between crystals, a function of insulating the recording layer 3 and suppressing heat release from the recording layer 3 is required. That is, after the recording layer 3 is irradiated with a laser beam to melt it, it is slowly cooled to assist the phase change between the crystal phases.

しかし、オーバーライドを可能にするためには、記録層
3が結晶−非晶質間で相変化するタイプの場合にも、こ
れら保護層2.4に上述した断熱機能が要求される。つ
まり、オーバーライドを行う場合には、消去用のレーザ
ビームパワーを記録用のレーザビームパワーよりも小さ
くしなければならないため、消去のための結晶化の際に
は、むしろ断熱的にしたほうが都合が良いのである。す
なわち、オーバーライドを可能にするためには、記録層
を断熱すること、及び記録層からの放熱を良好にするこ
との相反する2つの条件を満足する必要がある。
However, in order to enable override, even when the recording layer 3 is of a type in which the phase changes between crystalline and amorphous, the protective layers 2.4 are required to have the above-mentioned heat insulating function. In other words, when overriding, the erasing laser beam power must be lower than the recording laser beam power, so it is more convenient to use adiabatic crystallization for erasing. It's good. That is, in order to enable overriding, it is necessary to satisfy two contradictory conditions: to insulate the recording layer and to improve heat dissipation from the recording layer.

上述の2つの条件を同時に満たすことは困難であり、事
実、従来の結晶−非晶質層変化型情報記録媒体でオーバ
ーライドを行う場合には、以下のような不具合点が生じ
ていた。すなわち、オーバーライドの場合には、レーザ
ビームを記録用のパワーと消去用のパワーとの間でパワ
ー変調して照射するため、非晶質の記録マークを形成し
ようとする部分の近傍領域は消去用のパワーレベルのレ
ーザビームによって予熱される。従って、記録用のパワ
ーレベルが非晶質の記録マークを形成するために十分な
大きさであっても、消去用のレーザビームにより急冷効
果が阻害されて記録マークが形成されにくい。このよう
な不都合を解消するためには、記録用のパワーと消去用
のパワーとの差を大きくすればよい。この場合、通常の
半導体レーザはパワーの上限が比較的低いため、これに
合せて記録用のレーザパワーの上限を決めると、今度は
消去用のパワーをどこまで小さくすることができるかが
問題となる。記録層の材料を固定して考えた場合、記録
層を挟む保護層を断熱的にするとレーザビームの消去用
パワーを小さくすることができるが、記録用のパワーの
レーザビームが照射された部分が急冷されず、その部分
の非晶質化が困難となる。保護層として熱放散性が良好
な材料を用いた場合には、記録用レーザビーム照射部分
の非晶質化が容易になるように思われるが、実際には消
去用パワーを高(しなければならないので記録用パワー
と消去用パワーの差が小さくなってしまい、やはり非晶
質化が困難である。
It is difficult to satisfy the above two conditions at the same time, and in fact, when overriding is performed on a conventional crystal-amorphous layer change type information recording medium, the following problems have occurred. In other words, in the case of override, the power of the laser beam is modulated between the recording power and the erasing power. preheated by a laser beam with a power level of . Therefore, even if the power level for recording is high enough to form an amorphous recording mark, the quenching effect is inhibited by the erasing laser beam, making it difficult to form a recording mark. In order to eliminate this inconvenience, it is sufficient to increase the difference between the recording power and the erasing power. In this case, normal semiconductor lasers have a relatively low upper limit of power, so if we set the upper limit of laser power for recording accordingly, the question becomes how low can we reduce the power for erasing? . Considering that the material of the recording layer is fixed, the erasing power of the laser beam can be reduced by making the protective layer sandwiching the recording layer adiabatic, but the area irradiated with the laser beam with the recording power It is not rapidly cooled, making it difficult to make that part amorphous. When a material with good heat dissipation properties is used as the protective layer, it seems that the area irradiated with the recording laser beam becomes amorphous easily, but in reality, the erasing power must be increased (or Therefore, the difference between recording power and erasing power becomes small, and it is difficult to make the material amorphous.

しかし、この発明のように結晶−非晶質間で相変化し得
るIn−3b−Te合金で形成された記録層をアモルフ
ァスシリコン(以下、a  S iと記す)層で挟み、
更に金属層を設けることによりこのような問題点を解決
することができる。この場合に、記録層のIn−5b−
Te合金は、Teが存在しているので液相の混合エンタ
ルピーが低く、結晶と非晶質との間の相変化が生じゃす
い。
However, as in the present invention, a recording layer formed of an In-3b-Te alloy that can undergo a phase change between crystalline and amorphous is sandwiched between amorphous silicon (hereinafter referred to as aSi) layers,
Furthermore, such problems can be solved by providing a metal layer. In this case, In-5b- of the recording layer
In the Te alloy, since Te is present, the mixing enthalpy of the liquid phase is low, and a phase change between crystalline and amorphous occurs easily.

つまり、ある合金において非晶質状態が常温で安定に存
在するためには、その液相のエンタルピーが固相のエン
タルピーよりも低い必要があるが、In−5b−Te合
金は液相の混合エンタルピーが低いので、非晶質状態が
生じゃすく、結果として結晶と非晶質との間の相変化が
生じゃすくなる。
In other words, in order for an amorphous state to exist stably at room temperature in a certain alloy, the enthalpy of the liquid phase must be lower than the enthalpy of the solid phase. Since the crystallization is low, the amorphous state is less likely to occur, and as a result, the phase change between crystal and amorphous is less likely to occur.

具体的には、記録層の組成をInn Sb、Tea(た
だし、X+)’+Zは夫々原子%で表され、x+y+z
=100である)と表した場合に、合金の液相混合エン
タルピーが一5000J/solよりも小さくなるよう
にX+  y+zを設定すれば、液相混合エンタルピー
が固相混合エンタルピーよりも大きくなって非晶質が安
定に存在するようになり、結晶−非晶質間の相変化が可
能であると共に、記録層として良好な特性を得ることが
できる。
Specifically, the composition of the recording layer is Inn Sb, Tea (X+)'+Z is each expressed in atomic %, and x+y+z
= 100), if X + y + z is set so that the liquid phase mixing enthalpy of the alloy is smaller than 15000 J/sol, the liquid phase mixing enthalpy becomes larger than the solid phase mixing enthalpy and becomes non-conforming. The crystalline state is stably present, a phase change between crystalline and amorphous state is possible, and good characteristics can be obtained as a recording layer.

このことは、本願発明者が提案した特願昭62−163
039に記載されている。
This is based on the patent application filed in 1986-163 proposed by the inventor of the present application.
039.

第2図は、In−8b−Te3元合金の液相混合エンタ
ルピーの等エンタルピー曲線である(出典、G、Gat
her、B、Lequendre and R,Bla
ckikJournal of’ Less−Comm
on Metals 77(1981)71 )。
Figure 2 is an isenthalpy curve of the liquid phase mixing enthalpy of the In-8b-Te ternary alloy (Source, G, Gat
her, B, Lequendre and R, Bla
ckikJournal of'Less-Comm
on Metals 77 (1981) 71).

In−8b−Te合金の場合には、前述したように、液
相混合エンタルピーが一5000J/molよりも小さ
い値の組成において、液相混合エンタルピーが固相の混
合エンタルピーよりも小さくなり、結晶と非晶質との間
の相変化が可能になるが、第2図に示すように、この3
元合金は、液相混合エンタルピーが一5000J/mo
lより小さくなる範囲が著しく広い。
In the case of the In-8b-Te alloy, as mentioned above, in compositions where the liquid phase mixing enthalpy is smaller than 15,000 J/mol, the liquid phase mixing enthalpy becomes smaller than the solid phase mixing enthalpy, and crystals and A phase change between the amorphous state and the amorphous state is possible, but as shown in Figure 2, these three
The liquid phase mixing enthalpy of the original alloy is 15000 J/mo.
The range in which it becomes smaller than l is extremely wide.

次に、液相混合エンタルピーが一5000J/molよ
り小さい組成範囲のIn−8b−Te合金の記録層の特
性を確認した結果について説明する。
Next, the results of confirming the characteristics of the recording layer of an In-8b-Te alloy having a composition range in which the enthalpy of liquid phase mixing is less than 15,000 J/mol will be explained.

二二では、従来と同様の層構成、すなわち、基板/5i
02保護層/記録層/5i02保護層/紫外線硬化樹脂
層という層構成を有する光デイスクサンプルを用いた。
22 has the same layer structure as the conventional one, that is, substrate/5i
An optical disk sample having a layer structure of 02 protective layer/recording layer/5i02 protective layer/ultraviolet curing resin layer was used.

記録層の液相混合エンタルピーが一5000J/mol
 よりも小さく一10000J/a+o1以上の例とし
て、第2図中丸印で示すIn5oSb4゜Te1os 
I n45s b45Te+os I n3+5s b
ss、sT e 10% I n +6s b baT
 820のものを作成し、これらを8群とした。また、
液相混合エンタルピーが約−10000J/molの例
として、第2図中丸印で示すI n42sb43Te1
ss I n70sb15T e 、、、 I n 6
2S b 2.T e 、3のものを作成し)これらを
サンプル1群とした。以下、液相混合エンタルピーが約
−15000J/l1olの例として、第2図中三角印
で示すIn、6Sb、、Te2.、I n56s bs
rTe2ts  I n54s b23T’e23のも
のをサンプル0群、約−20000J/molの例とし
て第2図中四角で示すI n 5gS b +oT e
 s8、I nabsb2oTea4SI n31sb
2[lTe41をサンプルV群とした。
The liquid phase mixing enthalpy of the recording layer is 15000 J/mol
As an example of smaller than -10000J/a+o1, In5oSb4°Te1os is shown by the circle in Figure 2.
I n45s b45Te+os I n3+5s b
ss, sT e 10% I n +6s b baT
820 samples were prepared, and these were divided into 8 groups. Also,
As an example where the liquid phase mixing enthalpy is about -10000 J/mol, I n42sb43Te1 shown by the circle in Fig. 2
ss I n70sb15T e ,, I n 6
2S b 2. T e , 3) were used as sample group 1. Hereinafter, examples of In, 6Sb, Te2. ,I n56s bs
rTe2ts I n54s b23T'e23 is shown as a square in Figure 2 as an example of sample 0 group and about -20000 J/mol I n 5gS b +oT e
s8,I nabsb2oTea4SI n31sb
2[lTe41 was designated as sample V group.

これらのサンプルについて、ディスクサンプルの回転数
を90 Or、p、■、にして動的特性評価を以下のよ
うにして行った。
The dynamic characteristics of these samples were evaluated in the following manner, with the rotational speed of the disk sample set to 90 Or, p, ■.

先ず、出力が5.m Wのレーザービームを連続光照射
して、記録層を結晶化した。次いで、出力10mW、パ
ルス幅100 n5eesデユーティ−比50%のパル
ス上のレーザビームを照射して記録を行った。そして、
消去用よりもパワーが小さいレーザビームを記録層に照
射して反射光の強度を検出することにより情報を再生し
た。消去は、初期化と同様に5mWのレーザビームを連
続光照射することにより行った。特性評価の結果を第1
表に示す。
First, the output is 5. The recording layer was crystallized by continuous irradiation with a laser beam of mW. Next, recording was performed by irradiating a pulsed laser beam with an output of 10 mW, a pulse width of 100 n5ees, and a duty ratio of 50%. and,
Information was reproduced by irradiating the recording layer with a laser beam of lower power than that used for erasing and detecting the intensity of the reflected light. Erasing was performed by continuous irradiation with a 5 mW laser beam in the same manner as initialization. The first result of the characteristic evaluation
Shown in the table.

第1表 この第1表に示すように、Te含有量が比較的多いサン
プル0群及び7群において若干の消去残りが確認された
が、サンプルS群〜V群のいスレも再生信号レベルが同
程度に高く、情報を有効に記録することができることが
確認された。これらサンプルを透過型電子顕微鏡で観察
した結果、消去部はいずれも結晶であり、記録マークは
サンプルS群が僅かに結晶が存在しているもののほぼ非
晶質であり、T群から7群は完全な非晶質であった。す
なわち、In−8b−Te合金において液相混合エンタ
ルピーが一5000J/層O1よりも小さければ、有効
に結晶−非晶質間の相変化が生じて相変化型の記録層と
して適用できることが確認された。
Table 1 As shown in Table 1, some residual erasure was observed in samples 0 and 7, which have a relatively high Te content, but the reproduced signal level was also low in samples S to V. It was confirmed that information can be recorded effectively. As a result of observing these samples with a transmission electron microscope, the erased portions were all crystalline, and the recorded marks were almost amorphous, although there were a few crystals in sample S group, and in groups T to 7. It was completely amorphous. In other words, it has been confirmed that in In-8b-Te alloy, if the liquid phase mixing enthalpy is smaller than 15,000 J/layer O1, a phase change between crystalline and amorphous occurs effectively and it can be applied as a phase change type recording layer. Ta.

次に、この発明によりオーバーライドが可能になる理由
について説明する。
Next, the reason why override is possible according to the present invention will be explained.

本願発明者が提案した特願昭62−10342に記載さ
れているように、a−Si膜は製造条件によって熱拡散
率を著しく小さくすることができ、特に、スパッタリン
グによって形成する場合には熱拡散率が0.005cm
2/秒と極めて小さいため、記録層を断熱する効果が極
めて大きい。従って、情報の消去のみに着目すれば、照
射するレーザビームの消去用パワーが小さくても情報を
消去することができる。このように消去用パワーを小さ
くすることができるので、オーバーライドにおけるレー
ザビームの記録用パワーと消去用パワーとの差を大きく
することができる。また、情報の記録に着目すると、パ
ワーが大きい記録用レーザビームを照射した部分の熱は
、金属層によって速やかに放出され、この部分が急冷さ
れるので、この部分を確実に非晶質化することができる
。従って、上記問題点を解決することができ、良好なオ
ーバーライド特性を得ることができる。
As described in Japanese Patent Application No. 62-10342 proposed by the inventor of this application, the thermal diffusivity of an a-Si film can be significantly reduced depending on the manufacturing conditions. rate is 0.005cm
Since it is extremely small at 2/sec, the effect of insulating the recording layer is extremely large. Therefore, by focusing only on erasing information, information can be erased even if the erasing power of the irradiated laser beam is small. Since the erasing power can be reduced in this way, the difference between the recording power and the erasing power of the laser beam in override can be increased. Also, when focusing on recording information, the heat of the area irradiated with the high-power recording laser beam is quickly released by the metal layer, and this area is rapidly cooled, making it possible to reliably turn this area into an amorphous state. be able to. Therefore, the above problems can be solved and good override characteristics can be obtained.

次に、この発明の情報記録媒体の構造について詳述する
。第1図は、この発明の実施例に係る情報記録媒体を示
す断面図である。基板11は透明で経時変化が少ない材
料、例えばガラス、又はポリカーボネートのような樹脂
で形成されている。
Next, the structure of the information recording medium of the present invention will be explained in detail. FIG. 1 is a sectional view showing an information recording medium according to an embodiment of the invention. The substrate 11 is made of a transparent material that does not change much over time, such as glass or resin such as polycarbonate.

基板11上にはa−3i層12、記録層13、a−SL
層14、金属層15、及び保護層16がこの順に形成さ
れている。
On the substrate 11 are an a-3i layer 12, a recording layer 13, and an a-SL.
Layer 14, metal layer 15, and protective layer 16 are formed in this order.

記録層13は、結晶−非晶質間で相変化し得るIn−5
b−Te合金で形成されている。具体的には、合金組成
をInn Sb、Te+  (ただし、x、y、zは夫
々原子%で表され、x+y+zm100である)で表し
た場合に、合金の液相混合エンタルピーが一5000J
/solよりも小さい場合に、非晶質状態が安定にであ
り、結晶と非晶質との間の相変化が有効に生じ、記録層
としての特性が良好である。
The recording layer 13 is made of In-5 whose phase can change between crystalline and amorphous states.
It is made of b-Te alloy. Specifically, when the alloy composition is expressed as Inn Sb, Te+ (where x, y, and z are each expressed in atomic %, and x+y+zm100), the liquid phase mixing enthalpy of the alloy is 15000 J.
When it is smaller than /sol, the amorphous state is stable, phase change between crystal and amorphous occurs effectively, and the properties as a recording layer are good.

この記録層13においては、初期化された状態では結晶
相であり、所定条件のレーザビーム18の照射により、
非晶質の記録マーク19が形成される。この記録層13
は、スパッタリングにより好適に形成することができる
This recording layer 13 is in a crystalline phase in the initialized state, and by irradiation with the laser beam 18 under predetermined conditions,
Amorphous recording marks 19 are formed. This recording layer 13
can be suitably formed by sputtering.

a−SL層12.14は、前述したように、主に記録層
13を断熱する機能を有している。このa−8i層12
.14は、スパッタリングにより形成することが好まし
い。これにより、熱拡散係数を0.005cm2/秒と
極めて小さくすることができ、記録層13を断熱する効
果を一層太き(することができる。なお、a−8i層1
2.14はレーザビームの照射により記録層13の照射
部分が蒸発して穴が形成されることを防止する等の保護
機能も兼備えている。
As described above, the a-SL layers 12 and 14 mainly have the function of insulating the recording layer 13. This a-8i layer 12
.. 14 is preferably formed by sputtering. As a result, the thermal diffusion coefficient can be made extremely small to 0.005 cm2/sec, and the effect of insulating the recording layer 13 can be made even thicker.
2.14 also has a protective function such as preventing the irradiated portion of the recording layer 13 from being evaporated and forming holes due to laser beam irradiation.

金属層15は、記録用レーザビームが照射された部分を
急冷する機能を有している層であり、A u s A 
l % Cu s P を等の特に熱放散性が良好な金
属で形成することが好ましい。
The metal layer 15 is a layer that has a function of rapidly cooling the portion irradiated with the recording laser beam, and is
It is preferable to use a metal having particularly good heat dissipation properties, such as 1 % Cu s P .

保護層16は、前述した保護層5と同様、例えば紫外線
硬化樹脂で形成されており、傷等が発生することを防止
する機能を有している。なお、この保護層16は設ける
ことが好ましいが必ずしも必要はない。
The protective layer 16 is made of, for example, an ultraviolet curing resin, like the protective layer 5 described above, and has a function of preventing scratches and the like from occurring. Note that although it is preferable to provide this protective layer 16, it is not always necessary.

次に、以上のように構成される情報記録媒体の製造方法
の例について説明する。先ず、基板11をスパッタリン
グ装置の真空チャンバ内に設置し、チャンバ内を高真空
にする。次いで、チャンバ内にアルゴンガスを導入し、
Siターゲットに電力を供給してアルゴンスパッタリン
グを実施する。
Next, an example of a method for manufacturing an information recording medium configured as described above will be described. First, the substrate 11 is placed in a vacuum chamber of a sputtering apparatus, and the inside of the chamber is brought to a high vacuum. Then, introduce argon gas into the chamber,
Argon sputtering is performed by supplying power to the Si target.

これにより基板11上にa−3i層12が形成される。As a result, an a-3i layer 12 is formed on the substrate 11.

チャンバ内を同じ雰囲気に維持したまま、記録層の各構
成元素でつくられたターゲットによる3元同時スパッタ
リング、又は予め得ようとする記録層組成に調節された
合金ターゲットによるスパッタリングによって記録層1
3を形成する。
While maintaining the same atmosphere in the chamber, the recording layer 1 is sputtered by three-dimensional simultaneous sputtering using a target made of each constituent element of the recording layer, or by sputtering using an alloy target adjusted in advance to have the composition of the recording layer to be obtained.
form 3.

その後、再度Siターゲットによりスパッタリングして
a−8i層を形成する。更に、所望の金属ターゲットに
よりスパッタリングして金属層15を形成する。
Thereafter, sputtering is performed again using a Si target to form an a-8i layer. Furthermore, a metal layer 15 is formed by sputtering using a desired metal target.

その後、保護層16を形成する必要がある場合には、基
板をスパッタリング装置から外して、スピンコード法に
より金属層15の上に紫外線硬化樹脂を塗布し、これに
紫外線を照射して保護層16を形成する。
After that, if it is necessary to form the protective layer 16, the substrate is removed from the sputtering apparatus, and an ultraviolet curing resin is applied on the metal layer 15 by a spin code method, and then ultraviolet rays are irradiated to form the protective layer 16. form.

次に、このように構成される情報記録媒体における初期
化、並びに情報のオーバーライド及び再生について説明
する。
Next, initialization, overriding and reproduction of information in the information recording medium configured as described above will be explained.

初期化 記録層13は成膜直後には通常非晶質であるから、非晶
質の記録マークを形成できるようにするために、この記
録層13にレーザビームを連続光照射して記録層を溶融
した後、徐冷し、結晶相に相変化させる。
The initialization recording layer 13 is normally amorphous immediately after film formation, so in order to form amorphous recording marks, the recording layer 13 is continuously irradiated with a laser beam to form the recording layer. After melting, it is slowly cooled and the phase changes to a crystalline phase.

オーバーライド オーバーライドに際しては、第3図に示すように、レベ
ルが高い記録用パフ−PWとこれよりもレベルが低い消
去用パワーPEとの間でパワー変調し、従前に記録され
ている情報を消去しながら、新しい情報を重書きする。
Override As shown in FIG. 3, during override, the power is modulated between the recording puff PW, which has a high level, and the erasing power PE, which has a lower level, to erase previously recorded information. while overwriting new information.

光ディスクの場合は、ディスクを所定速度で回転しなが
ら、ディスクの消去したい領域では、PEを照射し、重
書きしたい領域では、Pwを照射する。これにより、P
Eが照射された部分は非晶質の記録マーク19が結晶相
に相変化して情報が消去され、P、が照射された部分は
非晶質に相変化して記録マーク19が形成される。
In the case of an optical disc, while rotating the disc at a predetermined speed, PE is irradiated on the area of the disc that is desired to be erased, and Pw is irradiated on the area that is desired to be overwritten. As a result, P
In the part irradiated with E, the amorphous recording mark 19 changes to a crystalline phase and the information is erased, and in the part irradiated with P, the phase changes to amorphous and the recording mark 19 is formed. .

なお、オーバーライドでなく、単に記録消去する場合に
も、ディスクを回転しつつ、所定部分にpw又はPEの
パワーのレーザビームを照射スレば、情報を記録・消去
することができる。
Note that even in the case of simply recording and erasing information rather than overwriting, information can be recorded and erased by irradiating a predetermined portion with a laser beam of power PW or PE while rotating the disk.

再生 情報の再生に関しては、PEより更にパワーが小さいレ
ーザビームを記録層13に照射し、記録マーク19と非
記録部分との反射光強度の差を光電変換素子により検出
することによりなされる。
Reproduction of the reproduced information is performed by irradiating the recording layer 13 with a laser beam having a power even lower than that of PE, and detecting the difference in reflected light intensity between the recording mark 19 and the non-recorded portion using a photoelectric conversion element.

次に、この実施例に基いて、実際に光ディスクを作成し
て特性を評価した結果について説明する。ここでは、記
録層の組成として、第2図の三角印で示す、1 n 7
6S b (、T e 23、I n 36S b 3
?T e 27、及びIn54Sb23Te23を用い
、金属層としてAuを用いた。
Next, the results of actually producing an optical disc and evaluating its characteristics based on this example will be described. Here, the composition of the recording layer is 1 n 7 as shown by the triangle mark in FIG.
6S b (, T e 23, I n 36S b 3
? Te27 and In54Sb23Te23 were used, and Au was used as the metal layer.

3元のスパッタリング装置(ターゲットはSi。Ternary sputtering equipment (target is Si.

Au、及びIn76SbllTe23合金の3つ)の真
空チャンバ内にグループ付のポリカーボネート製のディ
スク状基板をセットし、次の手順で成膜を行った。
A disk-shaped substrate made of polycarbonate with groups was set in a vacuum chamber of three alloys (Au, and In76SbllTe23 alloy), and film formation was performed in the following procedure.

先ず、チャンバ内を10−6Torrの高真空に引いた
後、ディスク基板を60 r、p、mで回転させつつ、
チャンバ内にアルゴンガスを導入すると共に、チャンバ
内のアルゴンガス圧が5 mTorrになるように排気
バルブの調節を行った。
First, after drawing a high vacuum of 10-6 Torr in the chamber, the disk substrate was rotated at 60 r, p, m,
Argon gas was introduced into the chamber, and the exhaust valve was adjusted so that the argon gas pressure within the chamber was 5 mTorr.

次に、Siターゲットに200Wの13.56MHzの
ラジオフレックエンシーパワー(以後、R,F、パワー
と略記する)を投入し、約3分間スパッタリングを行っ
た。これにより、ディスク基板上に約800人のa−6
i層が成膜された。
Next, 200 W of 13.56 MHz radio frequency power (hereinafter abbreviated as R, F, power) was applied to the Si target, and sputtering was performed for about 3 minutes. This results in approximately 800 A-6s on the disk board.
An i-layer was deposited.

次いで、I n y6S b t+T e 23合金タ
ーゲツトに300WのR,F、パワーを投入して約2分
間スパッタリングを行ない、500人のIn76Sbz
T e 2.合金の記録層を成膜した。
Next, 300W of R, F power was applied to the In76Sbt+Te23 alloy target and sputtering was performed for about 2 minutes, and 500 In76Sbz
T e 2. An alloy recording layer was formed.

再度Siターゲットを用い、記録層の上に前述と同様の
条件で800人のa−3i層を成膜した。
Using the Si target again, 800 A-3i layers were formed on the recording layer under the same conditions as described above.

その後、Auターゲットに100WのR,F、パワーを
投入して1分間スパッタリングを行ない、a−3i層の
上に300人のAu層を成膜した。
Thereafter, R, F and power of 100 W were applied to the Au target and sputtering was performed for 1 minute to form a 300-layer Au layer on the a-3i layer.

各層の厚みは、前述した光学エンハンスメント計算によ
り再生信号が最も大きくなるように決定した。
The thickness of each layer was determined by the optical enhancement calculation described above so as to maximize the reproduced signal.

以上のようにして製造した光デイスクサンプルをサンプ
ルAとした。
The optical disc sample manufactured as described above was designated as Sample A.

I n yts b t、T e□1合金ターゲットを
夫々I n J(S b 77 T e j7、及びI
n5.Sb2.Te2)合金ターゲットに交換した以外
はサンプルAと全く同様にして形成し、記録層組成が夫
々In36S b 3yT e 27%及びI n 5
4S b 23T e 23のサンプルを作成し、夫々
サンプルB及びサンプルCとした。
I n yts b t, T e□1 alloy targets were
n5. Sb2. Te2) The recording layers were formed in exactly the same manner as sample A except that the alloy target was replaced, and the recording layer compositions were In36S b 3yT e 27% and In 5, respectively.
4S b 23T e 23 samples were prepared and designated as sample B and sample C, respectively.

Siターゲットを5i02ターゲツトに置換え、a−S
i層を従来の保護層として一般的に使用されている材料
である5i02に代えた以外は、夫々サンプルA、B、
Cと全く同じ条件で3つのサンプルを製造し、これらを
夫々サンプルD、E。
Replace Si target with 5i02 target, a-S
Samples A, B, and
Three samples were manufactured under exactly the same conditions as C, and these were named samples D and E, respectively.

Fとした。It was set as F.

次に、これらのサンプルを1800 r、p、mで回転
させつつ、以下のような手順で動特性評価した。
Next, while rotating these samples at 1800 r, p, m, dynamic characteristics were evaluated according to the following procedure.

(a)先ず、10mWの連続発光のレーザ光にて、成膜
直後非晶質のIn−3b−Te記録層を1トラック分結
晶化させた。この場合に、この部分が完全に結晶化する
まで、同一トラックを何回かレーザビームでなぞった。
(a) First, the amorphous In-3b-Te recording layer immediately after film formation was crystallized for one track using a continuous laser beam of 10 mW. In this case, the same track was traced several times with a laser beam until this part was completely crystallized.

(b)次いで、20mWで周波数4 M Hz 、デニ
ーティー比50%のパルスレーザにより、上述の結晶化
したトラック上に情報を記録した。記録後、記録層に0
.5mWの再生用レーザビームを照射して、非晶質記録
マークからの再生信号をスペクトロアナライザにてC/
N値として測定した。
(b) Information was then recorded on the above-mentioned crystallized track by a pulsed laser of 20 mW, frequency of 4 MHz, and Denity ratio of 50%. After recording, there will be 0 on the recording layer.
.. A 5mW reproduction laser beam is irradiated, and the reproduction signal from the amorphous recording mark is analyzed by a spectroanalyzer.
It was measured as an N value.

(C)上述のようにして形成した記録マークに、連続発
光のレーザビームをパワーレベルを変化させつつ1トラ
ック分照射し、信号を消去できる最低のパワーレベルを
測定した。
(C) The recording marks formed as described above were irradiated with a continuous laser beam for one track while changing the power level, and the lowest power level at which the signal could be erased was measured.

(d)別のトラックに(a)の操作を行った後、そのト
ラック上に第2図に示したパワー変調したレーザビーム
を照射してオーバーライド実験を行った。オーバーライ
ドは以下のような手順で行った。
(d) After performing the operation in (a) on another track, an override experiment was conducted by irradiating the power-modulated laser beam shown in FIG. 2 onto that track. The override was performed using the following steps.

■PWを20mWに設定し、PEを前述の(c)で決定
した最低のパワーに設定して、先ず、周波数4 M H
z sデユーティ−比50%で記録を行ない、4MHz
のC/N値をスペクトロアナライザで測定した。
■Set the PW to 20 mW, set the PE to the lowest power determined in (c) above, and first set the frequency to 4 MH.
Recording is performed at a duty ratio of 50%, and the frequency is 4MHz.
The C/N value of was measured using a spectroanalyzer.

■次に、Pw及びPEの設定を変化させず、周波数を3
MHzにして、従前に4 M Hzで記録されている部
分に3MHzでオーバーライドした。
■Next, change the frequency to 3 without changing the Pw and PE settings.
MHz, and the part previously recorded at 4 MHz was overridden with 3 MHz.

その後、消去率として4 M HzのC/Nの低下分を
測定し、更に、3MHzのC/Nをスペクトロアナライ
ザにて測定した。
Thereafter, the reduction in C/N at 4 MHz was measured as the erasure rate, and the C/N at 3 MHz was further measured using a spectroanalyzer.

これら一連の試験結果を以下に示す。The results of these series of tests are shown below.

先ず、上述の(a)〜(C)については、第2表に示す
ような結果が得られた。
First, regarding the above-mentioned (a) to (C), the results shown in Table 2 were obtained.

第2表 この第2表に示すように、サンプルA、B、Cのグルー
プとサンプルD、E、FのグループとでC/N値は大き
な差がないが、消去に必要な最少パワーは、サンプルB
の場合がサンプルAの場合よりも1.5倍も大きいこと
が判明した。すなわち、記録層の両側をa−3i層で挟
むことにより、消去用のレーザパワーを極めて小さくす
ることができることが確認された。
Table 2 As shown in Table 2, there is no big difference in the C/N value between the group of samples A, B, and C and the group of samples D, E, and F, but the minimum power required for erasure is Sample B
was found to be 1.5 times larger than that of sample A. That is, it was confirmed that by sandwiching both sides of the recording layer between a-3i layers, the erasing laser power can be made extremely small.

次に、上述の(d)に関しては、第3表に示すような結
果が得られた。
Next, regarding the above-mentioned (d), the results shown in Table 3 were obtained.

第3表 この第3表から明らかなように、サンプルD。Table 3 As is clear from this Table 3, sample D.

E、Fのグループについては、1回目の4 M Hzの
記録においてさえも、C/N値が10〜12dBと極め
て低く、はとんど記録されていないことが確認された。
For groups E and F, even in the first 4 MHz recording, the C/N value was extremely low at 10 to 12 dB, and it was confirmed that they were hardly recorded.

これは、上記第1表から明らかなように、サンプルD、
E、FのグループはPWが15〜17mWとPwの20
mWと3〜5mWしか差がないことによるものである。
As is clear from Table 1 above, this is true for sample D,
Groups E and F have a PW of 15-17mW and a Pw of 20mW.
This is because there is only a difference of 3 to 5 mW from mW.

これに対しサンプルA、B、Cのグループでは、Pwが
20mWで、PEが10〜12mWとパワーのコントラ
ストが十分であるため、この表に示すように、1回目の
4 M Hzの記録においてC/N値が45〜47dB
、2回目の3MHzの記録において46〜48.dBと
十分な再生信号が得られた。
On the other hand, in the groups of samples A, B, and C, the Pw is 20 mW and the PE is 10 to 12 mW, so the power contrast is sufficient, so as shown in this table, in the first 4 MHz recording, the C /N value is 45-47dB
, 46-48. in the second 3MHz recording. A sufficient reproduction signal of dB was obtained.

また、消去率も−26〜−28dBと十分な値であった
。このように、サンプルA、B、Cは良好なオーバーラ
イド特性を得ることができた。
Furthermore, the erasure rate was -26 to -28 dB, which was a sufficient value. In this way, Samples A, B, and C were able to obtain good override characteristics.

これら実験結果から明らかなように、連続発光のレーザ
ビーム照射による消去特性が良好な場合テモ、パワー変
調のみによる1ビームオーバーライドの実験を行うと、
記録層の組成が同一でも記録層を挟む保護層の組成によ
り大きな特性の差が生じることが判明した。
As is clear from these experimental results, if the erasing characteristics of continuous laser beam irradiation are good, if a single beam override experiment using only power modulation is performed,
It has been found that even if the composition of the recording layer is the same, large differences in characteristics occur depending on the composition of the protective layers that sandwich the recording layer.

なお、この試験例においては、金属層としてAuを使用
したが、前述したようにAI、Cu。
Note that in this test example, Au was used as the metal layer, but as mentioned above, AI and Cu were used.

pt等を用いることにより同様の効果を得られることは
勿論である。更に、記録層を第2図の三角で示す組成に
して試験したが、記録層合金の液相混合エンタルピーが
一5000J/solよりも小さい組成であれば全く同
様な結果が得られることも言うまでもない。
Of course, similar effects can be obtained by using pt or the like. Furthermore, tests were conducted with the recording layer having the composition shown by the triangle in Figure 2, but it goes without saying that exactly the same results could be obtained if the recording layer alloy had a composition with a liquid phase mixing enthalpy of less than 15,000 J/sol. .

[発明の効果] この発明によれば、記録層を液相混合エンタルピーが一
5000J/solよりも小さいIn−5b−Te合金
で形成し、この記録層を断熱効果が高い第1及び第2の
アモルファスシリコン層により挾み、かつ放熱効果が高
い金属層を設けたので、特性が優れた結晶−非晶質相変
化型情報記録媒体を得ることができると共に、良好なオ
ーバーライド特性を得ることができる。
[Effects of the Invention] According to the present invention, the recording layer is formed of an In-5b-Te alloy whose liquid phase mixing enthalpy is less than 15,000 J/sol, and this recording layer is formed of an In-5b-Te alloy having a high heat insulating effect. Since a metal layer with high heat dissipation effect is provided between the amorphous silicon layers, it is possible to obtain a crystalline-amorphous phase change type information recording medium with excellent characteristics, and also to obtain good override characteristics. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る情報記録媒体を示す断
面図、第2図はIn−8b−Te合金における液相混合
エンタルピーの等エンタルピー曲線を示す図、第3図は
単一ビームによるノ々ワー変調ノオーバーライトの際の
レーザパワーを示す図、第4図は一般的な相変化型の情
報記録媒体を示す断面図である。 11;基板、12.14 ; a−3L層、13;記録
層、15;金属層、16;保護層。 出願人代理人 弁理士 鈴江武彦 1、;1図 第3図 第4図 第2 図
Figure 1 is a cross-sectional view showing an information recording medium according to an embodiment of the present invention, Figure 2 is a diagram showing isenthalpy curves of liquid phase mixing enthalpy in In-8b-Te alloy, and Figure 3 is a diagram showing a single beam FIG. 4 is a cross-sectional view showing a general phase change type information recording medium. 11; Substrate, 12.14; a-3L layer, 13; Recording layer, 15; Metal layer, 16; Protective layer. Applicant's representative Patent attorney Takehiko Suzue 1; Figure 3 Figure 4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)基板と、光ビームの照射条件により結晶相と非晶
質相との間で可逆的に相変化する記録層と、前記基板と
前記記録層との間に設けられた第1のアモルファスシリ
コン層と、記録層の上に設けられた第2のアモルファス
シリコン層と、この第2のアモルファスシリコン層の上
に設けられた金属層とを有し、前記記録層はIn_xS
b_yTe_z(ただし、x,y,zは夫々原子%で表
されており、x+y+z=100である)で示される組
成の合金で形成され、これらx,y,zは、その合金の
液相の混合エンタルピーが−5000J/molよりも
小さくなるように設定されていることを特徴とする情報
記録媒体。
(1) A substrate, a recording layer whose phase changes reversibly between a crystalline phase and an amorphous phase depending on the irradiation conditions of the light beam, and a first amorphous layer provided between the substrate and the recording layer. It has a silicon layer, a second amorphous silicon layer provided on the recording layer, and a metal layer provided on the second amorphous silicon layer, and the recording layer is made of In_xS.
b_yTe_z (where x, y, and z are each expressed in atomic percent, and x+y+z=100), and these x, y, and z are the mixture of liquid phases of the alloy. An information recording medium characterized in that the enthalpy is set to be smaller than -5000 J/mol.
JP63300920A 1988-11-30 1988-11-30 Information recording medium Pending JPH02147394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300920A JPH02147394A (en) 1988-11-30 1988-11-30 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300920A JPH02147394A (en) 1988-11-30 1988-11-30 Information recording medium

Publications (1)

Publication Number Publication Date
JPH02147394A true JPH02147394A (en) 1990-06-06

Family

ID=17890721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300920A Pending JPH02147394A (en) 1988-11-30 1988-11-30 Information recording medium

Country Status (1)

Country Link
JP (1) JPH02147394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296923C (en) * 2002-07-04 2007-01-24 Tdk株式会社 Optical recording media and method for recording and reproducing data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296923C (en) * 2002-07-04 2007-01-24 Tdk株式会社 Optical recording media and method for recording and reproducing data

Similar Documents

Publication Publication Date Title
US5194363A (en) Optical recording medium and production process for the medium
JP2999916B2 (en) Optical recording method and optical recording medium
JP3268157B2 (en) Optical recording medium
JPH08221814A (en) Optical recording medium and its production
JPS63225934A (en) Optical information recording medium
JP2000229479A (en) Optical-recording medium
JPH01196743A (en) Information recording medium
JPS62209741A (en) Optical information recording member
JPH02147394A (en) Information recording medium
JPH02147393A (en) Information recording medium
JPH03197173A (en) Data recording medium
JPH02147395A (en) Information recording medium
JPS61134944A (en) Optical information storage medium
JPH11232698A (en) Medium for optical information recording and manufacture thereof
JPS6119752A (en) Spectral reflectance variable alloy and recording material
JPH02167790A (en) Information recording medium
JP2538798B2 (en) Rewritable optical information recording medium
JPH03169681A (en) Information recording medium
JPH0387290A (en) Data recording medium
JPS61272190A (en) Optical recording medium
JPH0335439A (en) Information recording medium
JPS615989A (en) Optical information-recording member
JPH02167784A (en) Information recording medium
JPH03197174A (en) Data recording medium
JPH0388145A (en) Information recording medium