JPH0530195B2 - - Google Patents

Info

Publication number
JPH0530195B2
JPH0530195B2 JP59264129A JP26412984A JPH0530195B2 JP H0530195 B2 JPH0530195 B2 JP H0530195B2 JP 59264129 A JP59264129 A JP 59264129A JP 26412984 A JP26412984 A JP 26412984A JP H0530195 B2 JPH0530195 B2 JP H0530195B2
Authority
JP
Japan
Prior art keywords
tellurium
film
teo
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59264129A
Other languages
Japanese (ja)
Other versions
JPS61141591A (en
Inventor
Koichi Saito
Hideki Kobayashi
Yoichi Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KK
Original Assignee
KURARE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KK filed Critical KURARE KK
Priority to JP59264129A priority Critical patent/JPS61141591A/en
Priority to DE8585309089T priority patent/DE3582149D1/en
Priority to EP85309089A priority patent/EP0188100B1/en
Publication of JPS61141591A publication Critical patent/JPS61141591A/en
Priority to US07/082,909 priority patent/US4786538A/en
Publication of JPH0530195B2 publication Critical patent/JPH0530195B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記載媒体、特に光による記録、およ
び消去可能なカルコゲナイド系酸化物からなる光
記録媒体の製造方法に関するものであり、長期間
にわたつて光記録特性が保持される安定性に優れ
た光記録媒体の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical recording medium, and in particular to a method for producing an optical recording medium made of a chalcogenide-based oxide that is capable of optical recording and erasing. The present invention relates to a method for producing an optical recording medium with excellent stability that maintains optical recording characteristics over time.

〔従来の技術〕[Conventional technology]

光記録媒体には、レーザー光の熱エネルギーに
よつて小孔あるいは泡を形成する方式のもの及び
膜の光学的特性を変化する方式のものが知られて
いる。前者は記録の際に、記録膜層に凹凸の形状
変化を生ずるため、記録膜や基板が経時的に変
質、腐蝕を受けやすく、通常二枚の記録媒体をエ
アサンドイツチ構造にして使用されていた。しか
し後者はこの必要はなく、単に二枚の記録媒体を
接着させて使用できるため製造工程を大巾に簡略
化できる利点があつた。後者に使用される材料の
うち、感度の高いもの、即ち一定の入射光強度に
対して光学的特性の変化の大きい材料としてカル
コゲナイド系低酸化物、特にテルル酸化物TeOx
が知られており、Xは0<X<2.0のものが用い
られる。
There are known optical recording media that use the thermal energy of laser light to form small holes or bubbles, and those that change the optical properties of the film. In the former case, the recording film layer undergoes uneven shape changes during recording, so the recording film and substrate are susceptible to deterioration and corrosion over time, so two recording media are usually used in an air sandwich structure. was. However, the latter does not require this, and has the advantage that the manufacturing process can be greatly simplified because two recording media can be simply glued together. Among the materials used for the latter, chalcogenide-based low oxides, especially tellurium oxide TeOx, are highly sensitive, that is, materials with large changes in optical properties for a constant incident light intensity.
is known, and the value of X used is 0<X<2.0.

テルル酸化物薄膜の製造法としては、TeO2
粉末をWまたはMoのボート型ヒーターにのせ、
ヒーターを通電加熱してTeO2を一部還元しなが
ら真空蒸着する方法、TeO2粉末と各種の還元金
属の混合物を石英るつぼに入れ、これを真空中で
加熱蒸着する方法、TeO2と金属Teとをそれぞれ
に別の蒸発源として用い、同時に蒸着する方法等
が知られている。
The method for manufacturing a tellurium oxide thin film is to place TeO 2 powder on a W or Mo boat heater,
A method in which TeO 2 is partially reduced by vacuum evaporation by heating with a heater, a method in which a mixture of TeO 2 powder and various reduced metals is placed in a quartz crucible, and the mixture is heated and evaporated in a vacuum, TeO 2 and metal Te A method is known in which both are used as separate evaporation sources and are simultaneously evaporated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの方法のうち、前の2者は簡便
な方法ではあるが、蒸着中にボートあるいは還元
金属の還元力が変化するため、蒸着された膜の膜
厚方向の組成の不規則な変化が生じ易いという欠
点がある。
However, although the first two methods are simple, the reducing power of the boat or reducing metal changes during deposition, resulting in irregular changes in the composition of the deposited film in the thickness direction. The disadvantage is that it tends to occur.

2つの蒸発源を用いる方法は組成が膜厚方向で
変化せず、均一な膜を得ることができる。この方
法によつて製作されたTeOxのXが1未満の膜
は、黒化開始温度が低く、また感度が高いという
利点を有する。しかるに該膜は黒化開始温度以下
の比較的高温下に放置された場合、及び高湿度下
に放置された場合の透過率の変化が著るしい。こ
のため、主として膜の安定性の点から、感度は劣
るもののXが1以上の範囲のTeOx膜が一般的に
使用されている。又、基板材料としてアクリル
板、ポリカーボネート板等のプラスチツクス材料
を用いる場合、これらは気体透過率が比較的大き
いため、経時的に水蒸気や酸素等が侵入し、カル
コゲナイド系低酸化物を酸化し感度を低下させる
という問題があつた。
In the method using two evaporation sources, the composition does not change in the film thickness direction, and a uniform film can be obtained. A TeOx film produced by this method in which X is less than 1 has the advantage of a low blackening initiation temperature and high sensitivity. However, when this film is left at a relatively high temperature below the blackening initiation temperature or when left under high humidity, the transmittance changes significantly. For this reason, mainly from the viewpoint of film stability, TeOx films in which X is 1 or more are generally used, although their sensitivity is inferior. Furthermore, when using plastic materials such as acrylic plates and polycarbonate plates as substrate materials, these have relatively high gas permeability, so water vapor, oxygen, etc. enter over time, oxidizing chalcogenide-based low oxides, and reducing sensitivity. There was a problem of lowering the

このような、カルコゲナイド系記録媒体の長期
にわたる安定性向上に関してはすでに多くの技術
が開示されており、例えば耐蝕性の良い金属中に
分散させるもの(特開昭58−164037)、有機物質
でコーテイングするもの(特開昭52−21892、特
開昭58−125248、特開昭58−203643)、無機物質
でコーテイングするもの(特開昭58−199449)、
表面を強制的に酸化するもの(特開昭56−3442、
特開昭58−94144、特開昭58−189850、特開昭59
−2245)等を例示することができるが、操作が繁
雑になつたり、かならずしも効果が十分ではない
場合が多かつた。
Many techniques have already been disclosed for improving the long-term stability of chalcogenide recording media, such as dispersion in metal with good corrosion resistance (Japanese Patent Application Laid-open No. 164037/1983), and coating with organic substances. (Japanese Patent Application Laid-Open No. 52-21892, Japanese Patent Application Publication No. 58-125248, Japanese Patent Application Publication No. 58-203643), coating with inorganic substances (Japanese Patent Application Publication No. 58-199449),
A device that forcibly oxidizes the surface (Japanese Patent Application Laid-Open No. 56-3442,
JP-A-58-94144, JP-A-58-189850, JP-A-59
-2245), but the operations were often complicated and the effects were not always sufficient.

本発明は長期にわたる安定性が向上した光記録
媒体の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing an optical recording medium with improved long-term stability.

〔問題点を解決するための手段〕[Means for solving problems]

かかる本発明の目的は高周波電力によつてプラ
ズマ化された酸素ガス又は酸素ガスと不活性ガス
の混合ガス中を通過する金属テルル蒸気によつ
て、(a)二酸化テルル層(TeO2)、(b)式TeOx(0
<X<2)で示されるテルル低酸化物又はテルル
と上記テルル低酸化物との混合物(以下、これら
をテルル低酸化物と総称する。)からなる層及び
(c)二酸化テルル(TeO2)層を積層する光記録媒
体の製造方法によつて達成された。本発明によれ
ば特に感度の高い領域にあるテルル低酸化物から
なる記録層であつても、安定性に優れた光記録媒
体が提供される。
The object of the present invention is to form (a) a tellurium dioxide layer (TeO 2 ), ( b) Formula TeOx(0
<X<2) or a mixture of tellurium and the above tellurium low oxide (hereinafter these are collectively referred to as tellurium low oxide)
(c) This was achieved by a method for manufacturing an optical recording medium in which tellurium dioxide (TeO 2 ) layers are laminated. According to the present invention, an optical recording medium with excellent stability is provided even if the recording layer is made of low tellurium oxide in a particularly sensitive region.

以下図面を参照して詳細に説明する。 A detailed explanation will be given below with reference to the drawings.

この発明においては、酸素ガス又は酸素ガスと
不活性ガスとの混合ガス(以下総称して単にガス
ということがある。)雰囲気中で金属テルルがイ
オンプレーテイング法によつて基板上に蒸着され
る。
In this invention, metallic tellurium is deposited on a substrate by an ion plating method in an atmosphere of oxygen gas or a mixed gas of oxygen gas and an inert gas (hereinafter sometimes simply referred to as gas). .

すなわち、第2図にその概念図を示すように、
製造装置は真空槽3内に設けられた金属テルル1
をのせた加熱ボート2、これに対向して基板7を
保持する基板保持具8及びこの間に配設された高
周波励起コイル4からなる。
In other words, as shown in the conceptual diagram in Figure 2,
The manufacturing equipment is a metal tellurium 1 installed in a vacuum chamber 3.
It consists of a heating boat 2 carrying a substrate 7, a substrate holder 8 opposing the heating boat 2 holding a substrate 7, and a high frequency excitation coil 4 disposed between them.

真空槽3内はまず酸素ガス又は酸素ガスと不活
性ガスとの混合ガスで充填される。この際、安定
なテルル低酸化物質膜を得るためには真空槽内を
まず1×10-5Torr程度以上の高真空とした後、
高純度酸素ガス又は酸素ガスと不活性ガスとの混
合ガスを導入し、槽内の真空度を1×10-4〜9×
10-3Torr、好ましくは2×10-4〜5×10-3Torr
に保つのがよい。なお、不活性ガスとしてアルゴ
ンガス、ヘリウムガス、窒素ガス等を例示するこ
とが可能である。
The inside of the vacuum chamber 3 is first filled with oxygen gas or a mixed gas of oxygen gas and an inert gas. At this time, in order to obtain a stable tellurium low oxide film, the inside of the vacuum chamber must first be brought to a high vacuum of approximately 1×10 -5 Torr or higher, and then
Introduce high-purity oxygen gas or a mixed gas of oxygen gas and inert gas, and reduce the degree of vacuum in the tank to 1×10 -4 to 9×
10 -3 Torr, preferably 2 x 10 -4 to 5 x 10 -3 Torr
It is best to keep it at In addition, it is possible to illustrate argon gas, helium gas, nitrogen gas, etc. as an inert gas.

この状態でスパイラルコイル状の高周波励起コ
イル4に50〜500ワツトの電圧を印加し、高周波
電界をつくり、ガスを励起してプラズマを生成さ
せる。生成されるプラズマは、コイル形状、大き
さ、電界の強さ及び真空度によつて制御される
が、その制御は容易であり、高精度の制御が可能
である。
In this state, a voltage of 50 to 500 watts is applied to the spiral coil-shaped high-frequency excitation coil 4 to create a high-frequency electric field and excite the gas to generate plasma. The generated plasma is controlled by the shape and size of the coil, the strength of the electric field, and the degree of vacuum, and the control is easy and can be controlled with high precision.

プラズマ生成後、加熱ボート2に通電し、金属
テルル1を加熱・融解して蒸発させる。加熱温度
及び真空槽3内の圧力によつてテルルの蒸気圧が
定まり、さらにボート開口部面積によつてテルル
の蒸発量が規定される。そして、プラズマ内を通
過したテルルの蒸発粒子は、第1図中に模式的に
示したように、プラズマ内の酸素イオンやラジカ
ルの衝撃によりその一部が酸化され、酸化されな
かつた蒸発粒子と共に基板面上に沈着する。第1
図中5,5′は酸化したテルルの蒸発粒子を、6,
6′は酸化されなかつた蒸発粒子を示す。ここで、
基板としてはガラス又はアクリル板、ポリカーボ
ネート板をはじめとする各種プラスチツクを使用
することができる。
After plasma generation, electricity is applied to the heating boat 2 to heat and melt the metal tellurium 1 and evaporate it. The vapor pressure of tellurium is determined by the heating temperature and the pressure inside the vacuum chamber 3, and the amount of evaporation of tellurium is determined by the boat opening area. As schematically shown in Figure 1, the tellurium evaporated particles that have passed through the plasma are partially oxidized by the bombardment of oxygen ions and radicals in the plasma, and together with the evaporated particles that have not been oxidized. Deposit on the substrate surface. 1st
In the figure, 5, 5' are oxidized tellurium evaporated particles, 6,
6' indicates evaporated particles that were not oxidized. here,
As the substrate, various plastics such as glass or acrylic plates and polycarbonate plates can be used.

テルル酸化物の組成(Xの値)はスパイラルコ
イル状の高周波励起コイル4に印加する電力の大
きさ、酸素ガスの分圧Po、金属テルルの蒸発速
度又はこれら両者を変化させることにより自由に
制御できる。例えば、ガス分圧Poを大きくした
り、印加電力を大きくしたり、金属テルルの蒸発
速度を小さくすることによつてXを大きくするこ
とができる。しかして、本発明では、例えば、ま
ず高周波電力、ガス分圧、金属テルルの蒸発速度
を選択して基板上にTeO2層を形成し、次いで直
ちに同一蒸着装置、同一蒸発源を用いて、高周波
電力、ガス分圧、金属テルルの蒸発速度の少なく
ともいずれかひとつの以上の条件を変えることに
よつてテルル又はテルル低酸化物からなる層を形
成し、次に再度初めの条件にもどすことによつて
二酸化テルル層を連続して形成する(第1図)。
従つて本発明の光記録媒体の製造方法は簡易であ
り、安価に光記録媒体を製造しうるだけでなく、
テルル低酸化物からなる層とTeO2層の界面に異
物が入りこむこともなく、膜相互間の密着性も良
く強固な膜を形成しうる。二酸化テルルは耐蝕性
に優れているため長期間にわたる安定化に優れた
効果を発揮する。二酸化テルル層の厚さは特に厚
くする必要はなく、10〜1000Å程度の厚さであれ
ば上該目的を十分満たすことが可能であり、この
範囲で使用される。本発明では必要に応じて、二
酸化テルル層の上に透明性の良い高分子膜、無機
質膜等を設けて、さらに安定性を向上させること
も可能である。また本発明では、必要に応じてテ
ルル低酸化物層には上記の効果を損わない範囲で
他の物質、例えば増感剤や安定剤を含有せしめる
ことができる。
The composition of the tellurium oxide (the value of can. For example, X can be increased by increasing the gas partial pressure Po, increasing the applied power, or decreasing the evaporation rate of metallic tellurium. Therefore, in the present invention, for example, first, a TeO2 layer is formed on a substrate by selecting high frequency power, gas partial pressure, and evaporation rate of metal tellurium, and then immediately using the same evaporation equipment and the same evaporation source, high frequency A layer consisting of tellurium or low tellurium oxide is formed by changing at least one of the following conditions: electric power, gas partial pressure, and evaporation rate of metal tellurium, and then by returning to the initial conditions again. Then, a tellurium dioxide layer is continuously formed (FIG. 1).
Therefore, the method for manufacturing an optical recording medium of the present invention is not only simple and inexpensive, but also enables
Foreign matter does not enter the interface between the tellurium low oxide layer and the TeO 2 layer, and a strong film can be formed with good adhesion between the films. Tellurium dioxide has excellent corrosion resistance and exhibits an excellent stabilizing effect over a long period of time. The tellurium dioxide layer does not need to be particularly thick, and a thickness of about 10 to 1000 Å can sufficiently satisfy the above purpose, and is used within this range. In the present invention, if necessary, it is possible to further improve stability by providing a highly transparent polymer film, inorganic film, etc. on the tellurium dioxide layer. Further, in the present invention, the low tellurium oxide layer may contain other substances, such as sensitizers and stabilizers, as long as the above-mentioned effects are not impaired, if necessary.

〔実施例〕〔Example〕

次に実施例をもつて本発明を詳細に説明する。 Next, the present invention will be explained in detail with reference to Examples.

第2図に示した装置により、初期圧力Pが1×
10-5Torrとなるまで排気し、酸素ガスを4×
10-4Torrまで導入する。これに周波数13.56MHz、
400ワツトの高周波電力を印加してプラズマを発
生させる。そして純度99.99%の金属テルルを450
〜500℃に保つて融解、蒸発させ、約4Å/secの
蒸着速度でガラス製基板上及びPMMA製基板上
に沈着させた。このとき形成された薄膜の厚さは
0.01μm、膜組成はオージエ電子分光法によりX
=2.0であつた。次に高周波電力を200ワツト、蒸
着速度を約10Å/secに変えて成膜した。形成さ
れた薄膜の厚さは0.1μm、膜組成はX=0.7であ
つた。次に再度最初の成膜条件にもどしてTeO2
膜を形成し、基板/TeO2.0/TeO0.7/TeO2.0
らなる記録媒体を得た(実施例)。
The device shown in Figure 2 allows the initial pressure P to be 1×
Evacuate to 10 -5 Torr and add oxygen gas 4x
Introduce up to 10 -4 Torr. This has a frequency of 13.56MHz,
Plasma is generated by applying 400 watts of high-frequency power. And 450% pure metal tellurium
It was melted and evaporated at ~500°C and deposited on glass and PMMA substrates at a deposition rate of about 4 Å/sec. The thickness of the thin film formed at this time is
0.01 μm, film composition determined by Auger electron spectroscopy
= 2.0. Next, the film was formed by changing the high frequency power to 200 watts and the deposition rate to about 10 Å/sec. The thickness of the formed thin film was 0.1 μm, and the film composition was X=0.7. Next, return to the initial film forming conditions again and deposit TeO 2
A film was formed to obtain a recording medium consisting of substrate/TeO 2.0 /TeO 0.7 /TeO 2.0 (Example).

又、対比のためにTeO2膜を形成しないもの
(これを比較例Aとする。)および金属テルルと二
酸化テルルを別々の蒸発源とする装置を用いて、
まず二酸化テルルの蒸発源のみ加熱し二酸化テル
ルを溶融蒸発させて基板上に二酸化テルル層を形
成し次いで金属テルルと二酸化テルルを同時に蒸
発させX=0.7なる膜厚0.1μmのテルル低酸化物
からなる薄膜を真空蒸着法により形成した。次に
二酸化テルルの蒸発源のみ加熱し該テルル低酸化
物層の上に二酸化テルル層を形成し、基板/
TeO2.0/TeO0.7/TeO2.0からなる記録媒体を得
た(これを比較例B)とする。
In addition, for comparison, an apparatus in which no TeO 2 film was formed (this is referred to as Comparative Example A) and an apparatus in which metallic tellurium and tellurium dioxide were used as separate evaporation sources were used.
First, only the evaporation source of tellurium dioxide is heated to melt and evaporate the tellurium dioxide to form a tellurium dioxide layer on the substrate.Then, metal tellurium and tellurium dioxide are simultaneously evaporated to form a tellurium low oxide film with a thickness of 0.1 μm and X=0.7. A thin film was formed by vacuum evaporation. Next, only the tellurium dioxide evaporation source is heated to form a tellurium dioxide layer on the tellurium low oxide layer, and the substrate/tellurium dioxide layer is heated.
A recording medium composed of TeO 2.0 /TeO 0.7 /TeO 2.0 was obtained (this is Comparative Example B).

これら三種類の記録媒体に対して波長830nm
の半導体レーザーで記録と再生を行なつた。レー
ザパワー7mW、ビーム径1.8μmで記録を行ない、
1mWのパワーで再生を行なつたが、特性に差は
なかつた。次に温度40℃、相対湿度90%の恒温恒
湿槽に入れ、30日経過後では、比較例A、Bでは
正常な記録を行なうのにレーザ出力20〜50mWを
要し、明らかに特性の劣化を示した。しかし本発
明に基づく実施例では成膜直後と何ら変化はな
く、安定性向上に有効であることを示している。
Wavelength 830nm for these three types of recording media
Recording and playback were performed using a semiconductor laser. Recording was performed with a laser power of 7 mW and a beam diameter of 1.8 μm.
Reproduction was performed with a power of 1mW, but there was no difference in characteristics. Next, they were placed in a constant temperature and humidity chamber at a temperature of 40°C and a relative humidity of 90%, and after 30 days, Comparative Examples A and B required a laser output of 20 to 50 mW to perform normal recording, and the characteristics clearly deteriorated. showed that. However, in the examples based on the present invention, there was no change from immediately after film formation, indicating that it is effective in improving stability.

又、膜面に鋭い刃物で1mm方眼の刻み目を100
個つけて、これにセロテープを貼り付けて90゜引
き起こす剥離試験の結果では、実施例と比較例A
では膜面と基板面の剥離は全くなく、実用上十分
な強さの膜が得られたが、比較例Bでは完全に剥
離してしまい、単なる真空蒸着法では強固な膜は
形成しえないことを示している。
Also, make 100 incisions of 1 mm grid on the membrane surface with a sharp knife.
The results of a peel test by attaching cellophane tape to this and pulling it at 90 degrees show that Example and Comparative Example A
In Comparative Example B, there was no peeling between the film surface and the substrate surface, and a film with sufficient strength for practical use was obtained, but in Comparative Example B, complete peeling occurred, and a strong film could not be formed by simple vacuum evaporation. It is shown that.

(発明の効果) この発明によれば、真空槽内で蒸発したテルル
粒子が、酸素ガスプラズマ内を通過する過程で活
性化され、一部は酸化されて基板上に沈着する。
このため、はく離しにくい、環境による影響を受
け難い丈夫な安定したテルル低酸化物層が形成出
来る。
(Effects of the Invention) According to the present invention, tellurium particles evaporated in a vacuum chamber are activated in the process of passing through an oxygen gas plasma, and some of them are oxidized and deposited on a substrate.
Therefore, a strong and stable tellurium low oxide layer that is difficult to peel off and is not easily affected by the environment can be formed.

そして本発明によれば該テルル低酸化物層の表
面及び裏面には安定な二酸化テルル層が形成され
ているので該テルル低酸化物層の安定性は一層向
上される。
According to the present invention, a stable tellurium dioxide layer is formed on the front and back surfaces of the tellurium low oxide layer, so that the stability of the tellurium low oxide layer is further improved.

更に本発明に従えばテルル低酸化物層及び二酸
化テルル層が同一の装置内で同一の蒸発源により
形成されるのでその界面に異物が混入せず、従つ
て膜相互間の密着性が極めて優れている。
Furthermore, according to the present invention, since the tellurium low oxide layer and the tellurium dioxide layer are formed in the same device and by the same evaporation source, no foreign matter is mixed into the interface, and therefore the adhesion between the films is extremely excellent. ing.

従つて、従来安定性を欠き実用化に不適と思わ
れていた高感度領域のテルル低酸化物層を含む記
録媒体が極めて経済的に、しかも高い安定性を備
えたものとして実現出来るという顕著な効果をす
る。
Therefore, it is a remarkable achievement that a recording medium containing a low tellurium oxide layer in the high-sensitivity region, which was conventionally thought to lack stability and be unsuitable for practical use, can be realized extremely economically and with high stability. effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく光記録媒体の構成図第
2図は本発明を実施するイオンプレーテイング装
置の模式図を示す。 図中1は金属テルル、2は蒸発ボート、3は真
空槽、4は高周波コイル、7は基板、8は基板保
持具、9はテルル低酸化物層および10は二酸化
テルル層である。
FIG. 1 is a block diagram of an optical recording medium according to the present invention. FIG. 2 is a schematic diagram of an ion plating apparatus implementing the present invention. In the figure, 1 is metal tellurium, 2 is an evaporation boat, 3 is a vacuum chamber, 4 is a high frequency coil, 7 is a substrate, 8 is a substrate holder, 9 is a tellurium low oxide layer, and 10 is a tellurium dioxide layer.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に、高周波電力によつてプラズマ化さ
れた酸素ガス又は酸素ガスと不活性ガスの混合ガ
スを通過する金属テルル蒸気によつて(a)二酸化テ
ルル(TeO2)層、(b)式TeOx(0<X<2)で示
されるテルル低酸化物又はテルルと上記テルル低
酸化物との混合物からなる層、及び(c)二酸化テル
ル(TeO2)層を形成する光記録媒体の製造方法。
1 On the substrate, (a) tellurium dioxide (TeO 2 ) layer, (b) formula A method for producing an optical recording medium comprising a layer consisting of a tellurium low oxide represented by TeOx (0<X<2) or a mixture of tellurium and the above tellurium low oxide, and (c) a tellurium dioxide (TeO 2 ) layer. .
JP59264129A 1984-12-13 1984-12-13 Optical recording medium comprising chalcogenide type oxide Granted JPS61141591A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59264129A JPS61141591A (en) 1984-12-13 1984-12-13 Optical recording medium comprising chalcogenide type oxide
DE8585309089T DE3582149D1 (en) 1984-12-13 1985-12-13 OPTICAL RECORDING MEDIUM FORMED FROM CHALCOGENOXIDE AND METHOD FOR THE PRODUCTION THEREOF.
EP85309089A EP0188100B1 (en) 1984-12-13 1985-12-13 Optical recording medium formed of chalcogen oxide and method for producing same
US07/082,909 US4786538A (en) 1984-12-13 1987-08-10 Optical recording medium formed of chalcogenide oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264129A JPS61141591A (en) 1984-12-13 1984-12-13 Optical recording medium comprising chalcogenide type oxide

Publications (2)

Publication Number Publication Date
JPS61141591A JPS61141591A (en) 1986-06-28
JPH0530195B2 true JPH0530195B2 (en) 1993-05-07

Family

ID=17398868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264129A Granted JPS61141591A (en) 1984-12-13 1984-12-13 Optical recording medium comprising chalcogenide type oxide

Country Status (1)

Country Link
JP (1) JPS61141591A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836910B2 (en) * 2006-10-02 2011-12-14 パナソニック株式会社 Optical information recording medium, recording / reproducing method and recording / reproducing apparatus
US8133655B2 (en) 2006-10-02 2012-03-13 Panasonic Corporation Optical information recording medium, method and apparatus for recording and reproducing for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894144A (en) * 1981-11-30 1983-06-04 Fujitsu Ltd Recording medium
JPS58189850A (en) * 1982-04-30 1983-11-05 Nippon Telegr & Teleph Corp <Ntt> Opticl recording medium and its manufacture
JPS58203094A (en) * 1982-05-24 1983-11-26 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium
JPS592245A (en) * 1982-06-25 1984-01-07 Matsushita Electric Ind Co Ltd Production of optical recording disk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894144A (en) * 1981-11-30 1983-06-04 Fujitsu Ltd Recording medium
JPS58189850A (en) * 1982-04-30 1983-11-05 Nippon Telegr & Teleph Corp <Ntt> Opticl recording medium and its manufacture
JPS58203094A (en) * 1982-05-24 1983-11-26 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium
JPS592245A (en) * 1982-06-25 1984-01-07 Matsushita Electric Ind Co Ltd Production of optical recording disk

Also Published As

Publication number Publication date
JPS61141591A (en) 1986-06-28

Similar Documents

Publication Publication Date Title
EP0754777B1 (en) Process for producing thin film, and thin film formed by the same
US4786538A (en) Optical recording medium formed of chalcogenide oxide and method for producing the same
US4640860A (en) Optical recording coating
US4579807A (en) Optical information storage
JPH0530195B2 (en)
JPH0444812B2 (en)
JPH02171286A (en) Information recording medium
JPH0444814B2 (en)
EP0158479B1 (en) Method for producing an optical recording medium by a chalcogenide suboxide
JPS63299984A (en) Optical recording medium and production thereof
JPH0555940B2 (en)
JPS61142549A (en) Production of optical recording medium consisting of chalcogenide oxide
JPS58158056A (en) Laser recording medium and its manufacture
JPS61141592A (en) Optical recording medium and production thereof
JPH0522590B2 (en)
JPH02171290A (en) Information recording medium
JPS61142548A (en) Production of optical recording medium consisting of chalcogenide low oxide
JPS62170047A (en) Production of optical recording medium
JPS59198543A (en) Medium for optical recording and manufacture thereof
JPS63182188A (en) Optical recording medium
JPS6143595A (en) Optical recording medium
JPS62202792A (en) Optical recording medium
JPH02171287A (en) Information recording medium
JPS61294714A (en) Formation of transparent conducting metal oxide film
JPS62154241A (en) Medium for optical recording

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term