JPS63158881A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS63158881A
JPS63158881A JP62010251A JP1025187A JPS63158881A JP S63158881 A JPS63158881 A JP S63158881A JP 62010251 A JP62010251 A JP 62010251A JP 1025187 A JP1025187 A JP 1025187A JP S63158881 A JPS63158881 A JP S63158881A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor photodetector
semiconductor light
type region
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62010251A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kobayashi
和幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPS63158881A publication Critical patent/JPS63158881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To remove an error by dark currents by a method wherein identical two semiconductor photodetectors are formed into one chip: one semiconductor photodetector is light-shielded but outputs only dark currents, and is input to the other semiconductor photodetector inputs optical signal. CONSTITUTION:Two P-type regions 20, 21 are shaped to an N-type semiconductor substrate 12. The P-type region 20 forms a semiconductor photodetector into which an optical signal is projected through a nonreflective film 5, but the P-type region 21 is light-shielded by a wiring layer 14 consisting of a substance having high reflectivity to beams. The semiconductor photodetector shaped by the P-type region 20 and a semiconductor photodetector formed by the P-type region 21 are shaped into one chip in the same size and structure, thus approximately equalizing the magnitude and temperature characteristics of the dark current components of both photodetectors. Accordingly, an output in which dark current components are cancelled is acquired at all times by taking the difference of two outputs on usage, and stable control is enabled without an error even when the intensity of incident beams is small or even when dark currents components change.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光信号を受信し、その強度に比例した電流出
力を出すところの半導体受光装置に関し、特に該半導体
受光装置の発生する暗電流による誤差を無くすようにし
た受光装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor light receiving device that receives an optical signal and outputs a current proportional to the intensity of the signal, and particularly relates to a semiconductor light receiving device that receives an optical signal and outputs a current proportional to the intensity of the signal. The present invention relates to a light receiving device that eliminates errors due to

〔従来の技術〕[Conventional technology]

従来の半導体受光装置とその接続回路例を第3図に示す
。第3図において、半導体受光素子11は、通常直列に
抵抗3t−接続し、電源2による逆バイアスをかけて、
光入力を受信した時に抵抗3の両端に発生する電圧を利
用する。即ち、第3図において、半導体受光素子11は
光入力により、その強度に比例した電流I、を発生する
。従って、抵抗3にはV、=Xア・Rなる電圧が発生す
るので、この電圧を光強度に比例する信号として利用す
る。
FIG. 3 shows an example of a conventional semiconductor light receiving device and its connection circuit. In FIG. 3, the semiconductor light-receiving element 11 is normally connected in series with a resistor 3t, and reverse biased by a power source 2.
The voltage generated across the resistor 3 when receiving optical input is utilized. That is, in FIG. 3, the semiconductor light receiving element 11 generates a current I proportional to the intensity of light input. Therefore, a voltage of V,=XA·R is generated in the resistor 3, and this voltage is used as a signal proportional to the light intensity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体受光素子11は、光入力に比例し
た電流IPとともに、光入力に依存しない暗電流成分工
、を発生する為、実際の出力電圧Voutri、 Vou、==R(ID+I、):R−I、+R・I、:
VD+V。
The conventional semiconductor light-receiving element 11 described above generates a current IP proportional to the optical input as well as a dark current component independent of the optical input, so the actual output voltage Voutri, Vou, ==R(ID+I,): R-I, +R・I,:
VD+V.

となり、光強度に比例する出力■アの他に、一定電圧V
Dが定常的に加わる。このときの光入力−出力(■。u
t)特性を@4図に示す。
In addition to the output (a) which is proportional to the light intensity, a constant voltage V
D is added constantly. At this time, optical input-output (■. u
t) Characteristics are shown in Figure @4.

従って、出力V。utを利用して他の回路を制御するよ
うな場合、光入力の強度が大で、vPがVDに対し充分
大きければVDが無視出来て、voutは光入力の強度
にほぼ比例して問題無いが、光入力の強度が小さく、■
、が小さい場合には、VDが無視出来ない為、Vout
は光入力に比例しなくなシ、正確な制御が不可能となる
という欠点がある。また、める■。の慎で制御可能なよ
うに調整できたとしても温度変化等によ5v。の値が変
化すると、制御が狂ってしまうという欠点がある。
Therefore, the output V. When using ut to control other circuits, if the intensity of the optical input is large and vP is sufficiently large compared to VD, VD can be ignored, and vout is almost proportional to the intensity of the optical input, so there is no problem. However, the intensity of the optical input is small, and ■
, is small, VD cannot be ignored, so Vout
has the disadvantage that it is not proportional to the optical input, making accurate control impossible. Also, Mel ■. Even if it can be adjusted to be controllable, the voltage will vary by 5V due to temperature changes, etc. The disadvantage is that if the value of changes, the control will go out of order.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体受光装置は、1個のチップ内に同一の半
導体受光素子が2個設けられ、一方の半導体受光素子は
遮光され、暗電流のみが出力され、もう一方の半導体受
光素子は光信号が入力されるようになっている。
In the semiconductor light receiving device of the present invention, two identical semiconductor light receiving elements are provided in one chip, one semiconductor light receiving element is shielded from light and only dark current is output, and the other semiconductor light receiving element is used for optical signals. is now entered.

〔実施例〕〔Example〕

次に本発明について図面を用いて、説明する。 Next, the present invention will be explained using the drawings.

第1図は本発明による半導体受光装置とその接続回路例
である。第1図において、半導体受光装置1は、半導体
受光素子1aと半導体受光素子1bから成り、これらは
、1個のチップ内に同一の大きさ、構造を有するように
作られている。従って、半導体受光素子1aと1bはほ
ぼ等しい特性を有していると考えられるので、特にその
暗電流成分の大きさ、温度特性等も等しいと考えられる
。半導体受光素子1aは光強度に比例しet流を出力す
るように光信号4が入力するようになっているが、半導
体受光素子1bは点線の斜線領域で示すように遮光され
ている。従って、半導体受光素子Iaの発生する電流は
入力光強度に比例する電流成分工、と暗電流成分工。で
あシ、半導体受光素子1bの発生する電流は、暗電流成
分工、のみである。第1図のような接続がなされた場合
、半導体受光素子1aに接続された抵抗値凡の抵抗3a
に発生する電圧は R(I、+I、):ReI、+811 I 、:VD+
VPであり、半導体受光素子1bに接続されt抵抗値R
の抵抗3bに発生する電圧は 几・In=−Vn となる。従って、抵抗3aおよび抵抗3bに発生する電
圧を減算回路5に入力すると、減算回路5の出力■。、
は Vout ” (Vn ” VP)  VD= vPと
なシ、暗電流による電圧成分VDは消去され、出力電圧
V。utは入力光強度に比例する成分vPのみとなる。
FIG. 1 shows an example of a semiconductor light receiving device and its connection circuit according to the present invention. In FIG. 1, a semiconductor light-receiving device 1 consists of a semiconductor light-receiving element 1a and a semiconductor light-receiving element 1b, which are made to have the same size and structure within one chip. Therefore, it is considered that the semiconductor light-receiving elements 1a and 1b have substantially the same characteristics, and in particular, the magnitude of their dark current components, temperature characteristics, etc. are also considered to be the same. The semiconductor light-receiving element 1a is configured to receive an optical signal 4 so as to output an et current in proportion to the light intensity, but the semiconductor light-receiving element 1b is shielded from light as shown by a dotted hatched area. Therefore, the current generated by the semiconductor light-receiving element Ia has a current component proportional to the input light intensity and a dark current component. However, the current generated by the semiconductor light-receiving element 1b is only a dark current component. When the connection as shown in Fig. 1 is made, the resistance value of the resistor 3a connected to the semiconductor light receiving element 1a is
The voltage generated at is R(I, +I,):ReI, +811 I,:VD+
VP, is connected to the semiconductor light receiving element 1b, and has a t resistance value R.
The voltage generated across the resistor 3b is 几.In=-Vn. Therefore, when the voltages generated across the resistors 3a and 3b are input to the subtraction circuit 5, the output of the subtraction circuit 5 is . ,
is Vout ” (Vn ” VP) VD = vP, the voltage component VD due to the dark current is erased and the output voltage V. ut is only the component vP that is proportional to the input light intensity.

このときの光入力−出力(■。ut)%性を第2図に示
す。
The optical input-output (■.ut) ratio at this time is shown in FIG.

なお上側は、抵抗3aと3bは外付けにして−るが、こ
れらの抵抗を半導体受光素子1a、lbと同一チップの
上に形成することにより、抵抗3aと3bの抵抗値がそ
ろい、該抵抗値の差に起因する発生電圧の差を小さくす
ることが可能となる他、抵抗外付けの工数も省略でき、
取付面積の縮小も可能となる。
Note that on the upper side, resistors 3a and 3b are externally connected, but by forming these resistors on the same chip as semiconductor photodetectors 1a and lb, the resistance values of resistors 3a and 3b are the same, and the resistors In addition to making it possible to reduce the difference in voltage generated due to the difference in values, it also eliminates the labor required for externally attaching a resistor.
It is also possible to reduce the installation area.

第5図にも発明による半導体受光素子のデバイス構造の
一例を示す。第5図においてN型半導体基板12に二つ
のP型領域20.21が形成されているP型領域20は
、無反射膜5全通して光信号を入射する通常の構造の半
導体受光素子を形成しているが、P型領域21は、光に
対する反射率の高い物質(例えば鏡面状のアルミニウム
、金等)形成された配線層14によって遮光されている
FIG. 5 also shows an example of the device structure of the semiconductor light receiving element according to the invention. In FIG. 5, two P-type regions 20 and 21 are formed on the N-type semiconductor substrate 12. The P-type region 20 forms a semiconductor light-receiving element with a normal structure in which an optical signal is incident through the entire non-reflection film 5. However, the P-type region 21 is shielded from light by the wiring layer 14 formed of a material having a high reflectance to light (for example, mirror-like aluminum, gold, etc.).

前記P型領域20により形成される半導体受光素子と、
P型領域21によ多形成される半導体受光素子は1個の
チップ内に同一の大きさ、構造によシ作られているので
その暗電流成分の大きさ、温度特性がほとんど等しくな
るという特徴を有する。
a semiconductor light receiving element formed by the P-type region 20;
The semiconductor light-receiving elements formed in the P-type region 21 have the same size and structure within one chip, so their dark current component size and temperature characteristics are almost the same. has.

なお、13は絶縁膜、17はカソード電極、22゜23
はアノード電極でめる。
In addition, 13 is an insulating film, 17 is a cathode electrode, 22°23
is determined by the anode electrode.

第6図は本発明による半導体受光素子の他の実施例を示
す。この実施例は、第1図の接硯例における抵抗3.抵
抗4および減算回路5をも同一のチップ上に形成してい
る。こうすることによシ抵抗3および抵抗4の抵抗値が
そろい該抵抗値の差に起因する発生電圧の差を小さくす
ることが可能であるとともに、経済化を計ることが可能
である。
FIG. 6 shows another embodiment of the semiconductor light-receiving device according to the present invention. This embodiment is similar to resistor 3 in the bonding example shown in FIG. The resistor 4 and subtraction circuit 5 are also formed on the same chip. By doing so, the resistance values of the resistors 3 and 4 are made the same, and it is possible to reduce the difference in voltage generated due to the difference in the resistance values, and it is also possible to achieve economic efficiency.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明による半導体受光
素子においては、2個の同一の大きさ、および構造を有
す半導体受光素子を1個のチップ内に設けることによプ
、暗電流成分を等しくし、一方の半導体受光素子は、光
に対する反射率の高いアルミニウム、金等の物質によシ
遮光して暗電流のみを出力するようにし、もう一方の半
導体受光素子には、光信号を入射するという特徴を有し
ておシ、使用時においては、上記2つの出方の差をとる
ことによシ、常に暗電流成分をキャンセルした出力が得
られる。
As is clear from the above explanation, in the semiconductor photodetector according to the present invention, by providing two semiconductor photodetectors having the same size and structure in one chip, dark current components can be reduced. are made equal, and one semiconductor photodetector is shielded from light by a material such as aluminum or gold that has a high reflectivity to output only dark current, and the other semiconductor photodetector is configured to output only a dark current. During use, by taking the difference between the two ways of output, an output with the dark current component canceled can always be obtained.

従って常に入射光強麓に比例し九出力のみが得られるこ
とになシ、その出力により他の回路を制御する場合等に
おいて、入射光強度が小さい場合あるいは、温度変化等
の原因で暗電流成分が変化する場合等においても、誤差
無く安定した制御が可能であるという効果がある。
Therefore, only 9 outputs are always obtained, which are proportional to the intensity of the incident light.When controlling other circuits using the output, if the intensity of the incident light is low or due to temperature changes, dark current components This has the effect that stable control without error is possible even when the value changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例とその接続例を示す回路図、
第2図は第1図の半導体受光装置を用いた場合の光入力
−出力(■out)特性を示すグラフ、第3図は従来の
半導体受光装置とその接続例を示す回路図、第4図は従
来の半導体受光装置を用いた場合の光入力−出力(■。 ut)特性を示すグラフ、第5図は本発明による受光素
子のデバイス構造の一例を示すの、O断面図、第6図は
他の実施例を示す回路図である。 1・・・・・・半導体受光装置、la・・・・・・光入
力される受光素子、1b・・・・・・遮光された受光素
子、2・・・・・・電源、3,3a、3b・・・・・・
抵抗、4・・・・・・光入力、5・・・・・・減算回路
。 第3図     躬4図 第5図
FIG. 1 is a circuit diagram showing an embodiment of the present invention and an example of its connection;
Fig. 2 is a graph showing the optical input-output (■out) characteristics when using the semiconductor photodetector shown in Fig. 1, Fig. 3 is a circuit diagram showing a conventional semiconductor photodetector and its connection example, and Fig. 4 5 is a graph showing the optical input-output (■. ut) characteristics when using a conventional semiconductor light receiving device, FIG. 5 is an O cross-sectional view showing an example of the device structure of the light receiving element according to the present invention, and FIG. FIG. 3 is a circuit diagram showing another embodiment. DESCRIPTION OF SYMBOLS 1... Semiconductor light receiving device, la... Light receiving element into which light is input, 1b... Light receiving element shielded, 2... Power supply, 3, 3a , 3b...
Resistor, 4... Optical input, 5... Subtraction circuit. Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1個のチップ内に同一の半導体受光素子が2個設けられ
、一方の半導体受光素子は遮光されて暗電流のみが出力
され、もう一方の半導体受光素子は、光信号が入力され
るようになっていることを特徴とする半導体受光装置。
Two identical semiconductor light-receiving elements are provided in one chip, one semiconductor light-receiving element is shielded from light and outputs only dark current, and the other semiconductor light-receiving element receives an optical signal. A semiconductor light receiving device characterized by:
JP62010251A 1986-08-08 1987-01-19 Semiconductor photodetector Pending JPS63158881A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-186330 1986-08-08
JP18633086 1986-08-08

Publications (1)

Publication Number Publication Date
JPS63158881A true JPS63158881A (en) 1988-07-01

Family

ID=16186457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62010251A Pending JPS63158881A (en) 1986-08-08 1987-01-19 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS63158881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032049A3 (en) * 1999-02-25 2005-10-12 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
JP2006153753A (en) * 2004-11-30 2006-06-15 Olympus Corp Encoder
JP2018529997A (en) * 2015-09-18 2018-10-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Micromechanical element, micromirror-based laser system, and micromirror-based laser system monitoring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032049A3 (en) * 1999-02-25 2005-10-12 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
US7235831B2 (en) 1999-02-25 2007-06-26 Canon Kabushiki Kaisha Light-receiving element and photoelectric conversion device
JP2006153753A (en) * 2004-11-30 2006-06-15 Olympus Corp Encoder
JP2018529997A (en) * 2015-09-18 2018-10-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Micromechanical element, micromirror-based laser system, and micromirror-based laser system monitoring method
US10795148B2 (en) 2015-09-18 2020-10-06 Robert Bosch Gmbh Micromechanical component, micromirror-based laser system, and method for monitoring a micromirror-based laser system comprising dual sensor diodes for sensing temperature and light intensity

Similar Documents

Publication Publication Date Title
US5198660A (en) Optical sensing circuit including an integral capacity
US5115124A (en) Semiconductor photosensor having unitary construction
JP2560747B2 (en) Photoelectric conversion device
US4615616A (en) Measuring distance apparatus
JPS63158881A (en) Semiconductor photodetector
JPH08181348A (en) Photoelectric converter
JP2006214781A (en) Photodetector
US4321462A (en) Light measuring device
JP2005183538A (en) Light receiving element and optical receiver
JPS6020655A (en) Optical detecting circuit
JPS5845523A (en) Photometric circuit
JPH03134505A (en) Circuit structure of photoelectric positioning tap
JPH05203681A (en) Semiconductor sensor
JPH09138161A (en) Photodetector
JP2660052B2 (en) Photometric circuit
JPH0257739B2 (en)
JPH029508B2 (en)
JP2008016143A (en) Subtraction circuit
JPH07114330B2 (en) Light receiving circuit range switching circuit
JPS6259821A (en) Photodetecting circuit
JPS62161281A (en) Semiconductor device
JPH05288604A (en) Photometer
JPS6156446B2 (en)
JPH09266414A (en) Logarithmic amplifier for very small current and color identification sensor circuit using it
JPH0549053B2 (en)