JPH029508B2 - - Google Patents

Info

Publication number
JPH029508B2
JPH029508B2 JP57095444A JP9544482A JPH029508B2 JP H029508 B2 JPH029508 B2 JP H029508B2 JP 57095444 A JP57095444 A JP 57095444A JP 9544482 A JP9544482 A JP 9544482A JP H029508 B2 JPH029508 B2 JP H029508B2
Authority
JP
Japan
Prior art keywords
circuit
output
voltage
conversion
logic value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57095444A
Other languages
Japanese (ja)
Other versions
JPS58210708A (en
Inventor
Eiichi Matsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57095444A priority Critical patent/JPS58210708A/en
Publication of JPS58210708A publication Critical patent/JPS58210708A/en
Publication of JPH029508B2 publication Critical patent/JPH029508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 この発明は光電流の差を増幅する増幅回路に係
り、特に低コントラスト時において、その増幅回
路の利得が高コントラスト時の利得に対して変化
できる光電流増幅回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amplifier circuit that amplifies a difference in photocurrent, and particularly to a photocurrent amplifier circuit in which the gain of the amplifier circuit can be changed at low contrast compared to the gain at high contrast. It is.

第1図は従来の光電流増幅回路を示す回路図
で、D1,D2は受光素子、A11,A12は光電流を電
圧に変換する変換回路、A2は演算増幅器、R11
R21,R12,R22は演算増幅器A2の利得をきめるた
めの抵抗である。第2図は第1図の動作特性を示
す。第1図の光電流増幅回路の動作原理を次に説
明する。
Figure 1 is a circuit diagram showing a conventional photocurrent amplification circuit, where D 1 and D 2 are photodetectors, A 11 and A 12 are conversion circuits that convert photocurrent into voltage, A 2 is an operational amplifier, R 11 ,
R 21 , R 12 , and R 22 are resistors for determining the gain of operational amplifier A 2 . FIG. 2 shows the operating characteristics of FIG. The operating principle of the photocurrent amplification circuit shown in FIG. 1 will now be explained.

受光素子D1,D2に入力として入つてくる光量
λ1,λ2は、例えばカメラの光センサ(ホトダイオ
ード)における中央と周辺とでの像の光量のよう
にそれぞれ異なる値を有し、受光素子D1,D2
よつてそれぞれ電流I〓1,I〓2に変換される。この
電流I〓1,I〓2は変換回路A11,A12によつてそれぞ
れ電圧VA11,VA12に変換される。このとき、上
述のように光量λ1,λ2の値がそれぞれ異なるの
で、電流I〓1,I〓2、ひいては電圧VA11,VA12もそ
れぞれ異なる値となる。さらに、この電圧は演算
増幅回路A2によつて、その差電圧ΔV(=VA12
VA11)が増幅され出力電圧V0が得られる。
The light amounts λ 1 and λ 2 that enter the light receiving elements D 1 and D 2 as input have different values, for example, the light amounts of images at the center and the periphery of a camera optical sensor (photodiode), and the light receiving elements D 1 and D 2 have different values. The currents are converted into currents I〓 1 and I〓 2 by elements D 1 and D 2 , respectively. These currents I〓 1 and I〓 2 are converted into voltages V A11 and V A12 by conversion circuits A 11 and A 12 , respectively. At this time, since the values of the light quantities λ 1 and λ 2 are different as described above, the currents I〓 1 and I〓 2 and, as a result, the voltages V A11 and V A12 are also different values. Furthermore, this voltage is converted to the differential voltage ΔV (=V A12
V A11 ) is amplified to obtain the output voltage V 0 .

しかしながら、第1図の回路は次のような欠点
を持つている。即ち、光量の差が少ない場合には
(低コントラスト時)、第2図に示すように光量差
と出力の関係は直線的に変化するので信号処理上
問題が生じない場合もあるが、光量の差が多い場
合には増幅器A2の利得の選び方によつては、光
量の差と出力との関係が直線的でない領域(いわ
ゆる飽和領域)が生じることがある。これは使用
している電源電圧が高い場合には問題が生じない
が、電源電圧が低い場合には特に問題となつてく
る。もちろん、増幅器A2の利得を小さくするこ
とによつて、高コントラストでも使用できるよう
になる場合もありえるが、この場合には低コント
ラストでの出力の電圧V0の絶対値が小さくなり、
この出力電圧V0を利用する次段回路での信号処
理が複雑となる。つまり、回路の雑音、外来の誘
導、外来の雑音等の光信号以外の無意味な雑音の
大きさが問題となり、それが低コントラストでの
光量差と出力の直線的な関係に重大な悪影響を及
ぼす。すなわち、この従来の回路では、低電源電
圧使用時に、低コントラスト、高コントラストに
おいて、2つの入力光量の差と出力との直線的な
関係が成立しなくなる場合があり、信号処理とし
て不適当な場合が発生する。
However, the circuit of FIG. 1 has the following drawbacks. In other words, when the difference in light intensity is small (low contrast), the relationship between the difference in light intensity and the output changes linearly, as shown in Figure 2, so there may be no problem in signal processing. If there is a large difference, depending on how the gain of the amplifier A2 is selected, a region (so-called saturated region) may occur where the relationship between the difference in light amount and the output is not linear. This does not pose a problem when the power supply voltage used is high, but it becomes a problem especially when the power supply voltage is low. Of course, by reducing the gain of the amplifier A2 , it may be possible to use it even at high contrasts, but in this case, the absolute value of the output voltage V0 at low contrasts will be small,
Signal processing in the next stage circuit that uses this output voltage V 0 becomes complicated. In other words, the magnitude of meaningless noise other than the optical signal, such as circuit noise, external induction, and external noise, becomes a problem, and this has a serious negative impact on the linear relationship between light intensity difference and output at low contrast. affect In other words, in this conventional circuit, when using a low power supply voltage, there are cases where a linear relationship between the difference between the two input light amounts and the output does not hold at low contrast and high contrast, and it is inappropriate for signal processing. occurs.

この発明は、増幅器の利得を変化させることに
より、このような上記欠点のない光電流増幅回路
を提供することを目的としている。
An object of the present invention is to provide a photocurrent amplification circuit that does not have the above-mentioned drawbacks by changing the gain of the amplifier.

第3図にこの発明の一実施例を示す。R31
R32は抵抗、SW1,SW2は演算増幅回路A2の利得
を変化させるためのスイツチ、C1,C2は電圧比
較器、ORは電圧比較器の出力の大きさを判別す
る論理和回路、その他の符号は第1図と同様であ
る。
FIG. 3 shows an embodiment of the present invention. R31 ,
R 32 is a resistor, SW 1 and SW 2 are switches for changing the gain of operational amplifier circuit A 2 , C 1 and C 2 are voltage comparators, and OR is a logical sum that determines the magnitude of the output of the voltage comparator. The circuit and other symbols are the same as in FIG.

第4図Aは第3図の実施例回路の動作特性を示
す図、第4図B〜Eはその動作説明のための各部
特性図である。第4図A〜Eを参照してこの実施
例の動作を説明する。入力として入つてくる光量
λ1,λ2は受光素子D1,D2によつてそれぞれ電流
I〓1,I〓2に変換される。この電流I〓1,I〓2は変換回
路A11,A12によつてそれぞれ電圧VA11,AA12
変換される。低コントラストの場合、即ち、変換
回路A11,A12の出力電圧の差の絶対値|ΔV|=
|VA12−VA11|が、基準設定電圧差ΔVdよりも
小さい場合には第4図B,Cに示すように、電圧
比較器C1,C2の出力がともにローとなる。この
基準設定電圧差ΔVdは電圧比較器C1,C2の正入
力側にオフセツト電圧としてもたせることによつ
て設定する。電圧比較器C1,C2の出力はOR回路
の入力に入り、この場合はそのOR回路の出力は
第4図Dに示すようにローとなり、このロー信号
のときには第4図Eに示すようにスイツチSW1
SW2は接点cと接点aとが接続されるようにす
る。この場合、演算増幅回路A2の利得はR21
R11(R11=R12、R21=R22とする)となる。
FIG. 4A is a diagram showing the operating characteristics of the embodiment circuit of FIG. 3, and FIGS. 4B to 4E are characteristic diagrams of each part for explaining the operation. The operation of this embodiment will be explained with reference to FIGS. 4A to 4E. The amounts of light λ 1 and λ 2 that enter as input are converted into currents by the light receiving elements D 1 and D 2 , respectively.
Converted to I〓 1 and I〓 2 . These currents I〓 1 and I〓 2 are converted into voltages V A11 and A A12 by conversion circuits A 11 and A 12 , respectively. In the case of low contrast, that is, the absolute value of the difference between the output voltages of the conversion circuits A 11 and A 12 |ΔV|=
When |V A12 −V A11 | is smaller than the reference setting voltage difference ΔVd, the outputs of voltage comparators C 1 and C 2 both become low, as shown in FIGS. 4B and C. This reference setting voltage difference ΔVd is set by providing it as an offset voltage on the positive input sides of the voltage comparators C 1 and C 2 . The outputs of the voltage comparators C 1 and C 2 are input to the OR circuit, and in this case, the output of the OR circuit becomes low as shown in Figure 4D, and at this low signal, as shown in Figure 4E. Switch SW 1 ,
SW 2 connects contact c and contact a. In this case, the gain of operational amplifier circuit A 2 is R 21 /
R 11 (R 11 = R 12 and R 21 = R 22 ).

高コントラストの場合、即ち、変換回路A11
A12の出力電圧の差の絶対値|ΔV|=|VA12
VA11|が基準設定電圧ΔVdよりも大きい場合に
は、第4図B,Cに示すように、電圧比較器C1
C2の出力が一方はロー、他方はハイとなる。こ
の電圧比較器C1,C2の出力はOR回路に入り、こ
の場合は第4図Dに示すようにそのOR回路の出
力はハイとなり、このハイ信号のときには第4図
Eに示すように、スイツチSW1,SW2は接点cと
接点bとが接続されるようにする。この場合の利
得はR31/R11(R11=R12、R31=R32とする)とな
る。
In case of high contrast, i.e. conversion circuit A 11 ,
Absolute value of the difference in output voltage of A 12 |ΔV|=|V A12
When V A11 | is larger than the reference setting voltage ΔVd, as shown in FIG. 4B and C, the voltage comparators C 1 ,
One output of C2 will be low and the other will be high. The outputs of the voltage comparators C 1 and C 2 enter the OR circuit, and in this case, the output of the OR circuit becomes high as shown in Figure 4D, and when this high signal is present, the output as shown in Figure 4E , switches SW 1 and SW 2 connect contact point c and contact point b. The gain in this case is R 31 /R 11 (R 11 = R 12 and R 31 = R 32 ).

ここでR21/R11>R31/R11と選べば第4図A
の特性が得られる。つまり、低コントラスト時の
場合、出力の傾斜が大きくでき、高コントラスト
時の場合、出力の傾斜が小さくできる。
If we choose R 21 /R 11 > R 31 /R 11 , we get Figure 4A.
The following characteristics are obtained. That is, when the contrast is low, the slope of the output can be made large, and when the contrast is high, the slope of the output can be made small.

以上のように、この発明では、低コントラスト
時の利得を高コントラスト時の利得より大きくな
るようにしたので、低コントラスト時での信号の
直線性が確保でき、かつ高コントラスト時での直
線性が確保でき、信号の処理を容易にすることが
できる長所がある。従つて、この発明によれば、
光信号の処理が容易となり、そのため回路が簡単
となり、特に集積回路に適用した場合には製造が
容易になりコストアツプを防止できるなどの効果
がある。
As described above, in this invention, the gain at low contrast is made larger than the gain at high contrast, so that the linearity of the signal at low contrast can be ensured, and the linearity at high contrast can be ensured. It has the advantage that it can be secured and signal processing can be facilitated. Therefore, according to this invention,
Processing of optical signals becomes easier, which simplifies the circuit. Particularly when applied to an integrated circuit, manufacturing becomes easier and cost increases can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電流増幅回路を示す回路図、
第2図は従来の回路の動作特性を示す図、第3図
はこの発明の一実施例を示す回路図、第4図A〜
Eはこの実施例回路の動作原理を説明する図であ
る。 図において、D1,D2は受光素子、A11は第1の
変換回路、A12は第2の変換回路、C1は第1の電
圧比較器、C2は第2の電圧比較器、ORはOR回
路、A2は演算増幅器、SW1,SW2は利得切換ス
イツチである。なお、図中同一符号は同一又は相
当する部分を示す。
Figure 1 is a circuit diagram showing a conventional photocurrent amplification circuit.
FIG. 2 is a diagram showing the operating characteristics of a conventional circuit, FIG. 3 is a circuit diagram showing an embodiment of the present invention, and FIGS.
E is a diagram explaining the operating principle of this embodiment circuit. In the figure, D 1 and D 2 are light receiving elements, A 11 is a first conversion circuit, A 12 is a second conversion circuit, C 1 is a first voltage comparator, C 2 is a second voltage comparator, OR is an OR circuit, A2 is an operational amplifier, and SW1 and SW2 are gain switching switches. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 2つの受光素子から得られる光電流をそれぞ
れ当該光電流値に対応する値の電圧に変換する第
1および第2の変換回路と、これらの変換回路の
出力電圧が入力され上記第2の変換回路の出力電
圧が上記第1の変換回路の出力電圧より所定値以
上大きいときに論理値“1”の出力を出しその他
のときには論理値“0”の出力を出す第1の電圧
比較器と、上記2つの変換回路の出力電圧が入力
され上記第1の変換回路の出力電圧が上記第2の
変換回路の出力電圧より所定値以上大きいときに
論理値“1”の出力を出しその他のときには論理
値“0”の出力を出す第2の電圧比較器と、上記
第1および第2の電圧比較器の出力の論理和を得
るOR回路と、上記第1および第2の変換回路の
出力電圧の差を増幅するとともにその増幅利得が
上記OR回路の出力が論理値“0”のときに大き
く論理値“1”のときに小さくなるように制御さ
れる演算増幅回路とを備えたことを特徴とする光
電流増幅回路。
1. First and second conversion circuits that convert photocurrents obtained from two light receiving elements into voltages corresponding to the respective photocurrent values, and the output voltages of these conversion circuits are inputted and perform the second conversion. a first voltage comparator that outputs a logic value "1" when the output voltage of the circuit is greater than the output voltage of the first conversion circuit by a predetermined value or more, and outputs a logic value "0" at other times; When the output voltages of the two conversion circuits are input and the output voltage of the first conversion circuit is greater than the output voltage of the second conversion circuit by a predetermined value or more, a logic value "1" is output; otherwise, the logic value is "1". a second voltage comparator that outputs the value "0"; an OR circuit that obtains the logical sum of the outputs of the first and second voltage comparators; and and an operational amplifier circuit which amplifies the difference and whose amplification gain is controlled such that it is large when the output of the OR circuit has a logic value of "0" and becomes small when the output of the OR circuit is a logic value of "1". photocurrent amplification circuit.
JP57095444A 1982-06-01 1982-06-01 Photocurrent amplifying circuit Granted JPS58210708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095444A JPS58210708A (en) 1982-06-01 1982-06-01 Photocurrent amplifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095444A JPS58210708A (en) 1982-06-01 1982-06-01 Photocurrent amplifying circuit

Publications (2)

Publication Number Publication Date
JPS58210708A JPS58210708A (en) 1983-12-08
JPH029508B2 true JPH029508B2 (en) 1990-03-02

Family

ID=14137857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095444A Granted JPS58210708A (en) 1982-06-01 1982-06-01 Photocurrent amplifying circuit

Country Status (1)

Country Link
JP (1) JPS58210708A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235235B2 (en) * 1992-12-11 2001-12-04 ソニー株式会社 Optical transmitter

Also Published As

Publication number Publication date
JPS58210708A (en) 1983-12-08

Similar Documents

Publication Publication Date Title
US6177839B1 (en) Variable gain amplifier circuit
JP2560747B2 (en) Photoelectric conversion device
JPH0585850B2 (en)
JPH08181348A (en) Photoelectric converter
JPH04252923A (en) Photo detecting circuit
JPH029508B2 (en)
CA2222848C (en) Analog-to-digital converter for differential signals
JP3404984B2 (en) Optical output monitor circuit
JP2535387B2 (en) Optical position detector
JPH09148930A (en) Offset voltage correction circuit for operational amplifier
JPH0792482B2 (en) Semiconductor sensor
JPS63158881A (en) Semiconductor photodetector
JPH11340925A (en) Semiconductor integrated circuit for receiving light
JPH05323220A (en) Synchronization detecting device
US6888852B1 (en) Signal combining circuit having two A/D converters
JPH09266414A (en) Logarithmic amplifier for very small current and color identification sensor circuit using it
JPH04247761A (en) Synchronization detection circuit
JP2824837B2 (en) Analog-to-digital converter
JPH037175B2 (en)
JPH0520795B2 (en)
SU1548673A1 (en) Photodetector
JPH051791Y2 (en)
SU836761A1 (en) Transistorized amplifier
JPS62176207A (en) Integrated circuit for receiver for optical communication
JPH07114330B2 (en) Light receiving circuit range switching circuit