JPS6156446B2 - - Google Patents

Info

Publication number
JPS6156446B2
JPS6156446B2 JP1877481A JP1877481A JPS6156446B2 JP S6156446 B2 JPS6156446 B2 JP S6156446B2 JP 1877481 A JP1877481 A JP 1877481A JP 1877481 A JP1877481 A JP 1877481A JP S6156446 B2 JPS6156446 B2 JP S6156446B2
Authority
JP
Japan
Prior art keywords
range
current
circuit
output
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1877481A
Other languages
Japanese (ja)
Other versions
JPS57133325A (en
Inventor
Yoshihiro Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1877481A priority Critical patent/JPS57133325A/en
Publication of JPS57133325A publication Critical patent/JPS57133325A/en
Publication of JPS6156446B2 publication Critical patent/JPS6156446B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 本発明は、シリコン光電池等の光電変換素子を
用いて測光を行なう装置に関し、くわしくはその
信号増幅回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that performs photometry using a photoelectric conversion element such as a silicon photovoltaic cell, and more particularly to a signal amplification circuit thereof.

シリコン光電池やセレン光電池を用いて測光を
行なう場合、光電流出力の直線性を保つために入
力インピーダンスの低い増幅回路により素子の出
力電圧を非常に小さく保ちながら出力電流を取り
出す必要があり、一般には演算増幅器を用いて電
流−電圧変換を行なつている。
When performing photometry using a silicon photovoltaic cell or a selenium photovoltaic cell, in order to maintain the linearity of the photocurrent output, it is necessary to extract the output current while keeping the output voltage of the element very small using an amplifier circuit with low input impedance. Current-to-voltage conversion is performed using an operational amplifier.

ところで、近年の計測の自動化傾向の中で、測
光の分野においても測定と同時にデータをコンピ
ユータに取り込んで演算処理することが一般的に
なりつつある。この自動測定における問題点のひ
とつとして測定レンジの自動切り換えがあげられ
る。
Incidentally, with the recent trend toward automation of measurements, it is becoming common in the field of photometry to import data into a computer and process it at the same time as measurement. One of the problems with this automatic measurement is automatic switching of measurement ranges.

広範囲の測光量を測定する方法としては、対数
増幅器を使用するか、測定範囲を多レンジ切り換
えとするかであるが、精密測光を行なう場合にお
いては後者が主である。この場合、増幅回路出力
を一度A/D変換した後、その変換値に応じて増
幅度をかえて再度A/D変換する方法と、電流−
電圧変換後の電圧をオートレンジ電圧増幅器で増
幅LA/D変換する方法がよく知られている。前
者においては測定指令を出してから実際に測定す
るまでにいくらか時間がかかるため、測定条件を
連続変化させながら測定するような用途には使用
できなかつた。また、後者では前者の問題はない
が、増幅回路が2段となるため初段のゼロドリフ
トが増幅されて出力に現われるためゼロ点が不安
定になり、低レベルの入力に対して誤差を生じや
すいという欠点があつた。
Methods for measuring photometric amounts over a wide range include using a logarithmic amplifier or switching the measurement range from multiple ranges, but the latter is the main method when performing precision photometry. In this case, there are two methods: A/D converting the amplifier circuit output once, then changing the amplification degree according to the converted value and A/D converting again;
A well-known method is to amplify the converted voltage using an auto-range voltage amplifier and perform LA/D conversion. In the former case, it takes some time from issuing a measurement command to actually measuring, so it cannot be used for applications where measurement is performed while continuously changing measurement conditions. In addition, although the latter does not have the problem of the former, since the amplifier circuit has two stages, the zero drift of the first stage is amplified and appears in the output, making the zero point unstable and prone to errors for low-level inputs. There was a drawback.

本発明は、このような従来の問題を解決し、高
速にレンジの切り換えができ、かつゼロドリフト
の少ない測光装置を提供するものである。
The present invention solves these conventional problems and provides a photometric device that can switch ranges at high speed and has little zero drift.

以下、本発明を添付図面により、その実施例に
ついて詳述する。図において、1にシリコン光電
池、2,3は演算増幅器、4はレンジ判定回路、
5はアナログスイツチ回路、6は積分型A/Dコ
ンバータ、7はマイクロプロセツサである。通常
の測光回路では受光素子出力の片側を回路アース
に接続するが、本実施例では別の演算増幅器に接
続している点が特徴となつている。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the figure, 1 is a silicon photovoltaic cell, 2 and 3 are operational amplifiers, 4 is a range determination circuit,
5 is an analog switch circuit, 6 is an integral type A/D converter, and 7 is a microprocessor. In a normal photometric circuit, one side of the light receiving element output is connected to circuit ground, but this embodiment is characterized in that it is connected to another operational amplifier.

演算増幅器2,3は、シリコン光電池1のそれ
ぞれの出力線に対して電流−電圧変換を行なうよ
う構成されており、それぞれのマイナス入力端子
が回路アースと同電位となるように動作する。し
たがつて、シリコン光電池1に光起電力が発生す
ると極性が相異なる絶対値の等しい光電流を演算
増幅器2,3に入力することとなり、2つの電流
−電圧変換出力が得られる。
The operational amplifiers 2 and 3 are configured to perform current-voltage conversion on each output line of the silicon photovoltaic cell 1, and operate so that their respective negative input terminals are at the same potential as the circuit ground. Therefore, when a photovoltaic force is generated in the silicon photovoltaic cell 1, photocurrents with different polarities and equal absolute values are input to the operational amplifiers 2 and 3, and two current-voltage conversion outputs are obtained.

演算増幅器3の出力は、レンジ判定回路4に入
力され、入力光電流の範囲に応じたレンジ信号を
つくり出す。このレンジ信号はアナログスイツチ
回路5に送られ、ここで演算増幅器2の増幅度を
切り換える。たとえば、R1,R2,R3をそれぞれ
100MΩ,10MΩ,1MΩとすると、0〜100nA,
100nA〜1μA,1μA〜10μAの3レンジの自
動切り換えが可能となり、各レンジでフルスケー
ル出力10Vが得られる。
The output of the operational amplifier 3 is input to a range determination circuit 4, which generates a range signal according to the range of input photocurrent. This range signal is sent to an analog switch circuit 5, where the amplification degree of the operational amplifier 2 is switched. For example, let R 1 , R 2 , R 3 be
When 100MΩ, 10MΩ, 1MΩ, 0 to 100nA,
It is possible to automatically switch between three ranges: 100nA to 1μA and 1μA to 10μA, and a full-scale output of 10V can be obtained in each range.

演算増幅器2の出力は、交流点灯の場合、光源
のフリツカ成分を含んでいるため、積分型A/D
コンバータ6によりフリツカ成分を除去するとと
もにマイクロプロセツサクとの接続を行なつてい
る。
In the case of AC lighting, the output of the operational amplifier 2 contains a flicker component of the light source, so it is an integral type A/D.
A converter 6 removes flicker components and also connects to a microprocessor.

このように、本発明は、初段に2個の演算増幅
器を並置することにより電流−電圧変換回路にお
いて増幅レンジの自動切換を実現したものであ
る。この回路を使用することにより、広範囲の測
光量に対して精度の高い安定した自動測定が可能
となる。しかもレンジ切換が高速であるので、測
定条件を連続変化させながら測定する場合でもほ
とんど問題なく使用出来、高速測光において大き
な効果が期待できる。
As described above, the present invention realizes automatic switching of the amplification range in a current-voltage conversion circuit by arranging two operational amplifiers in parallel at the first stage. By using this circuit, highly accurate and stable automatic measurement of photometric quantities over a wide range is possible. Moreover, since range switching is fast, it can be used without any problems even when measuring while continuously changing measurement conditions, and great effects can be expected in high-speed photometry.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例を示すもので、本発明
を用いたオートレンジ測光装置の概略結線図であ
る。 1……シリコン光電池、2,3……演算増幅
器、4……レンジ判定回路、5……アナログスイ
ツチ回路、6……積分型A/Dコンバータ、7…
…マイクロプロセツサ。
The drawing shows an embodiment of the present invention, and is a schematic wiring diagram of an auto-ranging photometer using the present invention. DESCRIPTION OF SYMBOLS 1... Silicon photocell, 2, 3... Operational amplifier, 4... Range determination circuit, 5... Analog switch circuit, 6... Integral type A/D converter, 7...
...Microprocessor.

Claims (1)

【特許請求の範囲】[Claims] 1 電流−電圧変換を行なうよう構成した2個の
演算増幅器A,Bと、その演算増幅器のそれぞれ
の電流入力端の間に接続された光電変換素子と、
演算増幅器Aの出力電圧より最適の増幅度を決定
するレンジ判定回路と、該レンジ判定回路の出力
を受けて演算増幅器Bの増幅度を切り換えるスイ
ツチ回路とによつて構成され、光電変換素子の出
力電流の範囲に応じて自動的に増幅度を切り換え
て電流−電圧変換できることを特徴とするオート
レンジ測光装置。
1. Two operational amplifiers A and B configured to perform current-voltage conversion, and a photoelectric conversion element connected between the respective current input terminals of the operational amplifiers,
It is composed of a range judgment circuit that determines the optimum amplification degree from the output voltage of operational amplifier A, and a switch circuit that receives the output of the range judgment circuit and switches the amplification degree of operational amplifier B. An auto-range photometric device characterized by being capable of current-voltage conversion by automatically switching the degree of amplification according to the current range.
JP1877481A 1981-02-10 1981-02-10 Autorange photometer Granted JPS57133325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1877481A JPS57133325A (en) 1981-02-10 1981-02-10 Autorange photometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1877481A JPS57133325A (en) 1981-02-10 1981-02-10 Autorange photometer

Publications (2)

Publication Number Publication Date
JPS57133325A JPS57133325A (en) 1982-08-18
JPS6156446B2 true JPS6156446B2 (en) 1986-12-02

Family

ID=11980974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1877481A Granted JPS57133325A (en) 1981-02-10 1981-02-10 Autorange photometer

Country Status (1)

Country Link
JP (1) JPS57133325A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4889985A (en) * 1988-10-26 1989-12-26 Tektronix, Inc. Combined optical power meter and receiver
DE4403982A1 (en) * 1994-02-07 1995-08-10 Gerd Reime Circuit arrangement for receiving light signals
US8742314B2 (en) 2009-07-01 2014-06-03 Pioneer Corporation Light amount detecting apparatus, and light amount information processing apparatus

Also Published As

Publication number Publication date
JPS57133325A (en) 1982-08-18

Similar Documents

Publication Publication Date Title
US5115124A (en) Semiconductor photosensor having unitary construction
CN207181230U (en) A kind of signal acquisition circuit for laser particle size analysis
JP2560747B2 (en) Photoelectric conversion device
JPS6156446B2 (en)
CN204882703U (en) Faint current signal detection device of silicon photocell
US5252864A (en) Normalization circuit for a measuring device
JPS5946521A (en) Light measuring circuit
RU2193761C1 (en) Photodetector
JPS639167B2 (en)
JPS6010569B2 (en) Photometering circuit for photography equipment
JPH0257739B2 (en)
SU746568A1 (en) Operational amplifier
CN107576482A (en) A kind of optical parameter measurement device and its measuring method
Chevroulet et al. A battery operated optical spot intensity Measurement system
SU1548673A1 (en) Photodetector
SU1465709A1 (en) Current transducer
CN205593648U (en) Illuminance measured module
JPS59182322A (en) Circuit for automatically correcting zero position in photometry
SU1689764A1 (en) A light beam deviometer
SU1058022A1 (en) Amplitude detector
JPH051791Y2 (en)
SU696500A1 (en) Photoelectric readout device
JPH0690083B2 (en) Bias automatic variable metering circuit
RU1788569C (en) Optoelectronic amplifier
SU1505134A1 (en) Photoreseiving device