JPS6315860Y2 - - Google Patents
Info
- Publication number
- JPS6315860Y2 JPS6315860Y2 JP177987U JP177987U JPS6315860Y2 JP S6315860 Y2 JPS6315860 Y2 JP S6315860Y2 JP 177987 U JP177987 U JP 177987U JP 177987 U JP177987 U JP 177987U JP S6315860 Y2 JPS6315860 Y2 JP S6315860Y2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- circuit
- scanning
- gate
- focus detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 65
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 239000002131 composite material Substances 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Focusing (AREA)
Description
本考案は、被写体像を2つに分け互いの被写体
像が焦点合致時には一致するいわゆる像合致の原
理を利用した方法や、被写体像のコントラストが
焦点合致時には最大となる原理を利用した自動焦
点検出装置等に用いるに適した、幅広い被写体輝
度の範囲で焦点検出が可能なカメラの焦点検出装
置に関するものである。
従来より、複数の光電変換素子を用いた像合致
の原理や、被写体のコントラストの変化を応用し
た自動焦点検出装置が数多く考えられ、その内の
幾つかは実用化され始めている。
又、光電変換素子もCdS等からフオトダイオー
ド等に変り、最近では、出力端子が少なく、受光
面も小さく出来、数多くの光電変換素子が同一基
板上に構成出来、かつ、処理回路も含めて集積度
が高められる非常に利点の多い自己走査型の
CCDやBBD原理を応用した光電変換素子群や、
MOSのシフトレジスターを用いたMOS型の光電
変換素子群が利用され始めている。
しかし、この自己走査型の光電変換素子群は、
素子の放電現象等を利用しているため、一定放電
時間に対しては狭い明るさの範囲でしか出力が得
られず、幅広い明るさの範囲即ち幅広い被写体輝
度の範囲で出力を得るには、被写体輝度に応じた
放電時間の可変即ち駆動周波数あるいは1走査期
間の可変(今後この可変動作を輝度変調と呼ぶ)
動作が必要となる。そのため、被写体輝度を測定
するのに必要な光電変換素子即ち輝度変調用の光
電変換素子と、自動焦点検出に必要な情報を得る
光電変換素子(前述の自己走査型光電変換素子群
を示す。今後この動作を輝度検出と呼ぶ。)の両
方が必要となり、同一被写体像を両素子上に得る
には光学系やハーフミラー等の光学部材が必要と
なつてしまう。又、輝度検出用の光電変換素子群
の近くに輝度変調用の光電変換素子を設置すれ
ば、ハーフミラー等の光学部材の必要はなくなる
反面、同一被写体像が投影されないため、しばし
ば被写体輝度に対応しない輝度変調を輝度検出用
光電変換素子群に与えてしまい、好ましい出力が
得られなくなつてしまう。
本考案は、上記背景に鑑み、自己走査型光電変
換素子を輝度検出・輝度変調の両方に共用すると
共に、その出力形態を工夫して、輝度変調用の出
力を電荷蓄積後瞬時に得られるばかりか、幅広い
被写体輝度の焦点検出が可能で、処理回路も含み
小型化が出来るカメラの焦点検出装置を提供する
ものである。
以下本考案の実施例を図に従つて説明する。
第1図は自己走査型光電変換素子群の一例であ
る、MOS型のシフトレジスターを用いた例で、
1はシフトレジスターを有する走査回路でクロツ
クφ及びスタートパルスSTにより駆動され、順
次走査回路1の出力端子G1,G2……Goを通して
半導体アドレススイツチS1,S2……SoをONにす
る。次にフオトダイオードd2に着目して動作原理
を簡単に説明する。走査回路1からの走査パルス
により出力端子G2を通してアドレススイツチS2
がONすると、外部電源電圧Eと負荷抵抗Rを通
してフオトダイオードd2は逆バイアスされ、フオ
トダイオードd2のキヤパシターが飽和するまで充
電され、出力端子G2を通してアドレススイツチ
S2がOFFすると、1走査期間フオトダイオード
d2は逆バイアスされる。この時、フオトダイオー
ドd2に光が入射すると、フオトダイオードd2内に
放電電流が流れ、フオトダイオードd2に蓄えられ
ていた電荷は入射光量に比例して減り、その減少
分は次にS2がONした時に補なわれ、その充電電
流がビデオ出力Voutとなる。又、1走査期間の
間隔即ちスタートパルスSTの間隔を長くすれば、
低照度域の光でも感応して見かけ上の感度が上げ
られ、低照度域での焦点検出が可能となる。
第2図は第1図に於けるビデオ出力Voutの時
間的変化の図で、半導体アドレススイツチS1,S2
……Soの順にONした場合、ビデオ出力Voutとし
てはV1,V2……Voの順に出力される事を示す。
尚、各々の波形は当然の事ながら充電波形とな
る。
第3図は一眼レフカメラに一般的な焦点検出装
置を追加させた一例で、基本的には自己走査型光
電変換素子群を用い被写体のコントラストを検出
し焦点検出を行う構成となつている。図に於い
て、被写体からの光は、撮影レンズ2を通り、全
反射ミラー3により反射してコンデンサーレンズ
4の下部に結像しその状態をペンタプリズム5、
アイピース6を通して眼7で見ると同時に、フイ
ルム面11と光学的に等価な位置にかれた自己走
査型の輝度検出用光電変換素子群10(以後検出
用素子と呼ぶ)にハーフミラー3′及び全反射ミ
ラー9を介して投影される。
前述の如く、検出用素子10は被写体の輝度に
応じて1走査期間を決定しなくてはならないた
め、コンデンサーレンズ4の中央部のハーフミラ
ー4′を介し、検出用素子10に投影される被写
体像と対応した光を、輝度変調用光電変換素子8
(以後変調用素子と呼ぶ)に入射させ、処理回路
12を通して検出用素子10の制御に用いる。
次に焦点検出動作を説明する。まず、焦点検出
と同時に変調用素子8の出力を処理回路12で受
け、その出力の値を周波数に変えて好ましい走査
期間を検出用素子10に与え、即ちスタートパル
スSTの間隔を決定した後、撮影レンズ2は撮影
レンズ駆動回路13により近点又は∞点から一方
向に動き出す。
次に第2図に見られる検出素子10の各出力
V1,V2……Voによりε=o-1
〓i=1
|Vi−Vi+1|の演算
を行うと、焦点合致時にはこの値が最大となる。
即ちコントラストが焦点合致時には最大となる事
を利用する。これらの演算処理等は処理回路12
で行い、出力εが最大になつた時は、撮影レンズ
駆動回路13を介して撮影レンズが止められれ
ば、焦点合致が成される。
第4図に上記の焦点検出出力εの撮影レンズの
繰り出し量に対する変化を示す。焦点合致位置a0
の時、焦点検出出力εは最大値ε0を得る事を示し
ている。
第5図に第3図に示された焦点検出装置の原理
を応用した本考案の焦点検出装置の一例を示す。
この実施例は第3図に比べ、第3図の変調用素子
8がないため、コンデンサーレンズ4内のハーフ
ミラー4′がなく、機構が非常に簡単となる他は、
光電変換素子が輝度検出,変調共用自己走査型光
電変換素子群10′(以後検出,変調共用素子と
呼ぶ)となり、処理回路が若干異なる処理回路1
4に変わつたのみで、光学的には全く第3図と同
じ構成である。
即ち、自己走査型の光電変換素子群を用いるい
かなる原理に基く焦点検出法に於いても、本考案
は応用出来る。
第6図,第7図により本考案の検出,変調共用
素子10′及び処理回路14について説明する。
尚、検出,変調共用素子10′,処理回路14の
境界は一緒に構成してもよいため明確にはしな
い。
自動焦点検出手順に基いて説明する。始めに自
動焦点検出機構が自動焦点検出開始スイツチ15
により動作を始めると、輝度検出,変調切り換え
回路16によりで示す如くある期間H信号を半
導体スイツチB2及びインバーターI1を通して半導
体スイツチB1に送る。この半導体スイツチは、
右図の様に3の端子がHの時に1〜2間はON状
態となり、
The present invention uses a method that utilizes the principle of so-called image matching, in which the subject image is divided into two parts and the two subject images match when they are in focus, and an automatic focus detection method that utilizes the principle that the contrast of the subject images is maximized when the subject images are in focus. The present invention relates to a focus detection device for a camera, which is suitable for use in a camera, and is capable of detecting focus over a wide range of subject brightness. BACKGROUND ART Many automatic focus detection devices that apply the principle of image matching using a plurality of photoelectric conversion elements or changes in the contrast of a subject have been considered, and some of them are beginning to be put into practical use. In addition, photoelectric conversion elements have changed from CdS etc. to photodiodes, etc., and recently there are fewer output terminals, the light-receiving surface can be made smaller, many photoelectric conversion elements can be configured on the same substrate, and processing circuits can also be integrated. Highly advantageous self-scanning
A group of photoelectric conversion elements that apply CCD and BBD principles,
MOS type photoelectric conversion elements using MOS shift registers are beginning to be used. However, this self-scanning photoelectric conversion element group
Because it utilizes the discharge phenomenon of the element, output can only be obtained in a narrow brightness range for a fixed discharge time.In order to obtain output in a wide brightness range, that is, a wide range of subject brightness, it is necessary to Variable discharge time according to subject brightness, that is, variable drive frequency or one scanning period (this variable operation will be referred to as brightness modulation from now on)
Action is required. Therefore, the photoelectric conversion elements necessary to measure the subject brightness, that is, the photoelectric conversion elements for brightness modulation, and the photoelectric conversion elements (the above-mentioned self-scanning photoelectric conversion element group is shown) that obtain the information necessary for automatic focus detection. This operation is called brightness detection.), and to obtain the same subject image on both elements, an optical system or an optical member such as a half mirror is required. In addition, if a photoelectric conversion element for brightness modulation is installed near a group of photoelectric conversion elements for brightness detection, there is no need for an optical member such as a half mirror. In this case, brightness modulation that does not occur will be applied to the brightness detection photoelectric conversion element group, making it impossible to obtain a desirable output. In view of the above background, the present invention uses a self-scanning photoelectric conversion element for both brightness detection and brightness modulation, and also devises its output form so that the output for brightness modulation can be obtained instantaneously after charge accumulation. Another object of the present invention is to provide a focus detection device for a camera that is capable of detecting focus in a wide range of subject brightnesses, includes a processing circuit, and can be miniaturized. Embodiments of the present invention will be described below with reference to the drawings. Figure 1 shows an example of a self-scanning photoelectric conversion element group using a MOS shift register.
Reference numeral 1 denotes a scanning circuit having a shift register, which is driven by a clock φ and a start pulse ST, and turns on semiconductor address switches S 1 , S 2 ...S o through output terminals G 1 , G 2 ...G o of the sequential scanning circuit 1. Make it. Next, focusing on photodiode d2 , the operating principle will be briefly explained. The scanning pulse from the scanning circuit 1 causes the address switch S 2 to be connected to the address switch S 2 through the output terminal G 2 .
When ON, the photodiode d2 is reverse biased through the external power supply voltage E and the load resistance R, and the capacitor of the photodiode d2 is charged until it is saturated, and the address switch is output through the output terminal G2 .
When S 2 is OFF, the photodiode is turned off for one scanning period.
d 2 is reverse biased. At this time, when light enters the photodiode d2 , a discharge current flows in the photodiode d2 , and the charge stored in the photodiode d2 decreases in proportion to the amount of incident light, and the decrease is then transferred to S. 2 is turned on, and the charging current becomes the video output Vout. Also, if the interval of one scanning period, that is, the interval of start pulses ST, is increased,
It is also sensitive to light in the low-illuminance range, increasing the apparent sensitivity and enabling focus detection in the low-illuminance range. Fig. 2 is a diagram showing the temporal change in the video output Vout in Fig .
. . . When S o is turned ON in this order, the video output Vout is outputted in the order of V 1 , V 2 , . . . V o .
Note that each waveform is naturally a charging waveform. FIG. 3 shows an example in which a general focus detection device is added to a single-lens reflex camera. Basically, the configuration is such that a group of self-scanning photoelectric conversion elements is used to detect the contrast of a subject and perform focus detection. In the figure, light from the subject passes through a photographic lens 2, is reflected by a total reflection mirror 3, and forms an image on the lower part of a condenser lens 4.
At the same time when viewing with the eye 7 through the eyepiece 6, a half mirror 3' and a full-length self-scanning photoelectric conversion element group 10 (hereinafter referred to as a detection element) for brightness detection are placed at a position optically equivalent to the film surface 11. It is projected via the reflection mirror 9. As mentioned above, since the detection element 10 must determine one scanning period depending on the brightness of the object, the object projected onto the detection element 10 through the half mirror 4' in the center of the condenser lens 4 is The light corresponding to the image is transmitted to a photoelectric conversion element 8 for brightness modulation.
(hereinafter referred to as a modulation element), and is used to control the detection element 10 through a processing circuit 12. Next, the focus detection operation will be explained. First, simultaneously with focus detection, the processing circuit 12 receives the output of the modulation element 8, converts the value of the output into a frequency, and provides a preferable scanning period to the detection element 10, that is, after determining the interval of the start pulse ST, The photographic lens 2 starts moving in one direction from the near point or the ∞ point by the photographic lens drive circuit 13. Next, each output of the detection element 10 shown in FIG.
When calculating ε= o-1 〓 i=1 |V i −V i+1 | using V 1 , V 2 . . . V o , this value becomes maximum when the focus is met.
In other words, the fact that the contrast is maximum when in focus is utilized. These arithmetic operations are carried out by the processing circuit 12.
When the output ε reaches the maximum, if the photographing lens is stopped via the photographing lens drive circuit 13, focusing is achieved. FIG. 4 shows the change in the focus detection output ε with respect to the amount of extension of the photographing lens. Focus position a 0
It is shown that the focus detection output ε attains the maximum value ε 0 when . FIG. 5 shows an example of the focus detection device of the present invention, which applies the principle of the focus detection device shown in FIG.
Compared to FIG. 3, this embodiment does not have the modulating element 8 shown in FIG. 3, so there is no half mirror 4' in the condenser lens 4, and the mechanism is very simple.
The photoelectric conversion element is a self-scanning photoelectric conversion element group 10' for both brightness detection and modulation (hereinafter referred to as a detection and modulation shared element), and the processing circuit is slightly different from the processing circuit 1.
4, but optically the configuration is exactly the same as that shown in FIG. 3. That is, the present invention can be applied to any focus detection method based on any principle using a self-scanning photoelectric conversion element group. The detection/modulation shared element 10' and processing circuit 14 of the present invention will be explained with reference to FIGS. 6 and 7.
Incidentally, the boundary between the detection/modulation common element 10' and the processing circuit 14 is not made clear because they may be configured together. The explanation will be based on the automatic focus detection procedure. First, the automatic focus detection mechanism turns on the automatic focus detection start switch 15.
When the operation starts, the brightness detection/modulation switching circuit 16 sends an H signal for a certain period of time as shown by to the semiconductor switch B 1 through the semiconductor switch B 2 and the inverter I 1 . This semiconductor switch is
As shown in the diagram on the right, when terminal 3 is H, the period between 1 and 2 is ON,
【式】Lの時はOFF状態と
なる様に構成されている。よつて、半導体スイツ
チB2はONに、B1はOFF状態となる。又AND回
路A1,A2……Aoの出力は走査回路1の出力端子
G1,G2……Goの状態に拘らずLとなるため、半
導体アドレススイツチS1,S2……SoはONとなる
が、半導体スイツチS0はインバーターI0の働きに
よりOFF(尚半導体アドレススイツチS1,S2……
So,S0はLでONとなるとする。)となるから、
各フオトダイオードd1,d2……doには逆バイアス
が加わらず、ビデオラインには各フオトダイオー
ドd1,d2……doが並列につながつた状態で写体輝
度の総合輝度に対応した電流が流れ、半導体スイ
ツチB2を通して輝度変調用回路17にで示さ
れた入力が得られる(この様な動作を今後静止型
と呼ぶ)。この回路17中で周波数変換がなされ、
被写体輝度に応じたクロツクφ及びスタートパル
スSTが,で示される形で走査回路1に入力
される。と同時に輝度検出,変調切り換え回路1
6の出力はLとなり、そのため半導体スイツチ
B2はOFFに、B1はONに、S0もONに、又AND
回路A1,A2……Aoの出力は走査回路1の出力端
子G1,G2……Goの状態と同じになり、各フオト
ダイオードd1,d2……doに入射した光量に比例し
て順次ビデオラインを通しての様な出力が焦点
検出回路18に入力される。と同時に撮影レンズ
駆動装置13により第5図で示された撮影レンズ
2が近点あるいは∞点より一方向に動き出す。焦
点検出装置18は各時点のビデオ出力V1,V2…
…VSoにより
ε=o-1
〓i=1
|Vi−Vi+1|を演算すると共に焦点検出
出力εの最大値ε0を検出し、その情報を撮影レン
ズ駆動装置13に与え、撮影レンズ2を止める事
により焦点合致が成される。尚は焦点検出回路
18内の積分計算の状態を示す。
第8図に輝度変調の方法の一例を図示した。こ
れは被写体輝度(本考案の実施例では検出変調用
素子10′に投影された被写体の平均値に対応し
ており、又平均値に重みを加えてもよく、要は検
出変調用素子11′の検出動作時に出力が得られ
ればどの様な対応でもよい。)に対応してクロツ
クφの周波数即ち1走査期間が階段的に変化する
方法であるが、もちろん線型変化でもよい。又輝
度変調も焦点検出出力に影響を与えなければ検出
10回に対し変調1回となる様などんな組合せでも
よい。
以上述べたように、本考案による焦点検出装置
を用いる事により、検出,変調作用の2つの光電
変換素子が1つになるばかりか、変調用素子のた
めの光学系,光学部材を必要とせず、幅広い明る
さの範囲、特に低照度域での焦点検出が可能で、
自己走査型光電変換素子を用いるいかなる焦点検
出装置にも応用出来るカメラの焦点検出装置を得
ることができ、しかも輝度変調用の出力を電荷蓄
積後瞬時に得られるなど、その効果は極めて大で
ある。[Formula] It is configured so that it is in the OFF state when it is L. Therefore, the semiconductor switch B2 is turned on and the semiconductor switch B1 is turned off. Also, the output of AND circuit A 1 , A 2 ...A o is the output terminal of scanning circuit 1
Since G 1 , G 2 ... is L regardless of the state of G o , the semiconductor address switches S 1 , S 2 ... S o are ON, but the semiconductor switch S 0 is OFF due to the action of the inverter I 0 ( Furthermore, semiconductor address switches S 1 , S 2 ……
Assume that S o and S 0 are turned ON at L. ), so
No reverse bias is applied to each photodiode d 1 , d 2 . A corresponding current flows, and the input indicated by is obtained through the semiconductor switch B2 to the brightness modulation circuit 17 (this type of operation will be referred to as static type from now on). Frequency conversion is performed in this circuit 17,
A clock φ and a start pulse ST corresponding to the subject brightness are input to the scanning circuit 1 in the form shown by . At the same time, brightness detection and modulation switching circuit 1
The output of 6 becomes L, so the semiconductor switch
B 2 is OFF, B 1 is ON, S 0 is also ON, and AND
The outputs of the circuits A 1 , A 2 ...A o are in the same state as the output terminals G 1 , G 2 ...G o of the scanning circuit 1, and the outputs of the circuits A 1 , A 2 ...A o are the same as those of the output terminals G 1 , G 2 ... Outputs are sequentially input to the focus detection circuit 18 through a video line in proportion to the amount of light. At the same time, the photographing lens driving device 13 starts moving the photographing lens 2 shown in FIG. 5 in one direction from the near point or the ∞ point. The focus detection device 18 provides video outputs V 1 , V 2 . . . at each time point.
...calculates ε= o-1 〓 i=1 |V i −V i+1 | by VS o, detects the maximum value ε 0 of the focus detection output ε, and gives that information to the photographic lens driving device 13 , Focus matching is achieved by stopping the photographing lens 2. In addition, the state of integral calculation within the focus detection circuit 18 is shown. FIG. 8 illustrates an example of a brightness modulation method. This corresponds to the subject brightness (in the embodiment of the present invention, it corresponds to the average value of the subject projected onto the detection modulation element 10', and weighting may be added to the average value, in short, the detection modulation element 11' Any method may be used as long as an output is obtained during the detection operation.) The frequency of the clock φ, that is, one scanning period, is changed in a stepwise manner, but of course, a linear change may also be used. Also, brightness modulation can be detected if it does not affect the focus detection output.
Any combination that modulates once for every 10 times may be used. As described above, by using the focus detection device according to the present invention, not only the two photoelectric conversion elements for detection and modulation functions are combined into one, but also there is no need for an optical system or optical member for the modulation element. , enables focus detection in a wide brightness range, especially in low light areas,
It is possible to obtain a camera focus detection device that can be applied to any focus detection device using a self-scanning photoelectric conversion element, and the effects are extremely large, such as the ability to obtain an output for brightness modulation instantly after charge accumulation. .
第1図は自己走査型光電変換素子群内のMOS
のシフトレジスターを用いた一例である。第2図
は第1図に於けるVoutの時間による変化である。
第3図は一眼レフカメラに一般的な自動焦点検出
装置を付加した一例である。第4図は一般的な焦
点検出出力である。第5図は本考案の実施例を示
す焦点検出装置の一例である。第6図は本考案に
よる焦点検出装置の電気回路の一例である。第7
図は第5図の各点に於ける出力の時間的変化であ
る。第8図は本考案による輝度変調の一例であ
る。
1:走査回路、2:撮影レンズ、3:全反射ミ
ラー、3′:ハーフミラー、4:コンデンサーレ
ンズ、4′:ハーフミラー、5:ペンタプリズム、
6:アイピース、7:眼、8:輝度変調用光電変
換素子、9:全反射ミラー、10:自己走査型輝
度検出用光電変換素子群、10′:本考案を応用
した輝度検出,変調共用光電変換素子、11:フ
イルム面、12:処理回路、13:撮影レンズ駆
動装置、14:本考案による処理回路、15:自
動焦点検出開始スイツチ、16:輝度検出,変調
切り換え回路、17:輝度変調用回路、18:焦
点検出回路、G1,G2……Go:走査回路1の出力
端子、S1,S2……So:半導体アドレススイツチ、
d1,d2……do:フオトダイオード、R:負荷抵
抗、E:外部電源、φ:クロツク、ST:スター
トパルス、Vout:ビデオ出力、V1,V2……Vo:
各フオトダイオードd1,d2……dnのビデオ出
力、T:時間、A1,A2……Ao:AND回路、S0,
B1,B2:半導体スイツチ、I0,I1:インバータ
ー、〜:各位置を示す、ε:焦点検出出力、
a0:焦点合致位置、ε0:最大焦点検出出力。
Figure 1 shows the MOS in the self-scanning photoelectric conversion element group.
This is an example using a shift register. FIG. 2 shows the change in Vout over time in FIG. 1.
FIG. 3 is an example of a single-lens reflex camera with a general automatic focus detection device added thereto. FIG. 4 shows a general focus detection output. FIG. 5 is an example of a focus detection device showing an embodiment of the present invention. FIG. 6 is an example of an electric circuit of a focus detection device according to the present invention. 7th
The figure shows temporal changes in the output at each point in FIG. FIG. 8 is an example of brightness modulation according to the present invention. 1: Scanning circuit, 2: Photographic lens, 3: Total reflection mirror, 3': Half mirror, 4: Condenser lens, 4': Half mirror, 5: Pentaprism,
6: Eyepiece, 7: Eye, 8: Photoelectric conversion element for brightness modulation, 9: Total reflection mirror, 10: Group of photoelectric conversion elements for self-scanning brightness detection, 10': Photoelectric conversion element for brightness detection and modulation using the present invention Conversion element, 11: Film surface, 12: Processing circuit, 13: Photographic lens drive device, 14: Processing circuit according to the present invention, 15: Automatic focus detection start switch, 16: Brightness detection, modulation switching circuit, 17: For brightness modulation Circuit, 18: Focus detection circuit, G 1 , G 2 ...G o : Output terminal of scanning circuit 1, S 1 , S 2 ... S o : Semiconductor address switch,
d 1 , d 2 ... d o : Photodiode, R: Load resistance, E: External power supply, φ: Clock, ST: Start pulse, Vout: Video output, V 1 , V 2 ... V o :
Video output of each photodiode d 1 , d 2 ...dn, T: time, A 1 , A 2 ...A o : AND circuit, S 0 ,
B 1 , B 2 : Semiconductor switch, I 0 , I 1 : Inverter, ~: Indicates each position, ε: Focus detection output,
a 0 : Focus position, ε 0 : Maximum focus detection output.
Claims (1)
出装置において、前記自己走査型光電変換素子の
各光電変換部を順次走査する走査回路に於る各出
力端子からの各クロツクを前記各光電変換部に対
応させた各ゲート回路の一方の各入力端子に夫々
入力させると共に、前記各ゲート回路の他方の各
入力端子に前記ゲート回路の開閉を制御するゲー
ト制御信号を共通入力させる一方、前記各光電変
換部を各々オン・オフする各スイツチを前記各ゲ
ート回路が夫々閉じた時にオンさせるようにし、
前記ゲート制御信号によつて前記各ゲート回路を
閉じて前記クロツクの有無に拘らず前記各スイツ
チを全てオンさせた輝度変調時に得られる前記各
光電変換部の並列合成出力に応じて輝度変調用回
路に前記自己走査型光電変換素子の駆動周波数を
形成させ、前記ゲート制御信号によつて前記各ゲ
ート回路を開いた輝度検出時に前記駆動周波数に
基づく前記走査回路に於る各出力端子からの各ク
ロツクにより前記各ゲート回路を介して前記各ス
イツチを順次オン・オフさせて前記各光電変換部
より離敬的な検出信号を時系列に得て、この検出
信号に基づいて撮影レンズの駆動回路を制御して
焦点検出を行なうようにしたことを特徴とするカ
メラの焦点検出装置。 In an electrical focus detection device having a self-scanning photoelectric conversion element, each clock from each output terminal in a scanning circuit that sequentially scans each photoelectric conversion unit of the self-scanning photoelectric conversion element is applied to each photoelectric conversion unit. A gate control signal for controlling opening/closing of the gate circuit is commonly input to one input terminal of each of the corresponding gate circuits, and a gate control signal for controlling opening/closing of the gate circuit is commonly input to each input terminal of the other gate circuit. each switch for turning on and off the respective parts is turned on when each of the gate circuits is closed,
A brightness modulation circuit according to the parallel composite output of each of the photoelectric conversion units obtained during brightness modulation in which each of the gate circuits is closed by the gate control signal and all of the switches are turned on regardless of the presence or absence of the clock. to form a driving frequency of the self-scanning photoelectric conversion element, and each clock signal from each output terminal of the scanning circuit based on the driving frequency is set at the time of brightness detection in which each gate circuit is opened by the gate control signal. The respective switches are sequentially turned on and off via the respective gate circuits to obtain discrete detection signals in time series from the respective photoelectric conversion units, and the driving circuit of the photographing lens is controlled based on the detection signals. A focus detection device for a camera, characterized in that focus detection is performed by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP177987U JPS6315860Y2 (en) | 1987-01-09 | 1987-01-09 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP177987U JPS6315860Y2 (en) | 1987-01-09 | 1987-01-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62125223U JPS62125223U (en) | 1987-08-08 |
JPS6315860Y2 true JPS6315860Y2 (en) | 1988-05-06 |
Family
ID=30780002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP177987U Expired JPS6315860Y2 (en) | 1987-01-09 | 1987-01-09 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6315860Y2 (en) |
-
1987
- 1987-01-09 JP JP177987U patent/JPS6315860Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62125223U (en) | 1987-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4673276A (en) | Blur detecting device for a camera | |
US20060127085A1 (en) | Electrostatic actuator, shutter device, imaging module, and camera | |
JPH07112252B2 (en) | Solid-state imaging device | |
US4297014A (en) | Camera focus detecting device | |
US4763154A (en) | Focus detecting device and image signal amplifier circuit therefor | |
JPS6315860Y2 (en) | ||
JPH0226207B2 (en) | ||
US4870441A (en) | Photoelectric conversion apparatus for focus detection | |
JPS63144331A (en) | Still camera system | |
US4772117A (en) | Focus detecting device having blur detecting function | |
JP2563370B2 (en) | Photoelectric conversion device for focus detection | |
JPS6048007B2 (en) | Camera focus detection device | |
JPS62188918A (en) | Electric charge storage type photoelectric transducer element | |
JP3121033B2 (en) | Imaging device | |
JP2644252B2 (en) | Auto focus camera | |
JPS60166911A (en) | Shake detector of camera | |
JPH10161010A (en) | Range-finding device for camera and camera using it | |
JP2691206B2 (en) | Auxiliary lighting device for autofocus cameras | |
JPS6214016A (en) | Ranging instrument | |
JPH11258486A (en) | Distance measuring device | |
JP2000194028A (en) | Photometric device | |
JPS5819536Y2 (en) | Photometry automatic switching device | |
JPS60184235A (en) | Auto-focus camera | |
JPH0731346B2 (en) | Camera shake detection device | |
JP2668535B2 (en) | Image sensor charge storage time controller |