JPS63153204A - Method for controlling preheating temperature of material to be reduced in reduction furnace - Google Patents

Method for controlling preheating temperature of material to be reduced in reduction furnace

Info

Publication number
JPS63153204A
JPS63153204A JP30199486A JP30199486A JPS63153204A JP S63153204 A JPS63153204 A JP S63153204A JP 30199486 A JP30199486 A JP 30199486A JP 30199486 A JP30199486 A JP 30199486A JP S63153204 A JPS63153204 A JP S63153204A
Authority
JP
Japan
Prior art keywords
temperature
exhaust gas
iron powder
passage
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30199486A
Other languages
Japanese (ja)
Other versions
JPH0112803B2 (en
Inventor
Takashi Iwanaga
岩永 隆史
Toshio Manabe
真鍋 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30199486A priority Critical patent/JPS63153204A/en
Publication of JPS63153204A publication Critical patent/JPS63153204A/en
Publication of JPH0112803B2 publication Critical patent/JPH0112803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Tunnel Furnaces (AREA)

Abstract

PURPOSE:To control the preheating temp. of a material to be reduced so as to coincide with a target preheating temp. with high accuracy by dividing the discharge gas passages of a heat exchanger crossing the passage for the material to be reduced to plural blocks and controlling the temps. and flow rates of the exhaust gases to the respective blocks. CONSTITUTION:Iron powder 1 which is the material to be reduced and is supplied to a reduction furnace (not shown in figure) is allowed to flow down in the iron powder passage 9 of a heat exchanger 24 and the waste combustion gas is passed in the exhaust gas passage 10 crossing the passage 9 by which the inside of the passage is heated. The passage 10 is divided to the plural blocks 10a-10c and iron powder temp. detectors T1-T18 and exhaust gas temp. detectors Tg1-Tg3 are disposed in accordance with the respective blocks. The detected temps. therefrom and the target preheating temp. Ts of the iron powder from a setter 16 are inputted to a microcomputer 14 which computes the optimum heat patterns and the target iron powder temp. for each of the respective blocks 10a-10c. External air introducing dampers 6a-6c and exhaust gas flow rate control dampers 11a-11c are controlled via a control unit 15 in order to obtain the required temps. and flow rates of the exhaust gas based thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば鉄粉を還元処理する鉄粉還元炉におけ
る鉄粉の予熱温度制御方法に関し、特に被還元材の予熱
温度の制御精度の向上に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling the preheating temperature of iron powder in an iron powder reduction furnace for reducing iron powder, for example, and particularly to a method for controlling the preheating temperature of a material to be reduced. Regarding improvement.

〔従来の技術〕[Conventional technology]

一般に、還元炉は粉状被還元材、例えば鉄粉を搬送用ス
チールベルト上に帯板状に載置し、炉内を搬送しつつ所
定のし一ドパターンに沿って加熱。
Generally, in a reduction furnace, a powdered material to be reduced, such as iron powder, is placed in the form of a strip on a conveying steel belt, and heated along a predetermined pattern while being conveyed through the furnace.

冷却することにより還元処理を施す熱設備である。This is a thermal facility that performs reduction treatment by cooling.

このような鉄粉還元炉は、鉄粉を高温に加熱し、この高
温状態に所定時間保持するのであるから、その必要エネ
ルギー量は非常に多大であり、そのエネルギー消費量の
低減が要請されている。
Such iron powder reduction furnaces heat iron powder to a high temperature and hold it at this high temperature for a predetermined period of time, so the amount of energy required is extremely large, and there is a need to reduce the amount of energy consumed. There is.

そこで、上記エネルギー消費量を低減するため、本件出
願人は、還元炉自体の燃焼排気ガスを利用して鉄粉を予
熱する鉄粉予熱装置を開発している。
Therefore, in order to reduce the above energy consumption, the present applicant has developed an iron powder preheating device that preheats iron powder using the combustion exhaust gas of the reduction furnace itself.

この予熱装置は第6図及び第7図に示すように、原料粉
1を炉本体2内に供給する供給ホッパ3の途中に熱交換
器4を設け、該熱交換器4に炉本体2のバーナ2aから
の燃焼排気ガスを外方に排出する排気ダクト5を接続し
、さらに排気ダクト5に外気導入ダンパ6を接続すると
ともに、該ダンパ6を温度制御装置7によって、排気ガ
スの熱交換器4人口部温度が一定になるように構成され
ている。
As shown in FIGS. 6 and 7, this preheating device is equipped with a heat exchanger 4 in the middle of a supply hopper 3 that supplies raw material powder 1 into the furnace body 2. An exhaust duct 5 for discharging the combustion exhaust gas from the burner 2a to the outside is connected to the exhaust duct 5, and an outside air introduction damper 6 is connected to the exhaust duct 5. It is configured so that the temperature of the four population parts is constant.

また、上記熱交換器4は、多管式のもので、燃焼排気ガ
スを、多数の管4a内を流すとともに、原料粉1を排気
ガス通路に直交する鉄粉通路を流すようにした間接加熱
方式が採用されている。なお、8aは搬送用スチールベ
ルトであり、これは炉の前、後に配設されたヘッドプー
リ8b、8cに巻回されている。
The heat exchanger 4 is of a multi-tube type, and the combustion exhaust gas is passed through a large number of pipes 4a, and the raw material powder 1 is passed through an iron powder passage perpendicular to the exhaust gas passage for indirect heating. method is adopted. Note that 8a is a conveying steel belt, which is wound around head pulleys 8b and 8c disposed before and after the furnace.

上記、予熱装置によれば、鉄粉の予熱温度に応じた熱量
を排気ガスから回収できるから、その分だけ必要な燃料
量が低減され、燃料原単位を向上できる。
According to the above-mentioned preheating device, since the amount of heat corresponding to the preheating temperature of the iron powder can be recovered from the exhaust gas, the required amount of fuel is reduced by that amount, and the fuel consumption rate can be improved.

ところで、燃料原単位を向上させる観点に立てば、原料
粉をできるだけ高温に予熱するのが望ましい、一方、原
料粉が例えば鉄粉の場合は、予熱温度が300℃以上に
なるとその表面酸化が急速に進行するから、予熱完了温
度は所定温度以下にする必要がある。従って大きな予熱
効果を得ながら上記表面酸化の問題を防止するには、予
熱精度を向上することが要請される。
By the way, from the standpoint of improving fuel consumption, it is desirable to preheat the raw material powder to as high a temperature as possible.On the other hand, if the raw material powder is iron powder, for example, if the preheating temperature is 300°C or higher, its surface will oxidize rapidly. Therefore, the preheating completion temperature needs to be lower than a predetermined temperature. Therefore, in order to prevent the above-mentioned surface oxidation problem while obtaining a large preheating effect, it is required to improve the preheating accuracy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記第6図、第7図に示す予熱装置は、単に
鉄粉の予熱による燃料原単位の向上だけを目的としてお
り、排気ガス温度を一定に保って鉄粉を同一温度だけ予
熱する装置である。従って例えば熱交換器入口での鉄粉
温度が変化したり、還元炉の操業状態の変化により、熱
交換器内を通過する鉄粉量が変動したりすると、予熱完
了温度は必ずしも一定にはならないから、上記予熱精度
向上の要請には応えられない。
However, the preheating device shown in Figures 6 and 7 above is intended only to improve the fuel consumption rate by preheating the iron powder, and is a device that preheats the iron powder by the same temperature while keeping the exhaust gas temperature constant. It is. Therefore, for example, if the iron powder temperature at the heat exchanger inlet changes, or if the amount of iron powder passing through the heat exchanger fluctuates due to changes in the operating conditions of the reduction furnace, the preheating completion temperature will not necessarily remain constant. Therefore, the above-mentioned request for improving preheating accuracy cannot be met.

そこで本発明の目的は、例えば原料粉の熱交換器入口温
度が変化したり、熱交換器内を通過する原料粉量が変動
したりしても被還元材の予熱温度を目標予熱温度に精度
よく一敗させることのできる被還元材の予熱温度制御方
法を提供する点にある。
Therefore, it is an object of the present invention to accurately maintain the preheating temperature of the reductant to the target preheating temperature even when the temperature at the inlet of the raw material powder to the heat exchanger changes or the amount of raw material powder passing through the heat exchanger fluctuates. It is an object of the present invention to provide a method for controlling the preheating temperature of a material to be reduced, which can be easily brought to a boil.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、粉状の被還元材を目標予熱温度に予熱する制
御方法において、熱交換器の排気ガス通路を被還元材の
通過方向に複数ブロックに分割し、該各ブロックへの燃
焼排気ガスの入口温度及び流量を、被還元材の各ブロッ
クの出口部温度が最適ヒートパターン上の所定温度にな
るように制御するようにしたことを特徴としている。
The present invention provides a control method for preheating a powdered material to be reduced to a target preheating temperature, in which an exhaust gas passage of a heat exchanger is divided into a plurality of blocks in the direction of passage of the material to be reduced, and combustion exhaust gas is directed to each block. The inlet temperature and flow rate of the reductant are controlled so that the outlet temperature of each block of the material to be reduced becomes a predetermined temperature on the optimum heat pattern.

〔作用〕[Effect]

本発明に係る還元炉における被還元材の予熱温度制御方
法においては、各ブロックの出口温度がそれぞれの目標
出口温度になるよう各ブロック毎に排気ガス温度、流量
を制御するから、従来の全体を一括して制御するのに比
較し、制御の応答性が向上し、それだけ制御精度が向上
する0例えば被還元材の熱交換器入口温度が変化した場
合、あるいは熱交換器内を通過する被還元材の通過量が
変動した場合は、原料粉の各ブロック出口温度も変化し
易くなるが、本発明では各ブロック毎の出口温度と目標
出口温度との差に応じて各ブロックに供給される排気ガ
スの温度及び流量が調整されるので、被還元材の入口温
度の変化及び通過量の変動による目標予熱温度に対する
影響は、上記排気ガス温度及び流量の調整によって抑制
され、その結果、熱交換器出口温度を目標温度に精度よ
く一敗させることができる。
In the method for preheating temperature control of a material to be reduced in a reduction furnace according to the present invention, the exhaust gas temperature and flow rate are controlled for each block so that the outlet temperature of each block becomes the target outlet temperature of each block. Compared to controlling all at once, the responsiveness of the control is improved, and the control accuracy is improved accordingly.For example, when the temperature of the reductant at the heat exchanger inlet changes, or when the If the amount of material passing through fluctuates, the temperature at the outlet of each block for the raw material powder also tends to change, but in the present invention, the exhaust gas supplied to each block is adjusted according to the difference between the outlet temperature of each block and the target outlet temperature. Since the temperature and flow rate of the gas are adjusted, the effects on the target preheating temperature due to changes in the inlet temperature of the reductant and fluctuations in the throughput amount are suppressed by adjusting the exhaust gas temperature and flow rate, and as a result, the heat exchanger The outlet temperature can be brought down to the target temperature with high accuracy.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図ないし第4図は本発明の一実施例による鉄粉還元
炉における鉄粉の予熱温度制御方法を説明するための図
で、第6図と同一符号は同一部分又は相当部分を示す。
1 to 4 are diagrams for explaining a method for controlling the preheating temperature of iron powder in an iron powder reduction furnace according to an embodiment of the present invention, and the same reference numerals as in FIG. 6 indicate the same or corresponding parts.

まず、本実施例方法を実施するための装置について説明
する。第1図及び第2図において、24はプレート式熱
交換器であり、これは鉄粉lが上方から下方へ流れる鉄
粉通路9と、該通路9と直交し、かつ鉄粉通路9を挟む
一対の排気ガス通路IOとから構成されている。該各排
気ガス通路10は、鉄粉1の流れ方向に沿って上、中、
下部の各ブロック10a、10b、10cに分割されて
おり、該各ブロック103〜10Cの入口側には入口ヘ
ッダ17a〜17cが、また出口側には出口へラダ17
dが接続されている。
First, an apparatus for carrying out the method of this embodiment will be explained. In FIGS. 1 and 2, 24 is a plate type heat exchanger, which has an iron powder passage 9 through which iron powder l flows from above to below, and which is perpendicular to the passage 9 and sandwiching the iron powder passage 9. It is composed of a pair of exhaust gas passages IO. Each of the exhaust gas passages 10 has upper, middle,
It is divided into lower blocks 10a, 10b, and 10c, and each block 103 to 10C has an inlet header 17a to 17c on the inlet side, and an exit ladder 17 on the outlet side.
d is connected.

5は燃焼排気ガスダクトであり、この排気ガスダクト5
の熱交換器24上流側部分は、上記分割された入口ヘッ
ダ17a−17cのそれぞれに接続される3本のダクト
5a、5b、5cに分岐されており、下流側部分5dは
出口へフダ17dを図示しない煙突に導通している。ま
た該各ダクト5a、5b、5cには、それぞれ外気導入
ダンパ6a〜6Cと排気ガス流量調節ダンパlla〜1
1cが介設されている。
5 is a combustion exhaust gas duct, and this exhaust gas duct 5
The upstream portion of the heat exchanger 24 is branched into three ducts 5a, 5b, and 5c connected to each of the divided inlet headers 17a to 17c, and the downstream portion 5d connects the duct 17d to the outlet. It is connected to a chimney (not shown). Further, each of the ducts 5a, 5b, and 5c includes outside air introduction dampers 6a to 6C and exhaust gas flow rate adjustment dampers lla to 1, respectively.
1c is interposed.

T、〜T1.は鉄粉通路9内を流れる鉄粉1の各ブロッ
クloa、10b、10cにおける温度を検出する鉄粉
温度検出器であり、該各検出器は、第2図に示すように
、各ブロックlOa〜10cの入口部及び出口部におけ
る鉄粉通路9の中央部と両端部に配設されている。
T, ~T1. is an iron powder temperature detector that detects the temperature in each block loa, 10b, and 10c of iron powder 1 flowing in the iron powder passage 9, and each detector is connected to each block lOa to 10c as shown in FIG. They are arranged at the center and both ends of the iron powder passage 9 at the inlet and outlet portions of the iron powder passage 10c.

Tg+−Tgs、Tgsは上記各排気ガスダクト5a、
5b、5c内を流れる燃焼排気ガスの熱交換器24人口
部における温度を検出する排気ガス温度検出器である。
Tg+-Tgs, Tgs are each of the above exhaust gas ducts 5a,
This is an exhaust gas temperature detector that detects the temperature of the combustion exhaust gas flowing inside the heat exchanger 24, which flows through the insides of the combustion exhaust gases 5b and 5c.

16は鉄粉1の熱交換器24の出口における目標予熱温
度Tsを設定する鉄粉目標予熱温度設定器である。
16 is an iron powder target preheating temperature setting device that sets a target preheating temperature Ts of the iron powder 1 at the outlet of the heat exchanger 24.

14はマイクロコンピュータであり、これは上記各温度
検出器T + −T l @ l T g 1〜T g
 3からの検出鉄粉温度、検出排気ガス温度及び目標予
熱温度Tsが入力され、これらの検出温度から各ブロッ
ク10a、10b、10cにおける受熱量を演算し、こ
の受熱量及び目標予熱温度Tsから鉄粉上限温度以下の
範囲における最適ヒートパターンを演算し、該ヒートパ
ターン上の各ブロックlOa、  10 b、  10
 cの出口部における鉄粉温度TaxTcを目標出口温
度とし、該目標出口温度Ta−Tcを実現するための設
定排気ガス温度Tgsl〜Tg s、を演算し、さらに
各ブロックへの排気ガス温度T g +〜Tg3を上記
設定排気ガス温度Tgs、xTgs、にするための排気
ガス流量調節ダンパlla〜llc及び外気導入ダンパ
6a〜6cの開度に、−wl(sを演算し、これをダン
パ開閉コントロールユニット15に出力する。
14 is a microcomputer, which is connected to each of the temperature detectors T + -T l @ l T g 1 to T g
The detected iron powder temperature, detected exhaust gas temperature, and target preheating temperature Ts from 3 are input, and from these detected temperatures, the amount of heat received in each block 10a, 10b, and 10c is calculated, and from this amount of heat received and the target preheating temperature Ts, Calculate the optimum heat pattern in the range below the powder upper limit temperature, and calculate each block lOa, 10 b, 10 on the heat pattern.
The iron powder temperature TaxTc at the outlet of block c is set as the target outlet temperature, and the set exhaust gas temperature Tgsl to Tgs to achieve the target outlet temperature Ta-Tc is calculated, and the exhaust gas temperature Tg to each block is calculated. +~Tg3 to the above set exhaust gas temperature Tgs, xTgs, -wl(s is calculated as the opening degree of the exhaust gas flow rate adjustment dampers lla~llc and the outside air introduction dampers 6a~6c, and this is used to control the damper opening/closing. Output to unit 15.

上記コントロールユニット15は、上記各ダンパlla
〜llc、6a〜6Cの開度が上記マイクロコンピュー
タ14からの開麦信号に応じた開度となるよう開閉制御
する。
The control unit 15 controls each damper lla.
The opening/closing control is performed so that the opening degrees of ~llc and 6a~6C correspond to the opening signals from the microcomputer 14.

次に本実施例方法を上記装置によって実施する場合につ
いて説明する。
Next, a case will be described in which the method of this embodiment is implemented using the above-mentioned apparatus.

まず本装置の動作の概要について説明すれば、鉄粉1は
本熱交換器24によって予熱された後、炉2内の搬送用
スチールベルト8a上に載置され、搬送されつつ還元処
理される。また熱交換器24にはバーナ2aからの燃焼
排気ガスが供給される。
First, an overview of the operation of the present device will be described. After the iron powder 1 is preheated by the main heat exchanger 24, it is placed on the conveying steel belt 8a in the furnace 2, and is subjected to a reduction treatment while being conveyed. Further, the heat exchanger 24 is supplied with combustion exhaust gas from the burner 2a.

そしてこの場合、ダンパ開閉コントロールユニット15
が、鉄粉1の各目標予熱温度Ta−Tcを実現できるよ
うに、排気ダクト5a、5b、5cの外気導入ダンパ6
a〜6C及び排気ガス流1lll整ダンパlla〜II
CをマイクロコンピュータI4からの開度になるよう開
閉01 ?Hする。
In this case, the damper opening/closing control unit 15
However, the outside air introduction dampers 6 of the exhaust ducts 5a, 5b, 5c are installed so that each target preheating temperature Ta-Tc of the iron powder 1 can be achieved.
a~6C and exhaust gas flow 1lll damper lla~II
Open/close C to the opening degree from microcomputer I4 01? Have sex.

次に上記マイクロコンピュータ14及びダンパ開閉コン
トロールユニット15の動作について第3図のフロチャ
ートに沿って説明する。
Next, the operations of the microcomputer 14 and the damper opening/closing control unit 15 will be explained along the flowchart of FIG. 3.

鉄粉1の目標予熱温度設定器16によって設定された目
標予熱温度T s 、及び各ブロック10a〜IOcの
入口、出口における中央部及び両端部検出鉄粉温度T1
〜T4.各排気ダク)5a、5b、5cにおける検出排
気ガス温度T g r〜Tg、が入力される(ステップ
Sl)、そして、各ブロック103〜10cの中心部及
び両端部における鉄粉温度から鉄粉の厚さ方向の温度分
布を2次曲線に近似化し、これにより受熱量を演算する
(ステップS2)、この各ブロック102〜10Cにお
ける受熱量及び上記目標予熱温度Tsから、いずれの部
分の鉄粉温度も上限値、例えば300℃を越えない範囲
での最適ヒートパターンを演算する(ステップ33)。
The target preheating temperature T s set by the target preheating temperature setting device 16 for the iron powder 1, and the detected iron powder temperature T1 at the center and both ends at the inlet and outlet of each block 10a to IOc.
~T4. The detected exhaust gas temperatures Tg r to Tg in each exhaust duct) 5a, 5b, and 5c are input (step Sl), and the iron powder temperature is determined from the iron powder temperature at the center and both ends of each block 103 to 10c. The temperature distribution in the thickness direction is approximated to a quadratic curve, and thereby the amount of heat received is calculated (step S2). From the amount of heat received in each block 102 to 10C and the target preheating temperature Ts, the temperature of the iron powder at any part is calculated. The optimum heat pattern is calculated within a range that does not exceed an upper limit value, for example, 300° C. (step 33).

そして、上記ヒートパターン上における鉄粉1の各ブロ
ックloa〜10C出口部の温度を目標出口温度Tax
TcとしくステップS4)、上記目標出口温度Ta−T
cを実現するための設定排気ガス温度Tgs、zTgs
、を演算する(ステップS5)。
Then, the temperature at the outlet portion of each block loa to 10C of the iron powder 1 on the above heat pattern is set to the target outlet temperature Tax.
Tc and step S4), the target outlet temperature Ta-T
Set exhaust gas temperature Tgs, zTgs to realize c
, is calculated (step S5).

ここで、第4図は最適ヒートパターンと設定排気ガス温
度との関係を示す特性図であり、図中、Aは最適ヒート
パターンを示し、Bは設定排気ガス温度を示す0図のよ
うに最適ヒートパターンAが決定されると、該パターン
A上の各ブロックの目標出口温度Ta、Tb、Tcを実
現するための設定排気ガス温度Tg s+、TgSt、
TgS3が決定される。
Here, Fig. 4 is a characteristic diagram showing the relationship between the optimum heat pattern and the set exhaust gas temperature. In the figure, A shows the optimum heat pattern, and B shows the set exhaust gas temperature. Once the heat pattern A is determined, the set exhaust gas temperatures Tg s+, TgSt, to achieve the target outlet temperatures Ta, Tb, Tc of each block on the pattern A
TgS3 is determined.

そして上記設定排気ガス温度Tg 3.〜Tgs、を実
現するための各ダンパlla〜llc、6a〜6Cの開
度Kl””Ksを演算し、該開度K。
and the above-mentioned set exhaust gas temperature Tg3. ~Tgs, the opening degree Kl''Ks of each damper lla~llc, 6a~6C is calculated, and the opening degree K is calculated.

〜に、をダンパ開閉コントロールユニッ)15に出力す
る(ステップS6.S7)、そして、鉄粉lの各ブロッ
ク103〜10cにおける検出出口温度Tao−Tco
と目標出口温度Ta−Tcとを比較し、両者が一致しな
い時は、その温度差に応して設定排気ガス温度Tgs、
〜Tg 33を補正してステップS6に戻り(ステップ
S8.S9)、両者が一致した時はステップS1に戻る
~ to the damper opening/closing control unit) 15 (steps S6 and S7), and the detected outlet temperature Tao-Tco in each block 103 to 10c of the iron powder l
and target outlet temperature Ta-Tc, and if they do not match, set exhaust gas temperature Tgs,
~Tg 33 is corrected and the process returns to step S6 (steps S8 and S9), and when the two match, the process returns to step S1.

このようにして、鉄粉lの各ブロック102〜10cの
検出出口温度TaoxTcoがTaxTCに、ひいては
熱交換器24の出口温度が目標予熱温度Tsになるよう
に各ダク)5a、5b、5Cの外気導入ダンパ6a〜5
c、排気ガス流MHi1節ダンパ1la−11Cの開度
、ひいては排気ガス温度T g +〜Tg、が制御され
ることとなる。
In this way, the outside air of each duct 5a, 5b, 5C is adjusted so that the detected outlet temperature TaoxTco of each block 102 to 10c of iron powder l becomes TaxTC, and the outlet temperature of the heat exchanger 24 becomes the target preheating temperature Ts. Introduction dampers 6a-5
c, the opening degree of the exhaust gas flow MHi 1-node damper 1la-11C, and thus the exhaust gas temperature Tg+ to Tg are controlled.

このように、本実施例では、熱交換器24の排気ガス通
路10を3ブロツクに分割し、各ブロックにおいて鉄粉
温度が最適ヒートパターン上の目標出口温度T a −
T cになるよう排気ガス温度。
As described above, in this embodiment, the exhaust gas passage 10 of the heat exchanger 24 is divided into three blocks, and in each block, the iron powder temperature is set to the target outlet temperature T a - on the optimum heat pattern.
Exhaust gas temperature to be T c.

流量を抑制したので、鉄粉lのいずれの部分においても
上限温度を越えることはなく、全体として目標温度に精
度よ(−敗させることができ、その結果、過加熱による
表面酸化の発生を防止しつつ燃料原単位の向上を計るこ
とができる。また、この場合熱交換器24の鉄粉通路9
の厚さ方向の中央及び両壁面部において鉄粉温度を検出
するようにしたので、鉄粉1の受熱量が正確に計算でき
、この点からも制御性は向上できる。
Since the flow rate is suppressed, the upper limit temperature is not exceeded in any part of the iron powder, and the target temperature as a whole can be maintained accurately.As a result, surface oxidation due to overheating is prevented. In addition, in this case, the iron powder passage 9 of the heat exchanger 24
Since the iron powder temperature is detected at the center and both wall surfaces in the thickness direction, the amount of heat received by the iron powder 1 can be calculated accurately, and controllability can be improved from this point as well.

また、複数ブロックに分割して制御するようにしたので
、例えば操業条件の変化により鉄粉1の熱交換器24の
入口部温度、あるいは熱交換器24内を通過する鉄粉量
が変動しても、これに応じて、応答性よく排気ガス温度
Tg+=Tgsを変化させことができるので、上記変動
を吸収して予熱温度を目標温度に近似させることができ
る。
In addition, since the control is divided into multiple blocks, the temperature at the inlet of the heat exchanger 24 of the iron powder 1 or the amount of iron powder passing through the heat exchanger 24 may fluctuate due to changes in operating conditions, for example. Also, since the exhaust gas temperature Tg+=Tgs can be changed with good responsiveness in accordance with this, the above fluctuation can be absorbed and the preheating temperature can be approximated to the target temperature.

なお、上記実施例では、熱交換器が鉄粉通路を一対の排
ガス通路で挟むように構成されている場合について説明
したが、本発明では、第5図に示すような、上記実施例
の熱交換器を複数組連ねた構造の熱交換器にも適用でき
、さらに多管式熱交換器にも適用でき、要は排気ガス通
路を鉄粉の流れ方向に沿って複数に分割し、それぞれに
おいて排気ガス温度、流量を制御すればよい。
In the above embodiment, a case has been described in which the heat exchanger is configured such that the iron powder passage is sandwiched between a pair of exhaust gas passages, but in the present invention, the heat exchanger of the above embodiment as shown in FIG. It can be applied to heat exchangers with a structure in which multiple exchangers are connected, and it can also be applied to shell-and-tube heat exchangers. It is sufficient to control the exhaust gas temperature and flow rate.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る還元炉における被還元材の予
熱温度制御方法によれば、排気ガス通路を複数ブロック
に分割し、各ブロックへの排気ガスの温度及び流量を、
被還元材の各ブロック出口温度が最適ヒートパターン上
の目標出口温度になるよう制御するようにしたので、予
熱温度の制御精度を向上できる効果がある。
As described above, according to the method for preheating temperature control of a material to be reduced in a reduction furnace according to the present invention, the exhaust gas passage is divided into a plurality of blocks, and the temperature and flow rate of the exhaust gas to each block are controlled by
Since the outlet temperature of each block of the material to be reduced is controlled to be the target outlet temperature on the optimum heat pattern, the control accuracy of the preheating temperature can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例による還元炉に
おける鉄粉の予熱温度制御方法を説明するための図であ
り、第1図は上記実施例方法を実施するための鉄粉予熱
制御装置の構成図、第2図はその平面図、第3図はその
フローチャート図、第4図は最適ヒートパターンと設定
排気ガスとの関係を示す特性図、第5図は上記実施例の
変形例を示す斜視図、第6図は従来の予熱装置の構成図
、第7図はその要部構成図である。 図において、1は鉄粉(被還元材)、2は還元炉本体、
24は熱交換器、9は鉄粉通路(還元材通路)、10は
排気ガス通路、10a、10b。 10cはブロック、Tg+ 、Tgt 、Tgs は排
気ガス温度である。
1 to 4 are diagrams for explaining a method for preheating temperature control of iron powder in a reduction furnace according to an embodiment of the present invention, and FIG. A configuration diagram of the control device, FIG. 2 is a plan view thereof, FIG. 3 is a flowchart thereof, FIG. 4 is a characteristic diagram showing the relationship between the optimum heat pattern and the set exhaust gas, and FIG. 5 is a modification of the above embodiment. A perspective view showing an example, FIG. 6 is a configuration diagram of a conventional preheating device, and FIG. 7 is a configuration diagram of its main parts. In the figure, 1 is iron powder (material to be reduced), 2 is the reduction furnace main body,
24 is a heat exchanger, 9 is an iron powder passage (reducing agent passage), 10 is an exhaust gas passage, 10a, 10b. 10c is a block, and Tg+, Tgt, and Tgs are exhaust gas temperatures.

Claims (1)

【特許請求の範囲】[Claims] (1)還元炉に供給される粉状の被還元材を熱交換器の
還元材通路内を流すとともに、該還元材通路と交差する
排気ガス通路内を燃焼排気ガスを流すことによって上記
被還元材を目標予熱温度に予熱する予熱温度制御方法に
おいて、上記熱交換器の排気ガス通路を被還元材の流れ
方向に複数ブロックに分割し、各ブロックへの燃焼排気
ガスの温度及び流量を、被還元材の上記各ブロックの出
口における温度が最適ヒートパターン上の目標出口温度
になるように制御することを特徴とする還元炉における
被還元材の予熱温度制御方法。
(1) The powdered material to be reduced to be supplied to the reduction furnace is caused to flow through the reducing material passage of the heat exchanger, and the combustion exhaust gas is caused to flow through the exhaust gas passage which intersects with the reducing material passage. In a preheating temperature control method for preheating a material to a target preheating temperature, the exhaust gas passage of the heat exchanger is divided into a plurality of blocks in the flow direction of the reductant material, and the temperature and flow rate of the combustion exhaust gas to each block are controlled by controlling the temperature and flow rate of the combustion exhaust gas to each block. A method for preheating temperature control of a material to be reduced in a reduction furnace, characterized in that the temperature at the exit of each block of the reducing material is controlled to be a target exit temperature on an optimal heat pattern.
JP30199486A 1986-12-17 1986-12-17 Method for controlling preheating temperature of material to be reduced in reduction furnace Granted JPS63153204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30199486A JPS63153204A (en) 1986-12-17 1986-12-17 Method for controlling preheating temperature of material to be reduced in reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30199486A JPS63153204A (en) 1986-12-17 1986-12-17 Method for controlling preheating temperature of material to be reduced in reduction furnace

Publications (2)

Publication Number Publication Date
JPS63153204A true JPS63153204A (en) 1988-06-25
JPH0112803B2 JPH0112803B2 (en) 1989-03-02

Family

ID=17903603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30199486A Granted JPS63153204A (en) 1986-12-17 1986-12-17 Method for controlling preheating temperature of material to be reduced in reduction furnace

Country Status (1)

Country Link
JP (1) JPS63153204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184211A (en) * 2018-04-18 2019-10-24 住友金属鉱山株式会社 Firing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184211A (en) * 2018-04-18 2019-10-24 住友金属鉱山株式会社 Firing device

Also Published As

Publication number Publication date
JPH0112803B2 (en) 1989-03-02

Similar Documents

Publication Publication Date Title
US6772610B1 (en) Flat glass annealing lehrs
EP1029625B1 (en) Muffle convection brazing and annealing system and method
JPH07208701A (en) Temperature controller for inlet gas of denitrating device for boiler
JPS63153204A (en) Method for controlling preheating temperature of material to be reduced in reduction furnace
JPS6345454B2 (en)
JPH0357370B2 (en)
JPH06287643A (en) Device for controlling strip temperature of continuous steel strip heat treatment line
JPS5941713A (en) Combustion control process
JPS6284223A (en) Temperature control method for heating furnace
JPS5933176B2 (en) How to set the heating zone temperature of a continuous annealing furnace
JPS629650B2 (en)
JPS61225594A (en) Method to control flow rate of heat exchanger
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
JPH0835015A (en) Method for controlling flow rate of combustion gas in heating furnace for strip continuous heat treatment equipment
JPS5625933A (en) Temperature controlling method for steel billet in heating furnace
JPS63199826A (en) Method for controlling heating furnace for pipe making
CN115341079A (en) Method for controlling reverse flow of furnace gas of continuous normalizing furnace
JPH08210780A (en) Continuous heating furnace for steel
JPS58210120A (en) Method for controlling combustion in heating furnace
JPS61199022A (en) Method for controlling continuous heating furnace
JPS6411693B2 (en)
JPS62227039A (en) Method for controlling exhausted gas temperature in preheating apparatus for material to be reduced
JPH0474825A (en) Method for controlling temperature of steel sheet in continuous heating furnace
JPH03294702A (en) Controlling method for temperature distribution outlet of heat transfer pipe
JPH02225626A (en) Method for controlling transfer speed of continuous annealing furnace