JPS63152411A - Production of flame-retardant polyester fiber - Google Patents

Production of flame-retardant polyester fiber

Info

Publication number
JPS63152411A
JPS63152411A JP29658786A JP29658786A JPS63152411A JP S63152411 A JPS63152411 A JP S63152411A JP 29658786 A JP29658786 A JP 29658786A JP 29658786 A JP29658786 A JP 29658786A JP S63152411 A JPS63152411 A JP S63152411A
Authority
JP
Japan
Prior art keywords
temperature
polyester
heat
flame
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29658786A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
近野 吉宏
Akihiko Nagahama
長浜 昭彦
Hisao Suzuki
久雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP29658786A priority Critical patent/JPS63152411A/en
Publication of JPS63152411A publication Critical patent/JPS63152411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled fiber having flame-retardancy and low shrinkage, by producing a drawn polyester yarn copolymerized with a specific amount of a bifunctional phosphorus compound, heat-treating the yarn under fixed length at a specific temperature and heat-treating in relaxed state. CONSTITUTION:A drawn polyester yarn copolymerized with a bifunctional phosphorus compound [e.g. dimethyl phenylphosphonate, (2-carboxyethyl) methylphosphinic acid, etc.] in an amount of 0.7-3.0wt%, preferably 0.9-2.0wt% in terms of phosphorus element is heat-treated at an elongation ratio of 0.98-1.02 at a temperature T1 satisfying the formula Tc-20<=T1<=Tc+20 [Tc is crystallization temperature of unoriented polyester ( deg.C)] and then subjected to mechanical crimping. The objective fiber is produced by heat-treating the product in relaxed state at a temperature T2 satisfying the formula Tc-70<=T2<=Tc-20.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は優れた勤燃性を有するポリエステル繊維の製造
方法に関するものである。さらに詳しくは難燃性を有し
、かつ収縮率の低いポリエステル繊維の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polyester fibers having excellent combustibility. More specifically, the present invention relates to a method for producing polyester fibers that are flame retardant and have a low shrinkage rate.

[従来の技術] ポリエステル繊維はすぐれた物性を有しているために衣
料用、寝装用、インテリア用などに広く使用されている
。しかしながらポリエステル繊維は、難燃性が不十分な
ため難燃規制のある用途に進出することはできなかった
[Prior Art] Polyester fibers have excellent physical properties and are therefore widely used for clothing, bedding, interior decoration, and the like. However, polyester fibers have been unable to be used in applications subject to flame retardant regulations due to insufficient flame retardancy.

従来、ポリエステル繊維の難燃化に関する技術としては
、ポリマ製造時に難燃性付与物質を配合して共重合また
はブレンドさせる方法(特公昭55−41610@公報
、特公昭52−8889号公報)あるいは繊維形成後の
後加工によって難燃性を付与する方法(特公昭53−4
4599号公報)、さらには紡糸時に酸化アンチモンを
ブレンドし、繊維状物を形成してから後加工難燃剤で処
理する方法(特開昭50−43221号公報、特開昭5
0−94226号公報)が知られている。
Conventionally, techniques for making polyester fiber flame retardant include a method of blending a flame retardant imparting substance during polymer production and copolymerizing or blending (Japanese Patent Publication No. 55-41610 @ Publication, Japanese Patent Publication No. 52-8889); Method of imparting flame retardancy through post-processing after formation (Special Publication No. 53-4
4599), and a method in which antimony oxide is blended during spinning to form a fibrous material and then treated with a post-processing flame retardant (JP-A-50-43221, JP-A-5
0-94226) is known.

これらの方法ではいずれも十分な難燃性レベルに達する
ものはなく、特にポリエステル繊維とセルロース繊維を
混紡、交編織などのように併用する場合には十分な難燃
性レベルを付与するには後加工工程で多量の難燃剤を付
着させねばならず、風合、耐候性などの布帛としての特
性が悪化し、特殊用途以外には使用できない状況にある
None of these methods achieves a sufficient level of flame retardancy, and especially when polyester fibers and cellulose fibers are used together, such as in blends, interweaving, etc., it is difficult to achieve a sufficient level of flame retardancy. A large amount of flame retardant must be applied during the processing process, which deteriorates the fabric's properties such as texture and weather resistance, making it unusable for anything other than special purposes.

[発明が解決しようとする問題点] 本発明の目的は繊維の高い収縮率がもたらす粗硬な風合
に代表される従来技術の欠点を解消し、優れた難燃性を
有するポリエステル繊維を製造することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to eliminate the drawbacks of the prior art, typified by the rough texture caused by the high shrinkage rate of fibers, and to produce polyester fibers with excellent flame retardancy. It's about doing.

[問題点を解決するための手段] 本発明の目的は2官能性リン化合物をリン元素量として
、0.7〜3.0重量%共重合せしめたポリエステル延
伸糸を、次式(1)を満足する温度T1で、伸長率0.
98〜1.02で熱処理した後、機械捲縮を施し、次い
で下式(2)を満足する温度T2で弛緩熱処理すること
を特徴とする難燃性ポリエステル繊維の製造方法によつ
て達成することかできる。
[Means for Solving the Problems] The object of the present invention is to prepare a drawn polyester yarn copolymerized with a difunctional phosphorus compound in an amount of 0.7 to 3.0% by weight based on the amount of phosphorus element expressed by the following formula (1). At a satisfactory temperature T1, the elongation rate is 0.
To achieve this by a method for producing flame-retardant polyester fiber, which is characterized in that after heat treatment at 98 to 1.02, mechanical crimping is performed, and then relaxation heat treatment is performed at a temperature T2 that satisfies the following formula (2). I can do it.

丁c−20≦T1(’C)≦TC+20・・・・・・(
1)以下本発明の詳細な説明する。
Ding c-20≦T1('C)≦TC+20・・・・・・(
1) The present invention will be explained in detail below.

本発明でいうポリエステル未延伸糸とは2官能性リン化
合物をリン元素として0.7〜3.0重量%共重合せし
めたものである。ここでポリエステル未延伸糸を構成す
るポリエステルとはポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリエチレン2,6−ナフタ
レートなどの芳香族ポリエステルであり、またその酸成
分の一部またはそのグリコール成分の一部が他のジカル
ボン酸成分、たとえばイソフタル酸、5−ナトリウムス
ルホイソフタル酸、ジフェノキシエタンジカルボン酸、
アジピン酸、セバシン酸成分など、おるいは他のグリコ
ール成分、たとえばジエチレングリコール、プロピレン
ゲリコール、トリメチレングリコール、テトラメチレン
グリコール、ネオペンチルグリコール、ネオペンチルグ
リコール、1,4−シクロヘキサンジェタノール、ジエ
チレングリコール、ポリエチレングリコール、ビスフェ
ノールA成分などで置き換えた共重合ポリエステル繊維
であってもよい。
The undrawn polyester yarn in the present invention is a yarn copolymerized with a difunctional phosphorus compound in an amount of 0.7 to 3.0% by weight as elemental phosphorus. Here, the polyester constituting the undrawn polyester yarn is an aromatic polyester such as polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6-naphthalate, etc., and a part of its acid component or a part of its glycol component is other than polyester. Dicarboxylic acid components such as isophthalic acid, 5-sodium sulfoisophthalic acid, diphenoxyethanedicarboxylic acid,
Adipic acid, sebacic acid components, etc., or other glycol components such as diethylene glycol, propylene gelicol, trimethylene glycol, tetramethylene glycol, neopentyl glycol, neopentyl glycol, 1,4-cyclohexanejetanol, diethylene glycol, polyethylene Copolymerized polyester fibers substituted with glycol, bisphenol A components, etc. may also be used.

本発明における2官能性リン化合物を共重合したポリエ
ステル未延伸糸はポリエステル製造工程において次のリ
ン化合物を共重合することによって得られる。共重合さ
れる2官能性リン化合物とは、エステル形成性官能基を
2個有するリン化合物であり、式(I>で示されるホス
ホネート、式(I[>で示されるホスフィネートあるい
は式(’I)で示されるホスフィンオキシトが挙げられ
る。
The undrawn polyester yarn copolymerized with a bifunctional phosphorus compound in the present invention can be obtained by copolymerizing the following phosphorus compound in the polyester manufacturing process. The bifunctional phosphorus compound to be copolymerized is a phosphorus compound having two ester-forming functional groups, and includes phosphonates represented by formula (I>, phosphinates represented by formula (I[>), or formula ('I) Examples include phosphine oxyto represented by

♀ R+−P−OR3(I ) ♂R2 R1−9御△IR4(II> R2 5R6 (式中R1、R5はそれぞれ同じかまたは異なる基でお
って、炭素数が1〜18のアルキル基を表し、R2、R
3はそれぞれ同じかまたは異なる基であって炭素数が1
〜18のアルキル基または水素原子を表し、Aは2価ま
たは3価の有機残基を表し、R4はカルボキシル ルを表し、R6はカルボキシル基またはそのニスる基を
介してA2と環を形成する2価のエステル形成性官能基
を表す。) 式(I>で示されるリン化合物の好ましい具体例として
は、フェニルホスホン酸ジメチル、フェニルホスホン酸
ジフェニルなどが挙げられる。式(II)のリン化合物
の好ましい具体例としては、(2−カルボキシエチル)
メチルホスフィン酸、(2−メトキシカルボニルエチル
)メチルホスフィン酸メチル、(2−カルボキシエチル
)フェニルホスフィン酸、(2−メトキシカルボニルエ
チル)フェニルホスフィン酸、(4−メトキシカルボニ
ルフェニル)フェニルホスフィン酸メチル、(2−(β
−ヒドロキシエトキシカルボニル)エチル)メチルホス
フィン酸のエチレングリコールエステルなどが挙げられ
る。式(I)のリン化合物の好ましい具体例としては、
(1,2ジカルボキシエチル)ジメチルホスフィンオキ
シト、(2,3ジカルボキシプロビル)ジメチルホスフ
ィンオキシト、(1,2ジメ]〜キシカルボニルエチル
ルホスフィンオキシト、(2,3ジメトキシカルボニル
エチル〉ジメチルホスフィンオキシト、(1,2ジ(β
ーヒドロキシエ1〜キシカルボニル)エチル)ジメチル
ホスフィンオキシト、(2,3ジ(β−ヒドロキシエト
キシカルボニル)エチル)ジメチルホスフィンオキシト
などが挙げられる。
♀ R+-P-OR3(I) ♂R2 R1-9 △IR4(II> R2 5R6 (In the formula, R1 and R5 are the same or different groups, and represent an alkyl group having 1 to 18 carbon atoms) , R2, R
3 are the same or different groups and each has 1 carbon number
~18 alkyl group or hydrogen atom, A represents a divalent or trivalent organic residue, R4 represents carboxyl, R6 forms a ring with A2 via the carboxyl group or its varnishing group Represents a divalent ester-forming functional group. ) Preferred specific examples of the phosphorus compound represented by formula (I>) include dimethyl phenylphosphonate, diphenyl phenylphosphonate, etc. Preferred specific examples of the phosphorus compound represented by formula (II) include (2-carboxyethyl )
Methylphosphinic acid, (2-methoxycarbonylethyl)methylphosphinic acid, (2-carboxyethyl)phenylphosphinic acid, (2-methoxycarbonylethyl)phenylphosphinic acid, (4-methoxycarbonylphenyl)phenylphosphinic acid, ( 2-(β
Examples include ethylene glycol ester of -hydroxyethoxycarbonyl)ethyl)methylphosphinic acid. Preferred specific examples of the phosphorus compound of formula (I) include:
(1,2 dicarboxyethyl) dimethylphosphine oxyto, (2,3 dicarboxyprobyl) dimethylphosphine oxyto, (1,2 dime]-xycarbonylethyl phosphine oxyto, (2,3 dimethoxycarbonylethyl) Dimethylphosphine oxyto, (1,2 di(β
-Hydroxy(1-oxycarbonyl)ethyl)dimethylphosphine oxyto, (2,3 di(β-hydroxyethoxycarbonyl)ethyl)dimethylphosphine oxyto, and the like.

これらの化合物の中で特に式(n)の化合物が、ポリエ
ステルとの共重合反応性が良いことおよび重合反応時の
飛散が少ないことなどから好ましい。その中でも特に(
2−(β−ヒドロキシエトキシカルボニル フィン酸のエチレングリコールエステルが好ましい。
Among these compounds, the compound of formula (n) is particularly preferred because of its good copolymerization reactivity with polyester and its low scattering during the polymerization reaction. Among the(
Ethylene glycol ester of 2-(β-hydroxyethoxycarbonylphinic acid is preferred.

該ポリエステル繊維は2官能性リン化合物をリン元素量
として0.7〜3.0重量%共重合させる必要があり、
特に好ましくは0.9〜2。
The polyester fiber needs to be copolymerized with a bifunctional phosphorus compound in an amount of 0.7 to 3.0% by weight as a phosphorus element,
Particularly preferably 0.9-2.

0重量%である。0.7重量%未渦の場合、得られる繊
維の難燃性能が不十分であり、難燃後加工を施して所望
の難燃性を付与し得たとしても後加工難燃剤の付着量が
多く実用的な風合のものが得られない。
It is 0% by weight. In the case of 0.7% by weight of non-vortex, the flame retardant performance of the obtained fiber is insufficient, and even if the desired flame retardancy can be imparted by post-processing, the amount of post-processed flame retardant attached will be insufficient. In many cases, a practical texture cannot be obtained.

また、ポリエステル繊維のリン元素量が上記範囲より大
きい場合、ポリエステル繊維の物理的特性が著しく低下
するばかりでなく、共重合ポリエステルを製造する際の
生産性が低下するので好ましくない。
Furthermore, if the amount of phosphorus element in the polyester fiber is larger than the above range, it is not preferable because not only the physical properties of the polyester fiber are significantly reduced, but also the productivity in producing the copolyester is reduced.

本発明のリン元素量とは、比色法により測定されたリン
元素量をいう。上記リン化合物の添加方法は特に制約は
ないが、あらかじめエチレングリコールと混合したりあ
るいはエチレングリコールを反応させてから添加しても
良い。添加時期はエステル交換反応あるいはエステル化
反応前から重合反応終了までの任意の段階で良いが、操
作性が良いこと、副反応が少ないことなどから重合反応
前が好ましい。
The phosphorus element amount in the present invention refers to the phosphorus element amount measured by a colorimetric method. There are no particular restrictions on the method of adding the phosphorus compound, but it may be added after mixing with ethylene glycol or reacting with ethylene glycol. The addition time may be at any stage from before the transesterification reaction or esterification reaction to the end of the polymerization reaction, but it is preferably added before the polymerization reaction due to good operability and fewer side reactions.

また続けて次の方法を施すことによって延伸糸を得るこ
とができる。リン化合物を共重合したポリエステル紡糸
方法は特に限定されるものではない。繊維断面は円形で
も非円形でもかまわないし、紡糸速度は一般的に用いら
れる700 〜2 0 0 07rL/minあるいは
POY領域といわれる2 0 0 0〜4 0 0 0
71’L/min テもヨイ。
Further, a drawn yarn can be obtained by successively applying the following method. The method for spinning polyester copolymerized with a phosphorus compound is not particularly limited. The fiber cross section may be circular or non-circular, and the spinning speed is generally 700-20007 rL/min or 2000-4000 rL/min, which is said to be the POY region.
71'L/min Te too.

ポリエステル未延伸糸の延伸はスーパードローを発生し
ない範囲で高温の方が好ましい。液浴延伸の場合60〜
85℃が適当である。
It is preferable to draw the undrawn polyester yarn at a high temperature within a range that does not cause superdraw. 60~ for liquid bath stretching
85°C is suitable.

延伸後に行なわれる熱処理温度下1はTc−20≦T1
(°C)≦TC+20を満足することが必要である。好
ましくはTO−10≦T1(°C)≦TO+10である
。(ここでTcはParkin E1mer社製DSC
−4を使用し無配向ポリマを昇温速度16°C/min
で昇温した時結晶化に相当する発熱のピーク温度(°C
)をいう。)この熱処理はポリエステル繊維の収縮率を
低くすると同時にヤング率をできるだけ高くするために
重要であり、T1がTc−20(°C)より低くなると
ポリエステル繊維の収縮率が十分には低下せずまたTc
+20(°C)よりも高くなると繊維が部分的に軟化し
はじめるために繊維間融着を発生ずるので好ましくない
The heat treatment temperature after stretching is Tc-20≦T1.
It is necessary to satisfy (°C)≦TC+20. Preferably, TO-10≦T1 (°C)≦TO+10. (Here, Tc is Parkin E1mer DSC.
-4 to heat up the non-oriented polymer at a heating rate of 16°C/min.
The peak temperature of exotherm corresponding to crystallization (°C
). ) This heat treatment is important in order to lower the shrinkage rate of the polyester fiber and at the same time make the Young's modulus as high as possible. If T1 is lower than Tc-20 (°C), the shrinkage rate of the polyester fiber will not be sufficiently reduced or Tc
If the temperature is higher than +20 (°C), the fibers begin to partially soften, resulting in interfiber fusion, which is not preferable.

この時伸長率は0.98〜1.02にする必要がある。At this time, the elongation ratio needs to be 0.98 to 1.02.

すなわち0.02以内の弛緩あるいは0.02以内の伸
長した状態で熱処理を行なうことによって希望の強度、
収縮率を得ることができる。好ましい伸長率は0.99
〜1.01である。伸長率が0.98未満だと収縮率は
低下するが強度が低下し、同時に加熱体への接触状態が
不均一となり物性の不均一が顕在化するので好ましくな
い。一方伸長率が1.02を越す場合は、収縮率が十分
低下しないために好ましくない。ここで伸長率とは熱処
理後の糸条速度を熱処理前の糸条速度で除した値で、こ
の値が1.00の時は定長、1.00未満の時は弛緩、
1.00を越す時は伸長を意味する。
In other words, by performing heat treatment in a relaxed state within 0.02 or elongated within 0.02, the desired strength can be achieved.
The shrinkage rate can be obtained. The preferred elongation rate is 0.99
~1.01. If the elongation rate is less than 0.98, the shrinkage rate will be lowered, but the strength will be lowered, and at the same time, the state of contact with the heating element will be non-uniform, and non-uniformity in physical properties will become apparent, which is not preferable. On the other hand, if the elongation rate exceeds 1.02, the shrinkage rate will not decrease sufficiently, which is not preferable. Here, the elongation rate is the value obtained by dividing the yarn speed after heat treatment by the yarn speed before heat treatment, and when this value is 1.00, it is constant length, and when it is less than 1.00, it is relaxed.
Exceeding 1.00 means expansion.

熱処理時間は十分な効果を得るために2秒以上が好まし
い。より好ましくは3秒以上でおる。
The heat treatment time is preferably 2 seconds or more in order to obtain a sufficient effect. More preferably, the time is 3 seconds or more.

熱処理に続けて繊維に機械捲縮を付与する際、例えばス
タッファボックスで2次元の機械捲縮を付与することが
できる。このとき熱風、スチーム、熱水などを用い繊維
束を加熱すると捲縮の耐久性が向上し、収縮率が低下す
るので好ましい。
When mechanically crimping the fibers following heat treatment, a two-dimensional mechanical crimp can be applied, for example with a stuffer box. At this time, it is preferable to heat the fiber bundle using hot air, steam, hot water, etc., since this improves the crimp durability and reduces the shrinkage rate.

捲縮を付与された繊維を(2)式に従って弛緩熱処理す
る必要がある。
It is necessary to heat-relax the crimped fibers according to equation (2).

丁1−70≦T2(’C)≦T1−20・・・(2)好
ましくは、 T1−60部丁2(’C)≦T1−25ざらに好ましく
は、 T1−65≦T2(°C)≦T1−30である。
T1-70≦T2('C)≦T1-20...(2) Preferably, T1-60 T2('C)≦T1-25 More preferably, T1-65≦T2(°C )≦T1-30.

丁2が丁1−70(’C)よりイ氏いとこの熱処理によ
る収縮率の低下が十分でなく、一方T1−20(’C)
よりも高いと、収縮率は低下するものの、繊維物性の低
下、とりわけ強度低下、ヤング率の低下および捲縮の低
下が大きくなるので好ましくない。
T1-20 ('C) had a lower shrinkage rate due to heat treatment than T1-70 ('C), whereas T1-20 ('C)
If it is higher than , the shrinkage rate decreases, but the decrease in fiber physical properties, especially the decrease in strength, the decrease in Young's modulus, and the decrease in crimp are undesirable.

[実施例] 以下、実施例を挙げて本発明をさらに詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、実施例中の部は重量部である。Note that parts in the examples are parts by weight.

A、ポリマの極限粘度 O−クロロフェノールを溶媒として25°Cにて測定し
た値である。
A: Intrinsic viscosity of polymer O-chlorophenol is a value measured at 25°C as a solvent.

B、乾熱収縮率 単糸1デニール当り0.47の荷重をかけ試料長さくi
oを測定した後、180℃の熱風恒温槽中で20分間処
理する。放冷後1デニール当りO,IJの荷重を再び掛
けて試料長さΩ1を測定し、次式で算出する。
B. Dry heat shrinkage rate Apply a load of 0.47 per denier of single yarn and increase the sample length i
After measuring o, the sample is treated in a hot air constant temperature bath at 180°C for 20 minutes. After cooling, a load of O, IJ per denier is applied again to measure the sample length Ω1, which is calculated using the following formula.

乾熱収縮率(%)=(Ω0−91)/ΩQX100C9
難燃性評価 ■「45°コイル法(1)」はJIS  L−1091
D法に従って測定した。
Dry heat shrinkage rate (%) = (Ω0-91)/ΩQX100C9
Flame retardancy evaluation■ "45° coil method (1)" is JIS L-1091
Measured according to method D.

■[45°]イル法(2)」はJIS  L−1091
D法に準じて行なうが使用するコイルは1履ピツチのも
のを使用した。1Mピッチコイルを使用することで、ポ
リエステルの溶融落下現象により炎を持ち去る現象によ
る消火はなくなり、自己消火能力の評価ができる。
■[45°] Ile method (2)” is JIS L-1091
The test was carried out in accordance with Method D, but the coil used was one with a pitch of one shoe. By using a 1M pitch coil, there is no extinguishment caused by the phenomenon of polyester melting and falling and carrying away the flame, making it possible to evaluate the self-extinguishing ability.

D、風合い リンを多量に配合していない通常のポリエチレンテレフ
タレート繊維を用いて実施例と同様に作成した布帛、お
よび通常のポリエチレンテレフタレート繊維と綿から構
成される紡績糸を使用して実施例と同様に作成した来復
加工の布帛とそれぞれ比較して布帛の硬さ程度を指の感
触によって次の三段階で評価した。
D. Texture A fabric made in the same manner as in the example using ordinary polyethylene terephthalate fibers that do not contain a large amount of phosphorus, and a fabric made in the same manner as in the examples using a spun yarn composed of ordinary polyethylene terephthalate fibers and cotton. The stiffness of the fabrics was evaluated in the following three grades based on the feel of the fingers, compared with the fabrics prepared in

◎  同等である。◎ Equivalent.

○  若干硬さが感じられる。○ Slight hardness is felt.

×  硬ざが明確に感じられる。× Hardness is clearly felt.

F、リン含有量 比色法により測定した。F, phosphorus content Measured by colorimetric method.

実施例1〜7および比較実施例1〜5 (A)ポリエステルの製法 テレフタル酸とエチレングリコールにより直接エステル
化法で得たビス−β−ヒドロキシエチルテレフタレート
およびその低重合体100部に(2−(β−ヒドロキシ
エトキシカルボニル)エチル)メチルホスフィン酸のエ
チレングリコールエステルをリン元素量として0.80
部および、0.03部の三酸化アンチモンを加え、さら
に二酸化チタン0.30部を加え、250’Cより、3
0分間で285°Cに昇温し、同時に反応系を常圧から
30分間て285°○に昇温し、同時に反応系を常圧か
ら30分間で0゜5mH(Jに減じ、IV=0.71に
到達するまでこの温度および低圧度を維持し、反応を行
なった。(ポリマエ) ポリマ製造に際し、リン元素量を1.50部に変更した
以外は(ポリマエ)と同様の条件で重合反応を行ない、
IVが0.72のポリマを得た。(ポリマ■) (B)ポリエステル製糸方法 得られたポリマ(I)、(II)を160’C減圧下1
0時間で乾燥を行ない、次いで紡糸速度285°C14
001−1の円孔口金を用いて1500ffl/min
の速度で紡糸して未延伸糸を得た。
Examples 1 to 7 and Comparative Examples 1 to 5 (A) Polyester production method Bis-β-hydroxyethyl terephthalate and its low polymer obtained by direct esterification with terephthalic acid and ethylene glycol were added to 100 parts of (2-( Ethylene glycol ester of β-hydroxyethoxycarbonyl)ethyl)methylphosphinic acid as phosphorus element content 0.80
and 0.03 parts of antimony trioxide, further added 0.30 parts of titanium dioxide, and heated at 250'C.
At the same time, the temperature of the reaction system was raised from normal pressure to 285°C in 30 minutes. The reaction was carried out by maintaining this temperature and low pressure until reaching .71. (Polymer) Polymerization reaction was carried out under the same conditions as (Polymer) except that the amount of phosphorus element was changed to 1.50 parts during polymer production. do the
A polymer with an IV of 0.72 was obtained. (Polymer ■) (B) Polyester yarn spinning method The obtained polymers (I) and (II) were heated under reduced pressure at 160'C.
Dry for 0 hours, then spin at a spinning speed of 285°C14
1500ffl/min using 001-1 circular hole cap
An undrawn yarn was obtained by spinning at a speed of .

次いでポリマ(I)からなる未延伸糸については液浴温
度79°C13,45倍で、またポリマ(II)からな
る未延伸糸については74°C13,50倍で延伸した
。延伸に引きつづいて第1表に記載した条件でホットロ
ーラによる熱処理および弛緩熱処理を実施した。弛緩熱
処理に引き続いて仕上げ油剤を付与した後38#の繊維
長に切断した。
Then, the undrawn yarn made of polymer (I) was drawn at a liquid bath temperature of 79° C., 13.45 times, and the undrawn yarn made of polymer (II) was drawn at 74° C., 13.5 times. Following the stretching, heat treatment using a hot roller and relaxation heat treatment were performed under the conditions listed in Table 1. Following the relaxation heat treatment, a finishing oil was applied and the fibers were cut into a fiber length of 38#.

得られた短繊維の物性は第1表に示したとおりであった
。実施例1〜7は強度、伸度とも良好なものであったし
さらに180°Cの乾熱収縮率も目標の20%以下を満
足するものであった。
The physical properties of the obtained short fibers were as shown in Table 1. Examples 1 to 7 had good strength and elongation, and the dry heat shrinkage rate at 180°C also satisfied the target of 20% or less.

特に実施例1,2,3.6の180’cの乾熱収縮率は
15%以下であり十分満足できるものであった。
In particular, the dry heat shrinkage rates at 180'c of Examples 1, 2, and 3.6 were 15% or less, which was sufficiently satisfactory.

実施例7は熱処理温度を182°Cに変更した以外は実
施例5と同様な条件で製糸した。風合は粗硬感なく良好
であった。
In Example 7, yarn was spun under the same conditions as in Example 5 except that the heat treatment temperature was changed to 182°C. The texture was good without any roughness or hardness.

一方比較実施例1は最初の熱処理で繊維がホットローラ
に融着し切断してしまった。比較実施例2,3は1〜ラ
ブルなく熱処理可能であったが、180’Cの乾熱収縮
率がそれぞれ22.2%、20.6%と高くなった。
On the other hand, in Comparative Example 1, the fibers were fused to the hot roller and cut during the first heat treatment. Comparative Examples 2 and 3 could be heat treated without any trouble, but the dry heat shrinkage rates at 180'C were as high as 22.2% and 20.6%, respectively.

比較実施例4は180°Cの乾熱収縮率は平均で19.
1%と目標を満足したが各単繊維の収縮率、強度、伸度
のバラツキが非常に大きく使用に耐えないものでめった
Comparative Example 4 had an average dry heat shrinkage rate of 19.
Although the target was met at 1%, the shrinkage rate, strength, and elongation of each single fiber were extremely variable, making it unusable.

比較実施例5は熱処理時伸長率を1.04に変更した以
外実施例5と同様の条件で製糸した結果乾熱収縮率が2
0.8%と大きく風合は粗硬であった。
Comparative Example 5 was yarn-spun under the same conditions as Example 5 except that the elongation rate during heat treatment was changed to 1.04, resulting in a dry heat shrinkage rate of 2.
It was 0.8%, which was large, and the texture was rough and hard.

一方これらの単繊維を用いて、通常の方法で紡績糸を作
り、目付250y/Tdの平織とし、おのおの180°
C,1分間定長で熱セットを行ない布帛とし洗浄、乾燥
した後の布帛の風合と難燃性評価結果を表1に示した。
On the other hand, using these single fibers, spun yarn was made by the usual method, made into a plain weave with a basis weight of 250y/Td, and each yarn was woven at 180°.
C. Table 1 shows the texture and flame retardancy evaluation results of the fabric after heat setting at a fixed length for 1 minute, washing and drying the fabric.

(以下余白) [発明の効果] 本発明による方法で製造した繊維は十分な難燃性を有し
ていながら2官能性リン化合物高共重合率ポリマからな
る繊維では避【プられながった高収縮率化が防止でき特
別の設備を使用lノないで製品の風合を大巾に柔軟化で
きたのである。
(The following is a blank space) [Effects of the invention] Although the fibers produced by the method of the present invention have sufficient flame retardancy, the flame retardance cannot be avoided by fibers made of polymers with a high copolymerization rate of bifunctional phosphorus compounds. It was possible to prevent high shrinkage rates and to greatly soften the texture of the product without using special equipment.

Claims (1)

【特許請求の範囲】 2官能性リン化合物をリン元素量として、0.7〜3.
0重量%共重合せしめたポリエステル延伸糸を、次式〈
1〉を満足する温度T_1で、伸長率0.98〜1.0
2で熱処理した後、機械捲縮を施し、次いで下式〈2〉
を満足する温度T_2で弛緩熱処理することを特徴とす
る難燃性ポリエステル繊維の製造方法。 Tc−20≦T_1(℃)≦Tc+20・・・・・・〈
1〉 Tc−70≦T_2(℃)≦Tc−20・・・・・・〈
2〉 (Tcとは未配向ポリエステルの結晶化温度である)
[Claims] The bifunctional phosphorus compound has a phosphorus element content of 0.7 to 3.
A polyester drawn yarn copolymerized with 0% by weight was prepared using the following formula:
At a temperature T_1 that satisfies 1〉, the elongation rate is 0.98 to 1.0.
After heat treatment in step 2, mechanical crimping was performed, and then the following formula <2>
A method for producing flame-retardant polyester fibers, characterized by carrying out a relaxation heat treatment at a temperature T_2 that satisfies the following. Tc-20≦T_1(℃)≦Tc+20...<
1>Tc-70≦T_2(℃)≦Tc-20...<
2> (Tc is the crystallization temperature of unoriented polyester)
JP29658786A 1986-12-15 1986-12-15 Production of flame-retardant polyester fiber Pending JPS63152411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29658786A JPS63152411A (en) 1986-12-15 1986-12-15 Production of flame-retardant polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29658786A JPS63152411A (en) 1986-12-15 1986-12-15 Production of flame-retardant polyester fiber

Publications (1)

Publication Number Publication Date
JPS63152411A true JPS63152411A (en) 1988-06-24

Family

ID=17835474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29658786A Pending JPS63152411A (en) 1986-12-15 1986-12-15 Production of flame-retardant polyester fiber

Country Status (1)

Country Link
JP (1) JPS63152411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661393A1 (en) * 1993-12-27 1995-07-05 Hoechst Aktiengesellschaft High tenacity, fire-resistant polyester yarn, method for its production and its use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313479A (en) * 1976-07-02 1978-02-07 Kansai Electric Power Co Insulation resistance measuring method
JPS61194216A (en) * 1985-02-16 1986-08-28 Toyobo Co Ltd Beast hair-like antipilling flame-retardant polyester fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313479A (en) * 1976-07-02 1978-02-07 Kansai Electric Power Co Insulation resistance measuring method
JPS61194216A (en) * 1985-02-16 1986-08-28 Toyobo Co Ltd Beast hair-like antipilling flame-retardant polyester fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661393A1 (en) * 1993-12-27 1995-07-05 Hoechst Aktiengesellschaft High tenacity, fire-resistant polyester yarn, method for its production and its use

Similar Documents

Publication Publication Date Title
JPH11172526A (en) Polyester fiber having low thermal stress and spinning thereof
JP3926328B2 (en) Artificial hair
JP2010216019A (en) Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear
JP5122236B2 (en) Far-infrared radiation fiber, fabric comprising the same, and method for producing the same
KR100737977B1 (en) Flame retardant polyester fabric and manufacturing method thereof
JP3547842B2 (en) Method for producing anti-pilling irregular cross-section fiber
JPS63152411A (en) Production of flame-retardant polyester fiber
JP2009007683A (en) Water-repellent polyester blended yarn
JP2011017091A (en) Deodorant fiber structure and fiber product
JPS62297323A (en) Production in flame-retardant polyester
JP2010138507A (en) Water-repelling polyester fiber
JP2641720B2 (en) Temporary net
JP2600663B2 (en) Flame retardant fiber composite
JP2010196208A (en) Method for producing copolyester fiber fabric and copolyester fiber fabric and fiber product
JPH08113826A (en) Highly shrinkable fiber and its production
JPH0357973B2 (en)
JP3452291B2 (en) Core-sheath type composite fiber having friction melting resistance and woven / knitted material thereof
JPH02127517A (en) Machine sewing thread of flame-retardant polyester
JPS5818447B2 (en) Manufacturing method of anti-pilling polyester fiber
JP2010138508A (en) Water-repelling polyester conjugated fiber
JP2019183366A (en) Fabric, manufacturing method thereof, and textile product
JP2012012747A (en) Polyester combined filament yarn excellent in antistaticity and wrinkle recovery
JP2020176355A (en) Fabric and production method thereof and textile product
JPH059808A (en) Melt-proof flame-retardant polyester fiber
JPH07157916A (en) Production of potentially pulling-resistant hollow polyester fiber