JP2010216019A - Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear - Google Patents

Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear Download PDF

Info

Publication number
JP2010216019A
JP2010216019A JP2009061217A JP2009061217A JP2010216019A JP 2010216019 A JP2010216019 A JP 2010216019A JP 2009061217 A JP2009061217 A JP 2009061217A JP 2009061217 A JP2009061217 A JP 2009061217A JP 2010216019 A JP2010216019 A JP 2010216019A
Authority
JP
Japan
Prior art keywords
copolyester
fiber fabric
producing
fabric
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009061217A
Other languages
Japanese (ja)
Inventor
Tadayuki Tai
忠之 袋
Chosuke Ogata
暢亮 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2009061217A priority Critical patent/JP2010216019A/en
Publication of JP2010216019A publication Critical patent/JP2010216019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a copolyester fiber fabric not only having stretchability but also having excellent color fastness, to provide the copolyester fiber fabric obtained by the production method, and to provide a sportswear. <P>SOLUTION: The method for producing the copolyester fiber fabric includes subjecting a fabric containing a false-twist crimped yarn comprising a specific copolyester fiber to dyeing-finishing by using a cationic dye. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ストレッチ性を有するだけでなく、優れた染色堅牢性をも有する重合ポリエステル繊維布帛の製造方法、および該製造方法により得られた防水透湿性共重合ポリエステル繊維布帛およびスポーツ衣料に関する。   The present invention relates to a method for producing a polymerized polyester fiber fabric having not only stretchability but also excellent dyeing fastness, and a waterproof and moisture-permeable copolymerized polyester fiber fabric and sports clothing obtained by the production method.

従来、スポーツ衣料などの分野において、ポリエステル繊維からなる仮撚捲縮糸を用いたストレッチ性布帛が提案されている(例えば、特許文献1、特許文献2参照)。
しかしながら、かかる布帛はストレッチ性に優れるものの染色堅牢性が良くないという問題があった。
Conventionally, stretchable fabrics using false twisted crimp yarns made of polyester fibers have been proposed in fields such as sports clothing (see, for example, Patent Document 1 and Patent Document 2).
However, although this fabric is excellent in stretchability, there is a problem that dyeing fastness is not good.

特開2002−363843号公報JP 2002-363443 A 国際公開第08/001920号パンフレットWO08 / 001920 pamphlet

本発明は上記の背景に鑑みなされたものであり、その目的は、ストレッチ性を有するだけでなく、優れた染色堅牢性をも有する重合ポリエステル繊維布帛の製造方法、および該製造方法により得られた共重合ポリエステル繊維布帛およびスポーツ衣料を提供することにある。   The present invention has been made in view of the above-mentioned background, and the object thereof is obtained by a method for producing a polymerized polyester fiber fabric having not only stretchability but also excellent dyeing fastness, and the production method. It is to provide a copolymerized polyester fiber fabric and sports apparel.

本発明者らは上記の課題を達成するため鋭意検討した結果、特定の共重合ポリエステル繊維からなる仮撚捲縮加工糸を用いて布帛を得た後、該布帛に染色加工を施すと、ストレッチ性を有するだけでなく、優れた染色堅牢性をも有する重合ポリエステル繊維布帛が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。
かくして、本発明によれば「共重合ポリエステル繊維からなる仮撚捲縮加工糸を含む布帛に染色加工を施す共重合ポリエステル繊維布帛の製造方法であって、
前記の共重合ポリエステル繊維が、共重合成分として、酸成分中にスルホイソフタル酸の金属塩(A)および下記式(I)で表される化合物(B)を下記数式(1)および(2)を同時に満足するよう含有し、かつ該共重合ポリエステルのガラス転移温度が70〜85℃の範囲内にあり、かつ該共重合ポリエステルの固有粘度が0.55〜1.00dL/gの範囲内にある共重合ポリエステルからなる共重合ポリエステル繊維であることを特徴とする共重合ポリエステル繊維布帛の製造方法。」が提供される。
As a result of intensive studies to achieve the above-mentioned problems, the inventors of the present invention obtained a fabric using a false twist crimped yarn made of a specific copolymerized polyester fiber, and then subjected the dyeing process to the fabric to obtain a stretch. In addition, the present inventors have found that a polymerized polyester fiber fabric that has not only excellent properties but also excellent dyeing fastness can be obtained, and has completed the present invention through further intensive studies.
Thus, according to the present invention, “a method for producing a copolymerized polyester fiber fabric in which a fabric including a false twist crimped yarn made of a copolymerized polyester fiber is subjected to a dyeing process,
The copolymerized polyester fiber has, as a copolymer component, a metal salt (A) of sulfoisophthalic acid and a compound (B) represented by the following formula (I) in the acid component represented by the following formulas (1) and (2): At the same time, and the glass transition temperature of the copolyester is in the range of 70 to 85 ° C., and the intrinsic viscosity of the copolyester is in the range of 0.55 to 1.00 dL / g. A method for producing a copolyester fiber fabric, which is a copolyester fiber comprising a copolyester. Is provided.

Figure 2010216019
[上記式中、Rは水素原子又は炭素数1〜10個のアルキル基を表し、Xは4級ホスホニ
ウムイオン又は4級アンモニウムイオンを表す。]
3.0≦A+B≦5.0 (1)
0.2≦B/(A+B)≦0.7 (2)
[上記数式中、Aは共重合ポリエステルを構成する全酸成分を基準とするスルホイソフタ
ル酸の金属塩(A)の共重合量(モル%)、Bは共重合ポリエステルを構成する全酸成分
を基準とする上記式(I)で表される化合物(B)の共重合量(モル%)を表す。]
Figure 2010216019
[In the above formula, R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and X represents a quaternary phosphonium ion or a quaternary ammonium ion. ]
3.0 ≦ A + B ≦ 5.0 (1)
0.2 ≦ B / (A + B) ≦ 0.7 (2)
[In the above formula, A is the copolymerization amount (mol%) of the metal salt of sulfoisophthalic acid (A) based on the total acid component constituting the copolyester, and B is the total acid component constituting the copolyester. This represents the copolymerization amount (mol%) of the compound (B) represented by the above formula (I) as a reference. ]

その際、前記共重合ポリエステル中のジエチレングリコール含有量が2.5重量%以下であることが好ましい。また、前記スルホイソフタル酸の金属塩(A)が、5−ナトリウムスルホイソフタル酸または5−ナトリウムスルホイソフタル酸ジメチルであることが好ましい。また、上記式(I)で表される化合物(B)が、5−スルホイソフタル酸テトラブチルホスホニウムまたは5−スルホイソフタル酸ジメチルテトラブチルホスホニウムであることが好ましい。また、前記仮撚捲縮加工糸の引張り強度が3.0cN/dtex以上であることが好ましい。また、布帛に染色加工を施す際に、カチオン染料を用いて常圧で染色加工を行うことが好ましい。また、前記仮撚捲縮加工糸の単糸繊度が0.2〜3.0dtexの範囲内であることが好ましい。また、前記仮撚捲縮加工糸の捲縮率が3%以上であることが好ましい。また、前記仮撚捲縮加工糸として、S方向のトルクを有する仮撚捲縮加工糸とZ方向のトルクを有する仮撚捲縮加工糸との複合糸が前記布帛に含まれることが好ましい。また、かかる複合糸のトルクが30T/m以下であることが好ましい。また、前記布帛が編地であることが好ましい。その際、編地の密度が30〜125コース/2.54cmかつ30〜125ウエール/2.54cmであることが好ましい。   In that case, it is preferable that diethylene glycol content in the said copolyester is 2.5 weight% or less. The metal salt (A) of sulfoisophthalic acid is preferably 5-sodium sulfoisophthalic acid or dimethyl 5-sodium sulfoisophthalate. Moreover, it is preferable that the compound (B) represented by the said formula (I) is 5-sulfoisophthalate tetrabutylphosphonium or 5-sulfoisophthalate dimethyltetrabutylphosphonium. The tensile strength of the false twist crimped yarn is preferably 3.0 cN / dtex or more. In addition, when the fabric is dyed, it is preferable to carry out the dyeing at atmospheric pressure using a cationic dye. Moreover, it is preferable that the single yarn fineness of the false twist crimped yarn is in the range of 0.2 to 3.0 dtex. Moreover, it is preferable that the crimp rate of the false twist crimped yarn is 3% or more. In addition, it is preferable that the fabric includes a composite yarn of a false twist crimped yarn having torque in the S direction and a false twist crimped yarn having torque in the Z direction as the false twist crimped yarn. Moreover, it is preferable that the torque of this composite yarn is 30 T / m or less. The fabric is preferably a knitted fabric. At that time, the density of the knitted fabric is preferably 30 to 125 courses / 2.54 cm and 30 to 125 wales / 2.54 cm.

また、本発明によれば、前記の製造方法により得られた共重合ポリエステル繊維布帛が提供される。その際、かかる布帛において、タテ方向および/またはヨコ方向のストレッチ性が50%以上であることが好ましい。
また、本発明によれば、前記の共重合ポリエステル繊維布帛を用いてなるスポーツ衣料が提供される。
Moreover, according to this invention, the copolyester fiber fabric obtained by the said manufacturing method is provided. At this time, in such a fabric, it is preferable that the stretchability in the vertical direction and / or the horizontal direction is 50% or more.
Moreover, according to this invention, the sports clothing which uses the said copolymerization polyester fiber fabric is provided.

本発明によれば、ストレッチ性を有するだけでなく、優れた染色堅牢性をも有する重合ポリエステル繊維布帛の製造方法、および該製造方法により得られた共重合ポリエステル繊維布帛およびスポーツ衣料が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the polymerization polyester fiber fabric which not only has a stretchability but also the outstanding dyeing | fastness to dyeing, the copolymerization polyester fiber fabric obtained by this manufacturing method, and sports clothing are obtained.

以下、本発明を詳細に説明する。
本発明に使用される共重合ポリエステルとは、テレフタル酸又はそのエステル形成性誘導体と、エチレングリコール成分とを重縮合反応せしめて得られるエチレンテレフタレートを主たる繰返し単位とする共重合ポリエステルであり、共重合成分としてスルホイソフタル酸の金属塩(A)及び下記式(I)で表される化合物(B)を下記数式(1)及び(2)を同時に満足する状態で含有する共重合ポリエステルであり、該共重合ポリエステルのガラス転移温度が70〜85℃の範囲にあり、かつ得られる共重合ポリエステルの固有粘度が0.55〜1.00dL/gの範囲にあることを特徴とするポリエステルである。
Hereinafter, the present invention will be described in detail.
The copolymerized polyester used in the present invention is a copolymerized polyester having ethylene terephthalate as a main repeating unit obtained by polycondensation reaction of terephthalic acid or an ester-forming derivative thereof and an ethylene glycol component. A copolyester containing a metal salt of sulfoisophthalic acid (A) as a component and a compound (B) represented by the following formula (I) in a state satisfying the following mathematical formulas (1) and (2) simultaneously: The polyester is characterized in that the glass transition temperature of the copolyester is in the range of 70 to 85 ° C., and the intrinsic viscosity of the copolyester obtained is in the range of 0.55 to 1.00 dL / g.

Figure 2010216019
[上記式中、Rは水素又は炭素数1〜10個のアルキル基を表し、Xは4級ホスホニウム
塩又は4級アンモニウム塩を表す。]
3.0≦A+B≦5.0 (1)
0.2≦B/(A+B)≦0.7 (2)
[上記数式中、Aは共重合ポリエステルを構成する全酸成分を基準とするスルホイソフタル酸の金属塩(A)の共重合量(モル%)、Bは共重合ポリエステルを構成する全酸成分を基準とする上記式(I)で表される化合物(B)の共重合量(モル%)を表す。]
Figure 2010216019
[In the above formula, R represents hydrogen or an alkyl group having 1 to 10 carbon atoms, and X represents a quaternary phosphonium salt or a quaternary ammonium salt. ]
3.0 ≦ A + B ≦ 5.0 (1)
0.2 ≦ B / (A + B) ≦ 0.7 (2)
[In the above formula, A is the copolymerization amount (mol%) of the metal salt of sulfoisophthalic acid (A) based on the total acid component constituting the copolyester, and B is the total acid component constituting the copolyester. This represents the copolymerization amount (mol%) of the compound (B) represented by the above formula (I) as a reference. ]

ここでテレフタル酸のエステル形成性誘導体とは、テレフタル酸の、ジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステル、ジヘキシルエステル、ジオクチルエステル、ジデシルエステル、若しくはジフェニルエステル又はテレフタル酸ジクロライド、テレフタル酸ジブロマイドを挙げる事ができるが、これらの中でもテレフタル酸ジメチルエステルが好ましい。   Here, the ester-forming derivative of terephthalic acid is dimethyl ester, diethyl ester, dipropyl ester, dibutyl ester, dihexyl ester, dioctyl ester, didecyl ester, or diphenyl ester or terephthalic acid dichloride, terephthalic acid diester. Among them, dimethyl terephthalate is preferable.

(ポリエステルについて)
本発明におけるポリエステルとはエチレンテレフタレートを主たる繰返し単位とするポリエステルであり、主たる繰り返し単位とはポリエステルを構成する全繰り返し単位あたり80モル%以上がエチレンテレフタレート単位であることを指している。他の20モル%以下の範囲内で他の成分が共重合されていても良い。好ましくは90モル%以上がエチレンテレフタレート単位であることである。その他の共重合成分としては、ジカルボン酸成分としてイソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルメタンジカルボン酸、ジフェニルケトンジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸、コハク酸、アジピン酸、アゼライン酸を挙げる事ができ、グリコール成分として1,2−プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘプタメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、ジプロピレングリコール、ビス(トリメチレングリコール)、ビス(テトラメチレングリコール)、トリエチレングリコール、1,4−ジヒドロキシシクロヘキサン、1,4−シクロヘキサンジメタノールが挙げる事ができ、これらの1種以上のジカルボン酸と1種以上のグリコール成分を反応させて得られる成分を繰り返し単位として共重合されていても良い。
(About polyester)
The polyester in the present invention is a polyester having ethylene terephthalate as a main repeating unit, and the main repeating unit indicates that 80 mol% or more of all repeating units constituting the polyester is an ethylene terephthalate unit. Other components may be copolymerized within the other 20 mol% or less range. Preferably 90 mol% or more is an ethylene terephthalate unit. Other copolymer components include diphthalic acid components such as isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, diphenyl Examples thereof include ketone dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, succinic acid, adipic acid, and azelaic acid, and 1,2-propylene glycol, trimethylene glycol, tetramethylene glycol, heptamethylene glycol, Hexamethylene glycol, diethylene glycol, dipropylene glycol, bis (trimethylene glycol), bis (tetramethylene glycol), triethylene glycol, 1,4-dihydroxycyclohexane, 1,4-cyclohexa Can dimethanol mentioned, it may be copolymerized as a repeating unit derived ingredients by reacting these one or more dicarboxylic acids and one or more glycol components.

(スルホイソフタル酸の金属塩(A)について)
本発明で使用されるスルホイソフタル酸の金属塩(A)としては、5−スルホイソフタル酸のアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩)が例示される。必要に応じてこれら化合物のマグネシウム塩、カルシウム塩等のアルカリ土類塩を併用しても良い。また、これらのエステル形成性誘導体も好ましく例示される。エステル形成性誘導体としてはジメチルエステル、ジエチルエステル、ジプロピルエステル、ジブチルエステル、ジヘキシルエステル、ジオクチルエステル、ジデシルエステル、ジフェニルエステル、5−スルホイソフタル酸金属塩のジハロゲン化物を挙げる事ができるが、これらの中でもジメチルエステルが好ましい。これらの化合物群の中では、熱安定性、コストなどの面から、5−スルホイソフタル酸のアルカリ金属塩が好ましく例示され、特に5−ナトリウムスルホイソフタル酸又はそのジメチルエステルである5−ナトリウムスルホイソフタル酸ジメチルが特に好ましく例示される。これらの条件を満たす化合物である場合に、ポリエステル繊維とした場合の充分なカチオン可染性と充分な繊維強度の両立が可能となる。
(About metal salt of sulfoisophthalic acid (A))
Examples of the metal salt (A) of sulfoisophthalic acid used in the present invention include alkali metal salts (lithium salt, sodium salt, potassium salt, rubidium salt, cesium salt) of 5-sulfoisophthalic acid. If necessary, alkaline earth salts such as magnesium salts and calcium salts of these compounds may be used in combination. These ester-forming derivatives are also preferably exemplified. Examples of the ester-forming derivatives include dimethyl ester, diethyl ester, dipropyl ester, dibutyl ester, dihexyl ester, dioctyl ester, didecyl ester, diphenyl ester, and dihalogenated metal salt of 5-sulfoisophthalic acid. Of these, dimethyl ester is preferred. Among these compounds, an alkali metal salt of 5-sulfoisophthalic acid is preferably exemplified from the viewpoint of thermal stability, cost, etc., and in particular, 5-sodium sulfoisophthalic acid which is 5-sodium sulfoisophthalic acid or a dimethyl ester thereof. Particularly preferred is dimethyl acid. In the case of a compound satisfying these conditions, it is possible to achieve both sufficient cationic dyeability and sufficient fiber strength when used as a polyester fiber.

(化合物(B)について)
また、上記式(I)で表される化合物(B)としては、5−スルホイソフタル酸又はその低級アルキルエステルの4級ホスホニウム塩又は4級アンモニウム塩である。4級ホスホニウム塩、4級アンモニウム塩としては、リン原子又は窒素原子にアルキル基、ベンジル基又はフェニル基が結合した4級ホスホニウム塩、4級アンモニウム塩が好ましく、特に4級ホスホニウム塩であることが好ましい。また、4つある置換基は同一であっても異なっていても良い。上記式(I)で表される化合物の具体例としては、5−スルホイソフタル酸テトラブチルホスホニウム塩、5−スルホイソフタル酸エチルトリブチルホスホニウム塩、5−スルホイソフタル酸ベンジルトリブチルホスホニウム塩、5−スルホイソフタル酸フェニルトリブチルホスホニウム塩、5−スルホイソフタル酸テトラフェニルホスホニウム塩、5−スルホイソフタル酸ブチルトリフェニルホスホニウム塩、5−スルホイソフタル酸ベンジルトリフェニルホスホニウム塩、5−スルホイソフタル酸テトラメチルアンモニウム塩、5−スルホイソフタル酸テトラエチルアンモニウム塩、5−スルホイソフタル酸テトラブチルアンモニウム塩、5−スルホイソフタル酸テトラフェニルアンモニウム塩、5−スルホイソフタル酸ベンジルトリメチルアンモニウム塩、5−スルホイソフタル酸ベンジルトリメチルアンモニウム塩、あるいはこれらイソフタル酸誘導体のジメチルエステル、ジエチルエステル、ジプロプルエステル、ジブチルエステル、ジへキシルエステル、ジオクチルエステル、ジデシルエステルが好ましく例示される。これらのイソフタル酸誘導体の中でも、5−スルホイソフタル酸ジメチルテトラブチルホスホニウム塩、5−スルホイソフタル酸ジメチルベンジルトリブチルホスホニウム塩、5−スルホイソフタル酸ジメチルテトラフェニルホスホニウム塩、5−スルホイソフタル酸ジメチルテトラメチルアンモニウム塩、5−スルホイソフタル酸ジメチルテトラエチルアンモニウム塩、5−スルホイソフタル酸ジメチルテトラブチルアンモニウム塩、5−スルホイソフタル酸ジメチルベンジルトリメチルアンモニウム塩がより好ましく例示される。これらの条件を満たす化合物である場合に、ポリエステル繊維とした場合の充分なカチオン可染性と充分な繊維強度の両立が可能となる。
(Compound (B))
The compound (B) represented by the above formula (I) is quaternary phosphonium salt or quaternary ammonium salt of 5-sulfoisophthalic acid or a lower alkyl ester thereof. As the quaternary phosphonium salt or quaternary ammonium salt, a quaternary phosphonium salt or a quaternary ammonium salt in which an alkyl group, a benzyl group or a phenyl group is bonded to a phosphorus atom or a nitrogen atom is preferable, and a quaternary phosphonium salt is particularly preferable. preferable. The four substituents may be the same or different. Specific examples of the compound represented by the above formula (I) include 5-sulfoisophthalic acid tetrabutylphosphonium salt, 5-sulfoisophthalic acid ethyltributylphosphonium salt, 5-sulfoisophthalic acid benzyltributylphosphonium salt, and 5-sulfoisophthalic acid. Acid phenyltributylphosphonium salt, 5-sulfoisophthalic acid tetraphenylphosphonium salt, 5-sulfoisophthalic acid butyltriphenylphosphonium salt, 5-sulfoisophthalic acid benzyltriphenylphosphonium salt, 5-sulfoisophthalic acid tetramethylammonium salt, 5- Sulfoisophthalic acid tetraethylammonium salt, 5-sulfoisophthalic acid tetrabutylammonium salt, 5-sulfoisophthalic acid tetraphenylammonium salt, 5-sulfoisophthalic acid benzyl trime Le ammonium salt, 5-sulfoisophthalic acid benzyl trimethyl ammonium salt, or dimethyl esters thereof isophthalic acid derivatives, the diethyl ester, dipropionate pull ester, dibutyl ester, hexyl ester to di, dioctyl ester, didecyl ester is preferably exemplified. Among these isophthalic acid derivatives, 5-sulfoisophthalic acid dimethyltetrabutylphosphonium salt, 5-sulfoisophthalic acid dimethylbenzyltributylphosphonium salt, 5-sulfoisophthalic acid dimethyltetraphenylphosphonium salt, 5-sulfoisophthalic acid dimethyltetramethylammonium salt More preferred examples include salts, dimethyltetraethylammonium salt of 5-sulfoisophthalic acid, dimethyltetrabutylammonium salt of 5-sulfoisophthalic acid, and dimethylbenzyltrimethylammonium salt of 5-sulfoisophthalic acid. In the case of a compound satisfying these conditions, it is possible to achieve both sufficient cationic dyeability and sufficient fiber strength when used as a polyester fiber.

(数式(1)について)
本発明において、ポリエステルに共重合させる上記のスルホイソフタル酸の金属塩(A)と上記の化合物(B)の合計は共重合ポリエステルを構成する全酸成分を基準として、(A)成分と(B)成分の和A+Bが3.0〜5.0モル%の範囲である必要がある。3.0モル%より少ないと、常圧下でのカチオン染色では十分な染着を得ることができない。一方、5.0モル%より多くなると、得られるポリエステル糸の強度が低下するため実用に適さない。さらに染料を過剰に消費するため、コスト面でも不利である。好ましくは3.2〜4.8モル%であり、より好ましくは3.3〜4.7モル%である。
(About Formula (1))
In the present invention, the total of the above-mentioned sulfoisophthalic acid metal salt (A) to be copolymerized with the polyester and the above-mentioned compound (B) is based on the total acid component constituting the copolymerized polyester, and the (A) component and (B ) The sum A + B of the components needs to be in the range of 3.0 to 5.0 mol%. If it is less than 3.0 mol%, sufficient dyeing cannot be obtained by cationic dyeing under normal pressure. On the other hand, if it exceeds 5.0 mol%, the strength of the resulting polyester yarn is lowered, which is not suitable for practical use. Further, since the dye is consumed excessively, it is disadvantageous in terms of cost. Preferably it is 3.2-4.8 mol%, More preferably, it is 3.3-4.7 mol%.

(数式(2)について)
また、スルホイソフタル酸の金属塩(A)と化合物(B)の成分比は上記のモル%の値にて、B/(A+B)が0.2〜0.7の範囲にある必要がある。0.2以下、つまり成分Aの割合が多い状態では、スルホイソフタル酸金属塩による増粘効果により、得られる共重合ポリエステルの重合度を上げることが困難になる。一方、0.7以上、つまり化合物(B)の割合が多い状態では、重縮合反応が遅くなり、さらに化合物(B)の比率が多くなると熱分解反応が進むため重合度を上げることが困難となる。さらに、化合物(B)の比率多くなると共重合ポリエステルの熱安定性が悪化し、溶融紡糸段階で再溶融した際の熱分解反応による分子量の低下が大きくなるため、得られるポリエステル糸の強度が低下するため、好ましくない。好ましくは0.23〜0.65であり、より好ましくは0.
25〜0.60である。
(About Formula (2))
Further, the component ratio of the metal salt (A) of sulfoisophthalic acid and the compound (B) needs to be in the range of 0.2 to 0.7, with B / (A + B) being the value of the above mol%. When the ratio is 0.2 or less, that is, the ratio of component A is large, it is difficult to increase the degree of polymerization of the resulting copolyester due to the thickening effect of the metal salt of sulfoisophthalic acid. On the other hand, when the ratio of the compound (B) is 0.7 or more, that is, the polycondensation reaction is slow, and when the ratio of the compound (B) is further increased, it is difficult to increase the degree of polymerization because the thermal decomposition reaction proceeds. Become. Furthermore, when the ratio of the compound (B) increases, the thermal stability of the copolyester deteriorates, and the decrease in the molecular weight due to the thermal decomposition reaction upon remelting at the melt spinning stage increases, so the strength of the resulting polyester yarn decreases. Therefore, it is not preferable. Preferably it is 0.23-0.65, More preferably, it is 0.00.
25 to 0.60.

スルホイソフタル酸の金属塩(A)をポリエステルに共重合することによりカチオン可染性は付与する事ができるが、スルホン酸金属塩基間のイオン結合に由来すると思われる共重合ポリエステルの溶融粘度の増粘効果のため共重合ポリエステルを高重合度化することが困難であった。そのため十分に高い重合度、高い固有粘度を有する共重合ポリエステルが得られず、その高い固有粘度でない共重合ポリエステルから得られるポリエステル繊維は、繊維強度が著しく低下する問題があった。一方その問題を解消するためにスルホイソフタル酸のテトラアルキルアンモニウム塩又はスルホイソフタル酸のテトラアルキルホスホニウム塩、即ち化合物(B)をポリエステルに共重合することが開示されているが、当該化合物は重合反応中に熱分解を起こしやすいため、共重合量を上げようとすると熱分解反応が進みやすい問題があり、繊維強度を高い値にすることが依然として困難であった。本発明の共重合ポリエステルにおいては、これらのスルホイソフタル酸の金属塩(A)と化合物(B)を併用し、双方の化合物の共重合量、共重合比率、共重合ポリエステルのガラス転移温度及び固有粘度を特定の範囲に設定することによって、充分なカチオン染料による染色性と高い繊維強度を両立させ、且つ熱セット性が良好で捲縮を固定しやすいと言った物性をも同時に有する。この熱セット性が良好で捲縮を固定しやすいという物性をも有することは驚くべき事である。   Although cationic dyeability can be imparted by copolymerizing a metal salt of sulfoisophthalic acid (A) with polyester, an increase in the melt viscosity of the copolymerized polyester that is thought to be derived from ionic bonds between the metal sulfonate groups. It was difficult to increase the degree of polymerization of the copolyester due to the viscous effect. Therefore, a copolyester having a sufficiently high degree of polymerization and a high intrinsic viscosity cannot be obtained, and the polyester fiber obtained from the copolyester having no high intrinsic viscosity has a problem that the fiber strength is remarkably lowered. On the other hand, in order to solve the problem, it is disclosed that a tetraalkylammonium salt of sulfoisophthalic acid or a tetraalkylphosphonium salt of sulfoisophthalic acid, that is, a compound (B) is copolymerized with a polyester. Since thermal decomposition tends to occur inside, there is a problem that the thermal decomposition reaction tends to proceed when the amount of copolymerization is increased, and it is still difficult to increase the fiber strength. In the copolymerized polyester of the present invention, the metal salt (A) of sulfoisophthalic acid and the compound (B) are used in combination, the copolymerization amount of both compounds, the copolymerization ratio, the glass transition temperature of the copolymerized polyester and the intrinsic property. By setting the viscosity within a specific range, the dye has sufficient physical properties such as sufficient dyeability with a cationic dye and high fiber strength, good heat setability and easy fixation of crimp. It is surprising that the heat setting property is good and the crimping property is easily fixed.

(ガラス転移温度について)
本発明の共重合ポリエステルは、DSC(示差走査熱量測定)法による測定方法(昇温
速度=20℃/min)でのガラス転移温度(Tg)が70〜85℃の範囲であることが肝要である。Tgが70℃以下の場合、溶融紡糸による得られたポリエステル繊維の熱セット性が悪化し、仮撚捲縮加工性が悪化し、撚りがかからない状態となるため、該共重合ポリエステルからなるポリエステル繊維から得られる布帛の風合いが悪化するおそれがある。ガラス転移温度を下げる方法としては、アジピン酸、セバシン酸、ジエチレングリコール、ポリエチレングリコールなどを共重合することで成されるが、本発明においてはこれら共重合成分が、上記のガラス転移温度の条件を満足する範囲であれば微量共重合されていても良い。Tgの好ましい値の範囲は71〜80℃である。
(Glass transition temperature)
It is important that the copolyester of the present invention has a glass transition temperature (Tg) in the range of 70 to 85 ° C. by a measuring method (temperature increase rate = 20 ° C./min) by DSC (differential scanning calorimetry) method. is there. When the Tg is 70 ° C. or lower, the heat setting property of the polyester fiber obtained by melt spinning is deteriorated, the false twist crimping processability is deteriorated, and the polyester fiber is made of the copolymer polyester. There is a possibility that the texture of the fabric obtained from the above will deteriorate. As a method for lowering the glass transition temperature, adipic acid, sebacic acid, diethylene glycol, polyethylene glycol and the like are copolymerized. In the present invention, these copolymer components satisfy the above glass transition temperature conditions. As long as it is within the range, it may be minutely copolymerized. A preferable value range of Tg is 71 to 80 ° C.

通常、ポリエチレンテレフタレートのガラス転移温度は70〜80℃くらいであることが知られているので、本発明において、共重合ポリエステルは、上述のように他の共重合成分が共重合されていても良いが、共重合した結果ガラス転移温度を著しく降下させる成分については共重合させることは好ましくない。ガラス転移温度を上記の値の範囲にするには、例えば上述の共重合ポリエステルの説明の項で挙げた共重合されても良い化合物の種類・共重合率を適宜調整して共重合させることを挙げる事ができる。   Usually, since it is known that the glass transition temperature of polyethylene terephthalate is about 70 to 80 ° C., in the present invention, the copolymer polyester may be copolymerized with other copolymer components as described above. However, it is not preferable to copolymerize a component that significantly lowers the glass transition temperature as a result of copolymerization. In order to set the glass transition temperature within the above range, for example, the type and copolymerization ratio of the compounds that may be copolymerized listed in the description of the above-described copolymerized polyester are appropriately adjusted for copolymerization. I can list them.

(固有粘度について)
本発明の共重合ポリエステルの固有粘度(溶媒:オルトクロロフェノール、測定温度:35℃)は0.55〜1.00dL/gの範囲であることが肝要である。固有粘度が0.55dL/g以下である場合、得られるポリエステル繊維の強度が不足し、一方、1.00dL/g以上とする場合、溶融粘度が高くなりすぎて溶融成型が困難になるため好ましくなく、また、溶融重合法に引続いて固相重合法により共重合ポリエステルの重縮合工程での生産コストが大幅に増大するため好ましくない。共重合ポリエステルの固有粘度としては、0.60〜0.90dL/gの範囲がさらに好ましい。共重合ポリエステルの固有粘度を0.55〜1.00dL/gの範囲にするためには、溶融重合を行う際の最終の重合温度、重合時間を調整したり、溶融重合法のみでは困難な場合には固相重合を行って適宜調整することができる。本発明においては、スルホイソフタル酸の金属塩(A)及び化合物(B)を上記数式(1)及び(2)を満たすようにポリエチレンテレフタレートに対して共重合を行うことで上述のような手法により固有粘度を0.55〜1.00dL/gにすることが可能となる。
(Intrinsic viscosity)
It is important that the intrinsic viscosity (solvent: orthochlorophenol, measurement temperature: 35 ° C.) of the copolyester of the present invention is in the range of 0.55 to 1.00 dL / g. When the intrinsic viscosity is 0.55 dL / g or less, the strength of the resulting polyester fiber is insufficient. On the other hand, when the intrinsic viscosity is 1.00 dL / g or more, the melt viscosity becomes too high and melt molding becomes difficult. In addition, the production cost in the polycondensation step of the copolyester is greatly increased by the solid phase polymerization method subsequent to the melt polymerization method, which is not preferable. The intrinsic viscosity of the copolyester is more preferably in the range of 0.60 to 0.90 dL / g. In order to make the intrinsic viscosity of the copolyester in the range of 0.55 to 1.00 dL / g, it is difficult to adjust the final polymerization temperature and polymerization time during melt polymerization, or only by the melt polymerization method. The solid phase polymerization can be appropriately adjusted. In the present invention, the metal salt (A) of sulfoisophthalic acid and the compound (B) are copolymerized with polyethylene terephthalate so as to satisfy the above mathematical formulas (1) and (2). It becomes possible to make an intrinsic viscosity into 0.55-1.00 dL / g.

(DEG含有量について)
本発明における共重合ポリエステルに含有されるジエチレングリコールは、2.5重量%以下であることが好ましい。より好ましくは2.2重量%以下、さらにより好ましくは1.85〜2.2重量%である。一般にカチオン可染性ポリエステルを製造する際には、ポリエステルの製造工程において副生するジエチレングリコール(DEG)量を抑制するために、DEG抑制剤として少量のアルカリ金属塩、アルカリ土類金属塩、水酸化テトラアルキルホスホニウム、水酸化テトラアルキルアンモニウム、トリアルキルアミンなどの少なくとも1種類を、使用するカチオン可染性モノマー(本発明の場合はスルホイソフタル酸の金属塩(A)及び化合物(B)の全モル量)に対して、1〜20モル%程度を添加することが好ましい。
(DEG content)
The diethylene glycol contained in the copolymerized polyester in the present invention is preferably 2.5% by weight or less. More preferably, it is 2.2 wt% or less, and still more preferably 1.85 to 2.2 wt%. In general, when producing a cationic dyeable polyester, a small amount of alkali metal salt, alkaline earth metal salt, hydroxide is used as a DEG inhibitor to suppress the amount of diethylene glycol (DEG) by-produced in the polyester production process. At least one kind such as tetraalkylphosphonium, tetraalkylammonium hydroxide, and trialkylamine is used, and in the case of the present invention, the total moles of the metal salt (A) of sulfoisophthalic acid and the compound (B) are used. It is preferable to add about 1 to 20 mol% with respect to the amount.

(共重合ポリエステルの製造方法について)
本発明における共重合ポリエステルの製造は特に限定されず、スルホイソフタル酸の金属塩(A)(以下化合物Aと略称することがある。)及び化合物(B)を請求項1に記載の条件を満たすように留意する他は、通常知られているポリエステルの製造方法が用いられる。すなわち、テレフタル酸とエチレングリコールの直接エステル化反応させる、あるいはテレフタル酸ジメチルに代表されるテレフタル酸のエステル形成性誘導体とエチレングリコールとをエステル交換反応させて低重合体を製造する。次いでこの反応生成物を重縮合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることにより製造される。スルホイソフタル酸を含有する芳香族ジカルボン酸及び/又はそのエステル誘導体(スルホイソフタル酸の金属塩(A)及び化合物(B))を共重合する方法についても通常知られている製造方法を用いる事ができる。これらの化合物の反応工程への添加時期は、エステル交換反応又はエステル化反応の開始当初から重縮合反応の開始までの任意の時期に添加することができる。
(About the production method of copolyester)
The production of the copolyester in the present invention is not particularly limited, and the metal salt (A) of sulfoisophthalic acid (hereinafter sometimes abbreviated as compound A) and the compound (B) satisfy the condition described in claim 1. Other than this, a conventionally known polyester production method is used. That is, a low polymer is produced by a direct esterification reaction between terephthalic acid and ethylene glycol, or by an ester exchange reaction between an ester-forming derivative of terephthalic acid represented by dimethyl terephthalate and ethylene glycol. Next, this reaction product is produced by heating under reduced pressure in the presence of a polycondensation catalyst to carry out a polycondensation reaction until a predetermined polymerization degree is reached. It is possible to use a generally known production method for the method of copolymerizing an aromatic dicarboxylic acid containing sulfoisophthalic acid and / or an ester derivative thereof (metal salt (A) and compound (B) of sulfoisophthalic acid). it can. These compounds can be added to the reaction step at any time from the beginning of the transesterification or esterification reaction to the start of the polycondensation reaction.

またエステル交換反応時の触媒についても通常のエステル交換反応を行う際に用いられる触媒化合物を用いる事ができる。重縮合触媒についても通常用いられるアンチモン化合物、ゲルマニウム化合物、チタン化合物を用いる事ができる。またチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物、チタン化合物とリン化合物の反応生成物を用いても良い。   Moreover, the catalyst compound used when performing a normal transesterification reaction can also be used about the catalyst at the time of transesterification. As the polycondensation catalyst, commonly used antimony compounds, germanium compounds, and titanium compounds can be used. Further, a reaction product of a titanium compound and an aromatic polyvalent carboxylic acid or an anhydride thereof, or a reaction product of a titanium compound and a phosphorus compound may be used.

(その他添加剤について)
また、本発明における共重合ポリエステルは、必要に応じて少量の添加剤、例えば酸化防止剤、蛍光増白剤、帯電防止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤又は艶消し剤などを含んでいても良い。特に酸化防止剤、艶消し剤などは特に好ましく添加される。
(About other additives)
In addition, the copolymer polyester in the present invention contains a small amount of additives as necessary, for example, antioxidants, fluorescent whitening agents, antistatic agents, antibacterial agents, ultraviolet absorbers, light stabilizers, heat stabilizers, and light-shielding agents. Or a matting agent etc. may be included. In particular, antioxidants and matting agents are particularly preferably added.

(溶融紡糸について)
本発明における共重合ポリエステルの製糸方法は、特に制限は無く、従来公知の方法が採用される。すなわち、乾燥した共重合ポリエステルを270〜300℃の範囲で溶融紡糸して製造することが好ましく、溶融紡糸の引取り速度は300〜5000m/分で紡糸することが好ましい。紡糸速度がこの範囲にあると、得られるポリエステル繊維の強度も十分なものであると共に、安定して巻取りを行うこともできる。また、紡糸時に使用する口金の形状についても特に制限はなく、円形、扁平、くびれ付扁平、三角形・四角形等の多角形、3以上の多葉形、C型断面、H型断面、X型断面、中空断面のいずれであってもよい。
(About melt spinning)
There is no restriction | limiting in particular in the spinning method of the copolyester in this invention, A conventionally well-known method is employ | adopted. That is, it is preferable to produce the dried copolyester by melt spinning at a temperature in the range of 270 to 300 ° C., and the spinning speed of the melt spinning is preferably 300 to 5000 m / min. When the spinning speed is in this range, the polyester fiber obtained has sufficient strength and can be wound stably. The shape of the die used for spinning is not particularly limited, and is round, flat, constricted flat, triangular, quadrangular, etc., three or more multi-leafed, C-shaped, H-shaped, and X-shaped. Any of a hollow cross section may be sufficient.

(仮撚捲縮加工について)
前記の方法で得られた未延伸糸もしくは部分延伸糸を用いて仮撚捲縮加工を行う。仮撚捲縮加工の条件としては、糸条を第1ローラ、セット温度が90〜220℃(より好ましくは100〜190℃)の熱処理ヒータを経由して撚り掛け装置によって施撚し、必要に応じてさらに第2ヒーター域に導入して弛緩熱処理する方法が例示される。仮撚加工時の延伸倍率は、0.8〜1.5の範囲が好ましく、仮撚数は、仮撚数(T/m)=(32500/√Dtex)×αの式においてα=0.5〜1.5が好ましく、通常は0.8〜1.2位とするのがよい。用いる撚り掛け装置としては、デイスク式あるいはベルト式の摩擦式撚り掛け装置が糸掛けしやすく、糸切れも少なくて適当であるが、ピン方式の撚り掛け装置であってもよい。
かくして得られた仮撚捲縮加工糸において、捲縮率が3%以上(好ましくは10〜45%)であることが好ましい。該捲縮率が3%未満では、最終的に得られる布帛において、ストレッチ性やソフトな風合いが得られないおそれがある。
(About false twist crimping)
A false twist crimping process is performed using the undrawn yarn or the partially drawn yarn obtained by the above method. As conditions for false twist crimping, the yarn is twisted by a twisting device via a first roller and a heat treatment heater having a set temperature of 90 to 220 ° C. (more preferably 100 to 190 ° C.). In response to this, a method of further introducing a relaxation heat treatment into the second heater region is exemplified. The draw ratio at the time of false twisting is preferably in the range of 0.8 to 1.5, and the false twist number is the number of false twists (T / m) = (32500 / √Dtex) × α. 5-1.5 are preferable, and it is good to set it to 0.8-1.2 rank normally. As the twisting device to be used, a disk-type or belt-type friction type twisting device is suitable because it is easy to thread and there is little yarn breakage, but a pin-type twisting device may also be used.
In the false twist crimped yarn thus obtained, the crimp rate is preferably 3% or more (preferably 10 to 45%). If the crimp rate is less than 3%, there is a possibility that stretchability and soft texture cannot be obtained in the finally obtained fabric.

また、前記仮撚捲縮加工糸の単糸繊度が0.2〜3.0dtexの範囲内であると、編目のカバー性が向上することにより防風効果が得られ、また、抗スナッギング性に優れ好ましい。該単糸繊度が3.0dtexよりも大きいと編目のカバー性が低下し防風性が得られないおそれがある。逆に、該単糸繊度が0.2未満であると、抗スナッギング性が低下するおそれがある。
また、前記仮撚捲縮加工糸の引張り強度が3.0cN/dtex以上であることが好ましい。なお、このような繊維強度を有する仮撚捲縮加工糸は、前記のように共重合ポリエステルを紡糸し、仮撚捲縮加工することにより得られる。
Moreover, when the single yarn fineness of the false twist crimped yarn is in the range of 0.2 to 3.0 dtex, a windproof effect can be obtained by improving the covering property of the stitch, and the anti-snugging property is excellent. preferable. If the single yarn fineness is larger than 3.0 dtex, the covering property of the stitches is lowered, and there is a possibility that windproof property cannot be obtained. On the contrary, if the single yarn fineness is less than 0.2, the anti-snugging property may be lowered.
The tensile strength of the false twist crimped yarn is preferably 3.0 cN / dtex or more. A false twist crimped yarn having such fiber strength can be obtained by spinning a copolyester and false twisting as described above.

(布帛の製造について)
前記の仮撚捲縮加工糸を用いて布帛を製造する。ここで、前記の仮撚捲縮加工糸を1種類または複数種類用いて布帛を製造してもよいし、前記の仮撚捲縮加工糸と他糸条とを用いて製造してもよい。
例えば、S方向のトルクを有する前記仮撚捲縮加工糸とZ方向のトルクを有する前記仮撚捲縮加工糸とを引きそろえて、インターレースノズル等により交絡処理を施して複合糸(混繊糸)を得た後、該複合糸を用いて布帛を製造してもよい。その際、前記複合糸が30T/m以下(好ましくは10T/m以下、特に好ましくは0T/m)の低トルクを有すると、布帛の抗スナッギング性が向上し好ましい。
(About production of fabric)
A fabric is produced using the false twist crimped yarn. Here, a fabric may be manufactured using one or a plurality of types of the false twist crimped yarn, or may be manufactured using the false twist crimped yarn and other yarns.
For example, the false twisted crimped yarn having a torque in the S direction and the false twisted crimped yarn having a torque in the Z direction are aligned and subjected to an entanglement treatment with an interlace nozzle or the like to obtain a composite yarn (mixed yarn). ), A fabric may be produced using the composite yarn. At that time, it is preferable that the composite yarn has a low torque of 30 T / m or less (preferably 10 T / m or less, particularly preferably 0 T / m), since the anti-snugging property of the fabric is improved.

また、前記仮撚捲縮加工糸と、他糸条として高収縮ポリエステルフィラメント糸を用いて布帛を製造してもよい。その際、該高収縮ポリエステルフィラメント糸としては、公知の糸が使用され、エチレンテレフタレートを主たる繰り返し単位とし、第3成分を8〜30モル%(テレフタル酸成分に対して)共重合したポリエステルが例示され、該第3成分としては、例えばイソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸等の2官能性ジカルボン酸、ネオペンチルグリコール、ブタンジオール、ジエチレングリコール、プロピレングリコール等のジオール化合物等を使用したもので良い。また、該高収縮ポリエステルフィラメント糸は、その沸水収縮率が10〜45%の範囲にあるものが好ましく使用される。   Moreover, you may manufacture a fabric using the said false twist crimped yarn and a highly shrinkable polyester filament yarn as another yarn. At that time, as the high-shrinkage polyester filament yarn, a known yarn is used, and a polyester obtained by copolymerizing ethylene terephthalate as a main repeating unit and copolymerizing the third component in an amount of 8 to 30 mol% (based on the terephthalic acid component) is exemplified. As the third component, for example, a bifunctional dicarboxylic acid such as isophthalic acid, naphthalenedicarboxylic acid, adipic acid or sebacic acid, or a diol compound such as neopentyl glycol, butanediol, diethylene glycol or propylene glycol is used. Good. The high shrinkage polyester filament yarn preferably has a boiling water shrinkage in the range of 10 to 45%.

かかる布帛において、布帛の組織は限定されず織物でもよいし編物でもよい。なかでも、ストレッチ性の点で編物が好ましい。編地の組織は限定されず、丸編物でもよいしよこ編物やたて編物であってもよい。丸編物およびよこ編組織としては、天竺、平編、ゴム編、両面編、パール編、タック編、浮き編、片畔編、レース編、添え毛編、ニットミス、片側結接等が好ましく例示される。たて編組織としては、シングルデンビー編、シングルアトラス編、ダブルコード編、ハーフトリコット編、裏毛編、ジャガード編等が例示される。なかでも、ストレッチ性の点で丸編物が特に好ましい。層数も単層でもよいし、2層以上の多層でもよい。
また、前記布帛の織編密度は特に限定されないが、ソフトな風合いを得る上で編物であれば、30〜125コース/2.54cmかつ30〜125ウエール/2.54cmであることが好ましい。
In such a fabric, the structure of the fabric is not limited and may be a woven fabric or a knitted fabric. Of these, a knitted fabric is preferable in terms of stretchability. The organization of the knitted fabric is not limited, and may be a circular knitted fabric, a knitted fabric, or a warp knitted fabric. Preferable examples of the circular knitted fabric and the weft knitted fabric include tenshi, flat knitted, rubber knitted, double-sided knitted, pearl knitted, tuck knitted, float knitted, one-sided knitted, lace knitted, spliced knitted, knitted mistake, one-sided knot, etc. The Examples of the warp knitting structure include a single denby knitting, a single atlas knitting, a double cord knitting, a half tricot knitting, a back hair knitting, and a jacquard knitting. Among these, a circular knitted fabric is particularly preferable in terms of stretchability. The number of layers may be a single layer or a multilayer of two or more layers.
The woven / knitted density of the fabric is not particularly limited, but is preferably 30 to 125 courses / 2.54 cm and 30 to 125 wales / 2.54 cm as long as it is a knitted fabric in order to obtain a soft texture.

(染色加工について)
染色加工はカチオン染料を用いて行うことが好ましい。カチオン染料を用いて染色を行うと、カチオン染料がイオン結合により繊維にしっかりと吸着されるため、優れた染色堅牢性が得られる。分散染料を用いた染色では、十分な染色堅牢性が得られないおそれがある。かかるカチオン染料は市販されている通常のカチオン染料でよい。また、染色加工の条件としては、高圧で染色してもよいが、前記共重合ポリエステル繊維構造体は常圧(100℃)で染色可能であるので、常圧(100℃)で染色することが地球環境にやさしく、また染色コストを低減することができ好ましい。なお、染色の際に、染色助剤等を用いることは何らさしつかえない。
(About dyeing process)
The dyeing process is preferably performed using a cationic dye. When dyeing is performed using a cationic dye, the cationic dye is firmly adsorbed to the fiber by ionic bonding, so that excellent dyeing fastness can be obtained. Dyeing with disperse dyes may not provide sufficient dyeing fastness. Such a cationic dye may be a commercially available ordinary cationic dye. The dyeing process may be dyed at high pressure, but the copolymer polyester fiber structure can be dyed at normal pressure (100 ° C.), so it can be dyed at normal pressure (100 ° C.). It is preferable because it is friendly to the global environment and can reduce the dyeing cost. Note that there is no problem using a dyeing assistant or the like at the time of dyeing.

(他の加工)
なお、かかる布帛には、必要に応じて通常のアルカリ減量加工が施されてもよい。さらには、常法の吸水加工、撥水加工、起毛加工、紫外線遮蔽あるいは、抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤等の機能を付与する各種加工を付加適用してもよい。
例えば、前記吸水加工を施す方法としては、編地にPEGジアクリレートおよびその誘導体やポリエチレンテレフタレート−ポリエチレングリコール共重合体などの親水化剤を染色時に同浴加工することが好適に例示される。
かくして得られた布帛は、ストレッチ性を有するだけでなく、優れた染色堅牢性をも有する。
(Other processing)
Such fabric may be subjected to normal alkali weight reduction processing as necessary. In addition, conventional water-absorbing processing, water-repellent processing, brushed processing, UV shielding or various processing that provides functions such as antibacterial agents, deodorants, insect repellents, phosphorescent agents, retroreflective agents, negative ion generators, etc. Additional applications may be applied.
For example, the water-absorbing process is preferably exemplified by subjecting the knitted fabric to a bath treatment with a hydrophilizing agent such as PEG diacrylate and its derivatives or a polyethylene terephthalate-polyethylene glycol copolymer during dyeing.
The fabric thus obtained has not only stretchability but also excellent dyeing fastness.

次に、本発明のスポーツ衣料は前記の布帛を用いてなるものである。スポーツ衣料は通常、日光にさらされる時間が長いので、優れた染色堅牢性が要求されるが、該スポーツ衣料は前記の布帛を用いているので、ストレッチ性を有するだけでなく、優れた染色堅牢性をも有する。
なお、前記布帛はスポーツ衣料だけでなく、ユニフォーム衣料、カーシート表皮材、インテリア用途など他の用途にも好適に使用される。
Next, the sports apparel of the present invention is made using the above-mentioned fabric. Sport clothing is usually exposed to sunlight for a long time, so excellent dyeing fastness is required. However, since the sports apparel uses the above-mentioned fabric, it has not only stretchability but also excellent dyeing fastness. Also has sex.
The fabric is suitably used not only for sports clothing but also for other uses such as uniform clothing, car seat skin materials, and interior use.

以下、本発明を、実施例を用いて説明するが、本発明はこの実施例に限定されるものではない。なお、実施例中の物性は下記の方法により測定した。   Hereinafter, although the present invention is explained using an example, the present invention is not limited to this example. In addition, the physical property in an Example was measured with the following method.

(1)固有粘度:
ポリエステル試料を100℃、60分間でオルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した値から求めた。なお、チップの固有粘度をηC、紡糸後の未延伸糸の固有粘度をηFと称する。
(1) Intrinsic viscosity:
A dilute solution obtained by dissolving a polyester sample in orthochlorophenol at 100 ° C. for 60 minutes was determined from a value measured at 35 ° C. using an Ubbelohde viscometer. The intrinsic viscosity of the tip is referred to as ηC, and the intrinsic viscosity of the undrawn yarn after spinning is referred to as ηF.

(2)ジエチレングリコール(DEG)含有量:
ヒドラジンヒドラート(抱水ヒドラジン)を用いてポリエステル試料チップを分解し、この分解生成物中のジエチレングリコールの含有量をガスクロマトグラフィー(ヒューレットパッカード社製(HP6850型))を用いて測定した。
(2) Diethylene glycol (DEG) content:
The polyester sample chip was decomposed using hydrazine hydrate (hydrated hydrazine), and the content of diethylene glycol in the decomposition product was measured using gas chromatography (HP 6850, manufactured by Hewlett-Packard Company).

(3)ポリマーのガラス転移温度(Tg):
示差走査熱量計(セイコーインスツルメント社製DSC:Q10型)を用いて、昇温速度=20℃/minで測定した。
(3) Glass transition temperature (Tg) of polymer:
Using a differential scanning calorimeter (DSC manufactured by Seiko Instruments Inc .: Q10 type), the temperature was increased at a rate of temperature increase of 20 ° C./min.

(4)ポリエステル繊維の引張強度(破断強度)、引張伸度(破断伸度)
JIS L1013:1999 8.5に記載の方法により測定を行った。引張強度(破断強度)を繊維強度とする。
(4) Tensile strength (breaking strength) and tensile elongation (breaking elongation) of polyester fiber
Measurement was performed by the method described in JIS L1013: 1999 8.5. The tensile strength (breaking strength) is defined as fiber strength.

(5)全捲縮数(TC):
仮撚捲縮加工糸に0.044cN/dtexの張力をかけてカセ枠に巻取り、約3300dtexのカセを作る。得られたカセの一端に0.00177cN/dtex+0.177cN/dtexの荷重を負荷し、1分間経過後の長さ(L0)を測定する。次いで0.177cN/dtexの荷重を除去した状態で100℃の沸水中にて20分間処理する。沸水処理後、0.177cN/dtexの荷重を除去し、0.00177cN/dtexの荷重のみを負荷し24時間自由な状態で自然乾燥する。自然乾燥した試料に再び0.00177cN/dtex+0.177cN/dtexの荷重を負荷し、1分間経過後の長さ(L1)を測定する。次いで、0.177cN/dtexの荷重を除去し、1分間経過後の長さ(L2)を測定し、次式で全捲縮率TC(%)を算出する。この測定を10回実施し、その平均値で表した。
全捲縮率TC(%)=((L1−L2)/L0)×100
(5) Total number of crimps (TC):
A tension of 0.044 cN / dtex is applied to the false twist crimped yarn and wound on a cassette frame to make a cassette of about 3300 dtex. A load of 0.00177 cN / dtex + 0.177 cN / dtex is applied to one end of the obtained casserole, and the length (L0) after 1 minute is measured. Next, the substrate is treated in boiling water at 100 ° C. for 20 minutes with the load of 0.177 cN / dtex removed. After the boiling water treatment, the load of 0.177 cN / dtex is removed, and only the load of 0.00177 cN / dtex is applied, followed by natural drying in a free state for 24 hours. A load of 0.00177 cN / dtex + 0.177 cN / dtex is again applied to the naturally dried sample, and the length (L1) after 1 minute is measured. Next, the load of 0.177 cN / dtex is removed, the length (L2) after 1 minute is measured, and the total crimp rate TC (%) is calculated by the following equation. This measurement was performed 10 times and expressed as an average value.
Total crimp rate TC (%) = ((L1-L2) / L0) × 100

(6)目付
JIS L 1096の単位面積当たりの質量により目付を測定した。
(6) Mass per unit area The mass per unit area of JIS L 1096 was measured.

(7)カチオン可染性:
CATHILON BLUE CD−FRLH)0.2g/L、CD−FBLH0.2
g/L(いずれも保土ヶ谷化学株式会社製のカチオン可染性染料)、硫酸ナトリウム3g
/L、酢酸0.3g/Lの染色液中にて100℃(常圧)で1時間、浴比1:50で染色を行い、次式により染着率を求めた。
染着率=(OD−OD)/OD×100
OD:染色前の染液の576nmの吸光度
OD:染色後の染液の576nmの吸光度
本発明の実施例では、染着率98%以上のものを可染性良好と判断した。
(7) Cationic dyeability:
CATHILON BLUE CD-FRLH) 0.2 g / L, CD-FBLH 0.2
g / L (both cation dyeable dyes manufactured by Hodogaya Chemical Co., Ltd.), sodium sulfate 3g
/ L, dyed in a dyeing solution of 0.3 g / L of acetic acid at 100 ° C. (normal pressure) for 1 hour at a bath ratio of 1:50, and the dyeing rate was determined by the following formula.
Dyeing rate = (OD 0 −OD 1 ) / OD 0 × 100
OD 0 : Absorbance at 576 nm of the dye solution before dyeing OD 1 : Absorbance at 576 nm of the dye solution after dyeing In the examples of the present invention, those having a dyeing rate of 98% or more were judged to have good dyeability.

(8)染料移行汚染堅牢性
試験片(5cm×5cm)と、該試験片と同一の白布に検討布帛と添付片(5cm×5cm)とが接触するようにアルミ板2枚の間に挟み込んだ後、そのアルミ板の上に44.1N(4.5kgf)の荷重をかけ、恒温加熱処理機で120℃×80分の熱処理を行い、試験片から添付白布への染料移行状態を汚染用グレースケールで1〜5級に等級判定を行った。等級が高いほど、堅牢度が良好である。
(8) Fastness to dye transfer contamination The test piece (5 cm × 5 cm) and the white cloth same as the test piece were sandwiched between two aluminum plates so that the examined fabric and the attached piece (5 cm × 5 cm) were in contact with each other. After that, a load of 44.1 N (4.5 kgf) was applied on the aluminum plate, and heat treatment was performed at 120 ° C. for 80 minutes with a constant temperature heat treatment machine, and the state of dye transfer from the test piece to the attached white cloth was determined as a contamination gray. Grade determination was made on the scales 1-5. The higher the grade, the better the fastness.

(9)通気度
JIS L−1018に記載されたフラジール型通気性試験法により測定し、防風性の代用特性とした。
(9) Air permeability Measured by the Frazier type air permeability test method described in JIS L-1018, and used as a substitute property of windproof property.

(10)吸水性
JIS L−1907に記載された滴下法により測定する。
(10) Water absorption Measured by the dropping method described in JIS L-1907.

(11)トルク
試料(捲縮糸)約70cmを横に張り、中央部に0.18mN×表示テックス(2mg/de)の初荷重を吊るした後、両端を引揃える。
糸は残留トルクにより回転しはじめるが初荷重が静止するまでそのままの状態で持ち、撚糸を得る。こうして得た撚糸を17.64mN×表示テックス(0.2g/de)の荷重下で25cm長の撚数を検撚器で測定する。得られた撚数(T/25cm)を4倍にトルク(T/m)を算出する。
(11) Torque A sample (crimped yarn) of about 70 cm is stretched sideways, an initial load of 0.18 mN × display tex (2 mg / de) is hung at the center, and both ends are aligned.
The yarn begins to rotate due to the residual torque, but keeps the initial load until the initial load stops to obtain a twisted yarn. The twisted yarn having a length of 25 cm is measured with a tester under a load of 17.64 mN × display tex (0.2 g / de). The torque (T / m) is calculated by quadrupling the obtained twist number (T / 25 cm).

(12)インターレース度
交絡糸を8.82mN×表示テックス(0.1g/de)の荷重下で1mの長さをとり、除重後、室温で24時放縮後の結節点の数を読み取り、ケ/mで表示する。
(12) Degree of interlacing Take the length of 1m under the load of 8.82mN x display tex (0.1g / de) for the entangled yarn, and read the number of knots after freezing at room temperature after 24 hours , And display in ke / m.

(13)抗スナッギング性
JIS L 1058 D3法のカナノコ(15hrs)にて評価した。
(13) Anti-snugging property The anti-snugging property was evaluated with a banana (15 hrs) of JIS L 1058 D3 method.

(14)ストレッチ性
JIS L 1018によりストレッチ性(%)を測定した。
(14) Stretchability Stretchability (%) was measured according to JIS L 1018.

(15)ストレッチ性回復率
JIS L 1018によりストレッチ性回復率(%)を測定した。
(15) Stretch recovery rate The stretch recovery rate (%) was measured according to JIS L1018.

[実施例1]
テレフタル酸ジメチル100重量部、5−ナトリウムスルホイソフタル酸ジメチル4.1重量部とエチレングリコール60重量部の混合物に、酢酸マンガン0.03重量部、酢酸ナトリウム三水和物0.12重量部を添加し、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながらエステル交換反応を行った。その後、正リン酸0.03重量部を添加し、エステル交換反応を終了させた。
その後、反応生成物に三酸化アンチモン0.05重量部と5−スルホイソフタル酸テトラブチルホスホネート2.8重量部と水酸化テトラエチルアンモニウム0.3重量部とトリエチルアミン0.003重量部を添加して重縮合槽に移し、285℃まで昇温し、30Pa以下の高真空にて重縮合反応を行い、重縮合槽の攪拌機電力の値が所定電力に到達した段階若しくは所定時間を経過した段階で反応を終了させ、常法に従いチップ化した。
[Example 1]
Add 0.03 parts by weight of manganese acetate and 0.12 parts by weight of sodium acetate trihydrate to a mixture of 100 parts by weight of dimethyl terephthalate, 4.1 parts by weight of dimethyl 5-sodium sulfoisophthalate and 60 parts by weight of ethylene glycol. Then, the temperature was gradually raised from 140 ° C. to 240 ° C., and the ester exchange reaction was performed while distilling out the methanol produced as a result of the reaction out of the system. Thereafter, 0.03 part by weight of normal phosphoric acid was added to complete the transesterification reaction.
Thereafter, 0.05 parts by weight of antimony trioxide, 2.8 parts by weight of tetrabutylphosphonate 5-sulfoisophthalate, 0.3 parts by weight of tetraethylammonium hydroxide and 0.003 parts by weight of triethylamine were added to the reaction product. Move to the condensation tank, raise the temperature to 285 ° C., perform the polycondensation reaction at a high vacuum of 30 Pa or less, and perform the reaction when the value of the agitator power in the polycondensation tank reaches a predetermined power or when a predetermined time has elapsed. The chip was finished and chipped according to a conventional method.

このようにして得られたポリエステルチップを140℃、5時間乾燥後、紡糸温度285℃、巻取り速度400m/minで330dtex/36フィラメントの原糸を作り、次いで延伸同時仮撚加工により4.0倍に延伸して83dtex/36フィラメントの仮撚加工糸を得て、さらに常法に従い弛緩熱処理を実施した。次いで、該糸を経糸および緯糸に用いて平織組織の生機を織成した後、CATHILON BLUE CD−FRLH)0.2g/L、CD−FBLH0.2g/L(いずれも保土ヶ谷化学株式会社製のカチオン可染性染料)、硫酸ナトリウム3g/L、酢酸0.3g/Lの染色液中にて100℃(常圧)で1時間、浴比1:50で染色を行った。
得られた布帛は、カチオン染料が繊維にイオン結合されている為、染料移行汚染堅牢度が4−5級と良好であった。織物風合いも良好であった。共重合ポリエステルの製造条件と評価結果の詳細を表1に示した。
また、該織物を用いてスポーツ衣料(Tシャツ)を得て着用したところ優れた染色堅牢性を有するものであった。
The polyester chip thus obtained was dried at 140 ° C. for 5 hours, a raw yarn of 330 dtex / 36 filaments was prepared at a spinning temperature of 285 ° C. and a winding speed of 400 m / min, and then subjected to 4.0 simultaneous drawing and drawing. The yarn was drawn twice to obtain a false twisted yarn of 83 dtex / 36 filament, and further subjected to relaxation heat treatment according to a conventional method. Next, after weaving a plain weave fabric using the yarn as warp and weft, CATHILON BLUE CD-FRLH) 0.2 g / L, CD-FBLH 0.2 g / L (both cation available from Hodogaya Chemical Co., Ltd.) Dyeing dye), sodium sulfate 3 g / L, acetic acid 0.3 g / L, and dyeing was performed at 100 ° C. (normal pressure) for 1 hour at a bath ratio of 1:50.
The resulting fabric had good dye transfer contamination fastness of 4-5 grade because the cationic dye was ionically bonded to the fiber. The fabric texture was also good. Details of the production conditions and evaluation results of the copolyester are shown in Table 1.
Moreover, when sports clothing (T-shirt) was obtained and worn using the woven fabric, it had excellent dyeing fastness.

Figure 2010216019
Figure 2010216019

[比較例1]
基布としてポリエチレンテレフタレートマルチフィラメント仮撚捲縮加工糸84dtex/72filを経糸および緯糸に用い、分散染料(日本化薬(株)製、Kayalon Polyester Blue2R-SF)により青色に染色したポリエステル織物を用いた以外は、実施例1と同様に実施した。
得られた布帛は、分散染料が繊維にイオン結合されていない為、染料移行汚染堅牢度が1−2級と不良であった。
[Comparative Example 1]
Polyester woven fabric dyed in blue with disperse dye (Nippon Kayaku Co., Ltd., Kayalon Polyester Blue 2R-SF) was used as the base fabric using polyethylene terephthalate multifilament false twist crimped yarn 84dtex / 72fil for warp and weft. Except for this, the same procedure as in Example 1 was performed.
Since the disperse dye was not ion-bonded to the fiber, the obtained fabric had a poor dye transfer contamination fastness of 1-2.

[実施例2]
実施例1と同じポリエステルチップを用いて常法により紡糸、延伸したフィラメント糸(総繊度33dtex、フィラメント数:12、沸水収縮率:10%)をバック筬に供給し、実施例1と同じポリエステルチップを用いて実施例1と同様に、紡糸し仮撚捲縮加工を施した仮撚捲縮加工糸(総繊度56dtex、フィラメント数:72、捲縮率20%)をフロント筬に供給し、ゲージ数36により、ハーフ組織(バック:10/12、フロント:23/10による編方)で編成して経編物とし、該経編物を通常の精錬仕上げ工程に供給して編地(目付け:170g/m、編目密度:外層、内層ともに95コース/2.54cm、60ウエール/2.54cm)を得た。さらに、該編地を実施例1と同様にカチオン染料で染色工程を実施した。ただし、親水化剤(ポリエチレンテレフタレート−ポリエチレングリコール共重合体)と同浴処理を行うことにより、該編地に吸水性を付与した。
得られた布帛は、カチオン染料が繊維にイオン結合されている為、染料移行汚染堅牢度が4−5級と良好であった。また、該布帛において、95コース/2.54cm、60ウエール/2.54cm、目付170g/m、通気度15cc/cm・sec、吸水性1.0秒であった。
[Example 2]
A filament yarn (total fineness 33 dtex, number of filaments: 12, filament water shrinkage: 10%) spun and stretched by a conventional method using the same polyester chip as in Example 1 is supplied to the back bag, and the same polyester chip as in Example 1 In the same manner as in Example 1, a false twisted crimped yarn (total fineness 56 dtex, number of filaments: 72, crimp rate 20%) was supplied to the front collar using According to Equation 36, a warp knitted fabric is knitted with a half structure (back: 10/12, knitting method according to front: 23/10), and the warp knitted fabric is supplied to a normal refining finishing process to obtain a knitted fabric (mesh weight: 170 g / m 2 , stitch density: 95 courses / 2.54 cm for both outer layer and inner layer, 60 wale / 2.54 cm). Further, the knitted fabric was dyed with a cationic dye in the same manner as in Example 1. However, water absorption was imparted to the knitted fabric by performing the same bath treatment with a hydrophilizing agent (polyethylene terephthalate-polyethylene glycol copolymer).
The resulting fabric had good dye transfer contamination fastness of 4-5 grade because the cationic dye was ionically bonded to the fiber. The fabric had 95 courses / 2.54 cm, 60 wales / 2.54 cm, a basis weight of 170 g / m 2 , an air permeability of 15 cc / cm 2 · sec, and a water absorption of 1.0 second.

[実施例3]
実施例1と同じポリエステルチップを用いて通常の紡糸装置から280℃で溶融紡糸し、2800m/分の速度で引取り、延伸することなく巻取り、半延伸されたポリエステル糸条145dtex/72filを得た。
次いで、該ポリエステル糸条を用いて、延伸倍率1.6倍、仮撚数2500T/m(S方向)、ヒーター温度180℃、糸速350m/分の条件で同時延伸仮撚捲縮加工を行った。
また、前記ポリエステル糸条を用いて延伸倍率0.8倍、仮撚数2500T/m(Z方向)、ヒーター温度180℃、糸速350m/分の条件で同時延伸仮撚捲縮加工を行った。
次いで、これらS方向のトルクを有する仮撚捲縮加工糸とZ方向の仮撚捲縮加工糸とを合糸して空気交絡処理を行い、複合仮撚捲縮加工糸(167dtex/144fil、捲縮率12%、トルク0T/m)を得た。空気交絡処理は、インターレースノズルを用い、オーバーフィード率1.0%、圧空圧0.3MPa(3kgf/cm)で50個/mの交絡を付与した。
次いで、該複合仮撚捲縮加工糸を用いて、28Gシングル丸編機を使用して天竺組織の丸編地を編成した。そして、実施例1と同様に染色加工を行い、ファイナルセット工程にて吸汗加工を施した。
[Example 3]
Using the same polyester chip as in Example 1, melt spinning at 280 ° C. from a normal spinning device, taking up at a speed of 2800 m / min, winding up without stretching, and obtaining a semi-stretched polyester yarn 145 dtex / 72fil. It was.
Next, using the polyester yarn, simultaneous drawing false twist crimping is performed under the conditions of a draw ratio of 1.6 times, a false twist number of 2500 T / m (S direction), a heater temperature of 180 ° C., and a yarn speed of 350 m / min. It was.
Further, using the polyester yarn, simultaneous drawing false twist crimping was performed under the conditions of draw ratio 0.8 times, false twist number 2500 T / m (Z direction), heater temperature 180 ° C., yarn speed 350 m / min. .
Next, the false twisted crimped yarn having the torque in the S direction and the false twisted crimped yarn in the Z direction are combined to perform an air entanglement treatment to obtain a composite false twisted crimped yarn (167 dtex / 144 fil, A reduction ratio of 12% and a torque of 0 T / m) were obtained. In the air entanglement process, an interlace nozzle was used, and an entanglement of 50 pieces / m was applied at an overfeed rate of 1.0% and a pneumatic pressure of 0.3 MPa (3 kgf / cm 2 ).
Next, using the composite false twist crimped yarn, a round knitted fabric with a tengu structure was knitted using a 28G single circular knitting machine. And dyeing | staining process was performed similarly to Example 1, and the sweat absorption process was given in the final setting process.

かくして得られた編地において、目付け135g/m、43コース/2.54cm、41ウエール/2.54cm、スナッギング性3−4級、ヨコストレッチ性85%、ヨコ方向のストレッチ性回復率95%、風合い「ソフト」であり、ソフトな風合い、ストレッチ性、抗スナッギング性に優れていた。また、得られた布帛は、カチオン染料が繊維にイオン結合されている為、染料移行汚染堅牢度が4−5級と良好であった。
また、かかる編地を用いてTシャツ(スポーツ衣料)を縫製し着用したところ、ソフトな風合い、ストレッチ性、抗スナッギング性に優れていた。
In the knitted fabric thus obtained, the basis weight is 135 g / m 2 , 43 course / 2.54 cm, 41 wale / 2.54 cm, snuggling 3-4 grade, horizontal stretch 85%, horizontal stretch recovery 95% The texture was “soft” and had excellent soft texture, stretchability and anti-snugging properties. Moreover, since the cationic fabric was ion-bonded to the fiber, the obtained fabric had a fastness to dye migration contamination of 4-5 grade.
Further, when a T-shirt (sports clothing) was sewn and worn using such a knitted fabric, it was excellent in soft texture, stretchability and anti-snugging property.

本発明によれば、ストレッチ性を有するだけでなく、優れた染色堅牢性をも有する重合ポリエステル繊維布帛の製造方法、および該製造方法により得られた共重合ポリエステル繊維布帛およびスポーツ衣料が提供され、その工業的価値は極めて大である。   According to the present invention, there are provided a method for producing a polymerized polyester fiber fabric that has not only stretchability but also excellent dyeing fastness, and a copolymerized polyester fiber fabric and sports clothing obtained by the production method, Its industrial value is extremely large.

Claims (15)

共重合ポリエステル繊維からなる仮撚捲縮加工糸を含む布帛に染色加工を施す共重合ポリエステル繊維布帛の製造方法であって、
前記の共重合ポリエステル繊維が、共重合成分として、酸成分中にスルホイソフタル酸の金属塩(A)および下記式(I)で表される化合物(B)を下記数式(1)および(2)を同時に満足するよう含有し、かつ該共重合ポリエステルのガラス転移温度が70〜85℃の範囲内にあり、かつ該共重合ポリエステルの固有粘度が0.55〜1.00dL/gの範囲内にある共重合ポリエステルからなる共重合ポリエステル繊維であることを特徴とする共重合ポリエステル繊維布帛の製造方法。
Figure 2010216019
[上記式中、Rは水素原子又は炭素数1〜10個のアルキル基を表し、Xは4級ホスホニ
ウムイオン又は4級アンモニウムイオンを表す。]
3.0≦A+B≦5.0 (1)
0.2≦B/(A+B)≦0.7 (2)
[上記数式中、Aは共重合ポリエステルを構成する全酸成分を基準とするスルホイソフタ
ル酸の金属塩(A)の共重合量(モル%)、Bは共重合ポリエステルを構成する全酸成分
を基準とする上記式(I)で表される化合物(B)の共重合量(モル%)を表す。]
A method for producing a copolymerized polyester fiber fabric, which comprises dyeing a fabric containing false-twist crimped yarn made of a copolymerized polyester fiber,
The copolymerized polyester fiber has, as a copolymer component, a metal salt (A) of sulfoisophthalic acid and a compound (B) represented by the following formula (I) in the acid component represented by the following formulas (1) and (2): At the same time, and the glass transition temperature of the copolyester is in the range of 70 to 85 ° C., and the intrinsic viscosity of the copolyester is in the range of 0.55 to 1.00 dL / g. A method for producing a copolyester fiber fabric, which is a copolyester fiber comprising a copolyester.
Figure 2010216019
[In the above formula, R represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and X represents a quaternary phosphonium ion or a quaternary ammonium ion. ]
3.0 ≦ A + B ≦ 5.0 (1)
0.2 ≦ B / (A + B) ≦ 0.7 (2)
[In the above formula, A is the copolymerization amount (mol%) of the metal salt of sulfoisophthalic acid (A) based on the total acid component constituting the copolyester, and B is the total acid component constituting the copolyester. This represents the copolymerization amount (mol%) of the compound (B) represented by the above formula (I) as a reference. ]
前記共重合ポリエステル中のジエチレングリコール含有量が2.5重量%以下である、請求項1に記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolyester fiber fabric according to claim 1, wherein the diethylene glycol content in the copolyester is 2.5% by weight or less. 前記スルホイソフタル酸の金属塩(A)が、5−ナトリウムスルホイソフタル酸または5−ナトリウムスルホイソフタル酸ジメチルである、請求項1または請求項2に記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolymerized polyester fiber fabric according to claim 1 or 2, wherein the metal salt (A) of sulfoisophthalic acid is 5-sodium sulfoisophthalic acid or dimethyl 5-sodium sulfoisophthalate. 上記式(I)で表される化合物(B)が、5−スルホイソフタル酸テトラブチルホスホニウムまたは5−スルホイソフタル酸ジメチルテトラブチルホスホニウムである、請求項1〜3のいずれかに記載の共重合ポリエステル繊維布帛の製造方法。   The copolyester according to any one of claims 1 to 3, wherein the compound (B) represented by the formula (I) is tetrabutylphosphonium 5-sulfoisophthalate or dimethyltetrabutylphosphonium 5-sulfoisophthalate. A method for producing a fiber fabric. 前記仮撚捲縮加工糸の引張り強度が3.0cN/dtex以上である、請求項1〜4のいずれかに記載の共重合ポリエステル繊維布帛の製造方法。   The manufacturing method of the copolyester fiber fabric in any one of Claims 1-4 whose tensile strength of the said false twist crimped yarn is 3.0 cN / dtex or more. 布帛に染色加工を施す際に、カチオン染料を用いて常圧で染色加工を行う、請求項1〜5のいずれかに記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolymerized polyester fiber fabric according to any one of claims 1 to 5, wherein when the fabric is dyed, the dyeing is performed using a cationic dye at normal pressure. 前記仮撚捲縮加工糸の単糸繊度が0.2〜3.0dtexの範囲内である、請求項1〜6のいずれかに記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolymerized polyester fiber fabric according to any one of claims 1 to 6, wherein a single yarn fineness of the false twist crimped yarn is in a range of 0.2 to 3.0 dtex. 前記仮撚捲縮加工糸の捲縮率が3%以上である、請求項1〜7のいずれかに記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolymerized polyester fiber fabric according to any one of claims 1 to 7, wherein a crimp rate of the false twist crimped yarn is 3% or more. 前記仮撚捲縮加工糸として、S方向のトルクを有する仮撚捲縮加工糸とZ方向のトルクを有する仮撚捲縮加工糸との複合糸が前記布帛に含まれる、請求項1〜8のいずれかに記載の共重合ポリエステル繊維布帛の製造方法。   A composite yarn of a false twist crimped yarn having torque in the S direction and a false twist crimped yarn having torque in the Z direction is included in the fabric as the false twist crimped yarn. The manufacturing method of the copolyester fiber fabric in any one of. 前記複合糸のトルクが30T/m以下である、請求項9に記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolyester fiber fabric according to claim 9, wherein the torque of the composite yarn is 30 T / m or less. 前記布帛が編地である、請求項1〜10のいずれかに記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolyester fiber fabric according to any one of claims 1 to 10, wherein the fabric is a knitted fabric. 編地の密度が30〜125コース/2.54cmかつ30〜125ウエール/2.54cmである、請求項11に記載の共重合ポリエステル繊維布帛の製造方法。   The method for producing a copolymerized polyester fiber fabric according to claim 11, wherein the density of the knitted fabric is 30 to 125 courses / 2.54 cm and 30 to 125 wales / 2.54 cm. 請求項1〜12のいずれかに記載の製造方法により得られた共重合ポリエステル繊維布帛。   A copolymerized polyester fiber fabric obtained by the production method according to claim 1. タテ方向および/またはヨコ方向のストレッチ性が50%以上である、請求項13に記載の共重合ポリエステル繊維布帛。   The copolyester fiber fabric according to claim 13, wherein the stretchability in the vertical direction and / or the horizontal direction is 50% or more. 請求項13または請求項14に記載の共重合ポリエステル繊維布帛を用いてなるスポーツ衣料。   A sports apparel comprising the copolymerized polyester fiber fabric according to claim 13 or 14.
JP2009061217A 2009-03-13 2009-03-13 Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear Pending JP2010216019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061217A JP2010216019A (en) 2009-03-13 2009-03-13 Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061217A JP2010216019A (en) 2009-03-13 2009-03-13 Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear

Publications (1)

Publication Number Publication Date
JP2010216019A true JP2010216019A (en) 2010-09-30

Family

ID=42975145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061217A Pending JP2010216019A (en) 2009-03-13 2009-03-13 Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear

Country Status (1)

Country Link
JP (1) JP2010216019A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188450A (en) * 2015-03-30 2016-11-04 美津濃株式会社 Sportswear
JP2018066077A (en) * 2016-10-18 2018-04-26 帝人フロンティア株式会社 Knitted fabric, manufacturing method of the same, and shirt
KR20180062863A (en) * 2016-12-01 2018-06-11 주식회사 휴비스 Cationic-dyeable Polyester composite yarn with excellent elasticity and Method Preparing Same
WO2018198846A1 (en) * 2017-04-25 2018-11-01 帝人フロンティア株式会社 Fabric and fiber product
JP2019173223A (en) * 2018-03-29 2019-10-10 帝人フロンティア株式会社 Side cloth
JPWO2020241353A1 (en) * 2019-05-31 2020-12-03

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172425A (en) * 1987-12-28 1989-07-07 Teijin Ltd Preparation of modified polyester
JP2006283203A (en) * 2005-03-31 2006-10-19 Teijin Fibers Ltd Cation-dyeable special cross section false-twisted finished yarn and method for producing the same
JP2007291170A (en) * 2006-04-21 2007-11-08 Teijin Fibers Ltd Polyester having excellent fiber-forming property and fiber comprising the same
WO2008001920A1 (en) * 2006-06-28 2008-01-03 Teijin Fibers Limited Knit fabric and sports garment
JP2008174871A (en) * 2007-01-19 2008-07-31 Teijin Fibers Ltd Cation-dyeable ultrafine combined filament yarn
JP2008223148A (en) * 2007-03-08 2008-09-25 Teijin Fibers Ltd Method for producing ultra fine false-twisted yarn dyeable with cation dye at atmospheric pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172425A (en) * 1987-12-28 1989-07-07 Teijin Ltd Preparation of modified polyester
JP2006283203A (en) * 2005-03-31 2006-10-19 Teijin Fibers Ltd Cation-dyeable special cross section false-twisted finished yarn and method for producing the same
JP2007291170A (en) * 2006-04-21 2007-11-08 Teijin Fibers Ltd Polyester having excellent fiber-forming property and fiber comprising the same
WO2008001920A1 (en) * 2006-06-28 2008-01-03 Teijin Fibers Limited Knit fabric and sports garment
JP2008174871A (en) * 2007-01-19 2008-07-31 Teijin Fibers Ltd Cation-dyeable ultrafine combined filament yarn
JP2008223148A (en) * 2007-03-08 2008-09-25 Teijin Fibers Ltd Method for producing ultra fine false-twisted yarn dyeable with cation dye at atmospheric pressure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188450A (en) * 2015-03-30 2016-11-04 美津濃株式会社 Sportswear
JP2018066077A (en) * 2016-10-18 2018-04-26 帝人フロンティア株式会社 Knitted fabric, manufacturing method of the same, and shirt
KR20180062863A (en) * 2016-12-01 2018-06-11 주식회사 휴비스 Cationic-dyeable Polyester composite yarn with excellent elasticity and Method Preparing Same
KR101976154B1 (en) 2016-12-01 2019-05-07 주식회사 휴비스 Cationic-dyeable Polyester composite yarn with excellent elasticity and Method Preparing Same
WO2018198846A1 (en) * 2017-04-25 2018-11-01 帝人フロンティア株式会社 Fabric and fiber product
CN110573666A (en) * 2017-04-25 2019-12-13 帝人富瑞特株式会社 Fabric and textile product
JPWO2018198846A1 (en) * 2017-04-25 2020-05-14 帝人フロンティア株式会社 Fabric and textile products
JP2019173223A (en) * 2018-03-29 2019-10-10 帝人フロンティア株式会社 Side cloth
JP7160544B2 (en) 2018-03-29 2022-10-25 帝人フロンティア株式会社 side ground
JPWO2020241353A1 (en) * 2019-05-31 2020-12-03
WO2020241353A1 (en) * 2019-05-31 2020-12-03 帝人フロンティア株式会社 Composite yarn, fabric, and fiber product
JP7284257B2 (en) 2019-05-31 2023-05-30 帝人フロンティア株式会社 Composite yarns and fabrics and textile products

Similar Documents

Publication Publication Date Title
TWI339225B (en) Polyester combined yarn and woven or knitted fabric containing same
JP5155162B2 (en) Knitted fabric and sports clothing
US9334608B2 (en) Polyester fiber, method for producing the same, cloth, textile product, and polyester formed article
KR100537872B1 (en) Flame-retardant polyester fiber, woven or knitted flame-retardant polyester fiber fabric, nonwoven flame-retardant polyester fiber fabric, and woven or knitted suede fabric
JP2010216019A (en) Method for producing copolyester fiber fabric, copolyester fiber fabric, and sportswear
JP2010242240A (en) Deodorant fabric and fiber product
JP2010222714A (en) Fabric, dyed fabric and fiber product
JP2012112055A (en) Core-sheath type polyester conjugate fiber
JP2010007191A (en) Ultrafine drawn fiber having antistatic property and normal-pressure cation-dyeable property, and method for producing the same
JP2006283203A (en) Cation-dyeable special cross section false-twisted finished yarn and method for producing the same
JP2011017091A (en) Deodorant fiber structure and fiber product
JP2012017530A (en) Core-sheath type polyester conjugate fiber
JP2008174871A (en) Cation-dyeable ultrafine combined filament yarn
JP2010255128A (en) Circular knitted fabric and fiber product
JP2006124880A (en) Polyester blended yarn and polyester fabric
JP5260196B2 (en) Fabrics and textile products
JP2010196208A (en) Method for producing copolyester fiber fabric and copolyester fiber fabric and fiber product
JP2010265560A (en) Water-absorbing fabric and fiber product
JP7244319B2 (en) Fabric, its manufacturing method, and textile products
JP3583402B2 (en) Polyester fiber
JP2010047882A (en) Method for producing dyed copolymer polyester fiber structure, and dyed copolymer polyester fiber structure, and textile product
JP2010275666A (en) Fabric having protrusion and fiber product
JP2009280943A (en) Water-repellent polyester fiber
JP2010180504A (en) Method for producing copolymerized polyester fiber textile, copolymerized polyester fiber textile and textile product
JP2006307368A (en) Stretch fabric having stretch ratio changeable with temperature and textile product

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130409