JPS63150710A - Method for evading collision in autonomous unmanned vehicle system - Google Patents

Method for evading collision in autonomous unmanned vehicle system

Info

Publication number
JPS63150710A
JPS63150710A JP61299605A JP29960586A JPS63150710A JP S63150710 A JPS63150710 A JP S63150710A JP 61299605 A JP61299605 A JP 61299605A JP 29960586 A JP29960586 A JP 29960586A JP S63150710 A JPS63150710 A JP S63150710A
Authority
JP
Japan
Prior art keywords
vehicle
collision
unmanned
unmanned vehicle
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61299605A
Other languages
Japanese (ja)
Other versions
JP2661023B2 (en
Inventor
Teppei Yamashita
哲平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP61299605A priority Critical patent/JP2661023B2/en
Publication of JPS63150710A publication Critical patent/JPS63150710A/en
Application granted granted Critical
Publication of JP2661023B2 publication Critical patent/JP2661023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To evade the collision of unmanned vehicles in advance entirely in dependently of a central station by deciding the operation to evade the collision and executing it while the information are being exchanged between unmanned vehicles having a possibility of collision. CONSTITUTION:Other vehicle detectors 7A, 7B detecting the access of other vehicle and a communication equipment 3 as a communication means exchanging the information mutually to the unmanned vehicles 1A, 1B are provided respectively. At first, when the unmanned vehicle 1A detects the access of the unmanned vehicle 1B, its own identification number and the information relating to the present position and the traveling direction are sent to the vehicle 1B. On the other hand, the vehicle 1B discriminates the presence of the danger of collision based on the sent information and the vehicle 1B discriminating the presence of the danger of collision replies the information relating to its own identification number, present position and traveling direction. Then the unmanned vehicle of the master side decides the evading and executes it mutually. Thus, the collision of the unmanned vehicle is evaded entirely independently of the central station 2.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複数の自立型無人車が、自ら現在位置を認
識しつつ、内蔵した地図情報を頼りに、作業要求の発生
した作業点に移動する自立型無人車システムにおいて、
自立型無人車同士の衝突を未然に回避することができる
衝突回避方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention enables a plurality of self-contained unmanned vehicles to recognize their current positions and move to a work point where a work request has occurred, relying on built-in map information. In a mobile autonomous unmanned vehicle system,
The present invention relates to a collision avoidance method that can prevent collisions between autonomous unmanned vehicles.

[従来の技術] 現在、自立型無人車の開発が盛んに行なわれているが、
この種の無人車システムとしては、第6図に示すように
複数の無人車A、B、・・と、これらの無人車A、B、
・・・を統括制御する1つの中央局Cとからなるものが
代表的である。そして、3無人車A、B、・・・は中央
局Cの指示に従い、各ノード(a過点)Nl−N9を経
由して、作業要求が発生した作業点まで走行し、所要の
作業を行う。中央局Cは無人車A、B、・・・の移動領
域の地図情報を管理するとともに、すべての無人車A、
B、・・・の現在位置や作業中か否かなどの状態を監視
し、無線などの通信手段により各無人車A、B、・・・
と交信しながら作業指示を行う。
[Conventional technology] Currently, autonomous unmanned vehicles are being actively developed.
As shown in Fig. 6, this type of unmanned vehicle system includes a plurality of unmanned vehicles A, B, etc., and these unmanned vehicles A, B,
A typical example is one consisting of one central station C that centrally controls... Then, the three unmanned vehicles A, B, ... follow the instructions from the central station C, travel to the work point where the work request occurred via each node (point a) Nl-N9, and perform the required work. conduct. Central station C manages the map information of the movement area of unmanned vehicles A, B, etc., and also manages the map information of the movement area of unmanned vehicles A, B, etc.
It monitors the current position of B,... and whether it is working or not, and communicates with each unmanned vehicle A, B,... by communication means such as wireless.
Give work instructions while communicating with the staff.

例えば、第6図に示すように、ノードN9に位置する作
業点において作業要求が発生すると、中央局Cは現在作
業を行っていない無人車の中から、ノードN9に行くの
に最適な無人車を探す。ここで、無人車AがノードN1
とN2の間で待機中であった場合、この無人車Aに対し
て、ノードN9へ向かうように指令を与える。すると、
無人車Aは、自ら内蔵した地図情報に基づいてノードN
9までの経路を探索し、例えば、ノードN2−N3→N
6→N9の経路を決定する。そして、この経路に沿って
、自ら現在位置を認識しつつ、内蔵した地図情報を頼り
に、ノードN9まで走行する。
For example, as shown in FIG. 6, when a work request occurs at a work point located at node N9, the central office C selects the best unmanned vehicle to go to node N9 from among the unmanned vehicles that are not currently performing work. Search for. Here, unmanned vehicle A is at node N1
If the unmanned vehicle A is waiting between node N2 and N2, a command is given to the unmanned vehicle A to go to node N9. Then,
Unmanned vehicle A locates node N based on its own built-in map information.
9, for example, node N2-N3→N
6→N9 route is determined. The vehicle then travels along this route to node N9 while recognizing its current location and relying on the built-in map information.

:発明が解決しようとする問題点コ ところで、上述した自立型無人車システムにおいては、
中央局Cは各無人車A、B、・・・に対して、向かうべ
きノードを指定するだけであり、走行経路に関しては、
各無人車A、B、・・・が独自に決定する。その理由は
、現在作業をしていない全部の無人車A、B、・・・に
ついて、−向かうべきノードまでの経路を中央局Cが探
索していたのでは、中央局Cが統括する無人車A、B、
・・・の台数に比例して探索時間が反引いてしまい、迅
速な処理ができなくなるからである。しかしながら、各
無人車A、B、・・・の走行経路を中央局Cが管理せず
、各無人車A。
: Problems to be solved by the invention By the way, in the above-mentioned autonomous unmanned vehicle system,
The central station C only specifies the node to which each unmanned vehicle A, B, etc. should go, and as for the travel route,
Each unmanned vehicle A, B, . . . determines independently. The reason for this is that the central station C was searching for routes to the nodes to which all unmanned vehicles A, B, etc. that are not currently working are headed. A, B,
This is because the search time decreases in proportion to the number of devices, making it impossible to perform quick processing. However, the central station C does not manage the driving routes of each unmanned vehicle A, B, . . .

B、・・が独自に決定する方式では、何等かの方法で、
無人車同士の衝突を未然に回避させなければならない。
In the method that B,... decides independently, in some way,
Collisions between unmanned vehicles must be avoided.

例えば、第6図に示すように、ノードN5−N2−N3
の経路で走行中の無人車Bが存在している場合に、無人
車AがノードN 2−N 5−N 6−N 9の経路で
走行を開始すると、両者は、ノードN2とN5の間で衝
突してしまうことになる。
For example, as shown in FIG.
If there is an unmanned vehicle B traveling on the route of , and unmanned vehicle A starts traveling on the route of nodes N 2-N 5-N 6-N 9, both of them will be traveling between nodes N2 and N5. This will result in a collision.

この発明は、このような背景の下になされたもので、中
央局に全く依存仕ずに、自立型無人車同士の衝突を未然
に回避することができる、自立型無人車システムにおけ
る衝突回避方法を提供することを目的とする。
This invention was made against this background, and provides a collision avoidance method in an autonomous unmanned vehicle system that can prevent collisions between autonomous unmanned vehicles without relying on a central station at all. The purpose is to provide

[問題点を解決するための手段] 上記問題点を解決するためにこの発明は、各無人車に、
相互に情報を交換する通信手段と、その他の無人車が接
近してきたことを検出する検出手段とを各々設け、前記
各無人車は、前記検出手段によってその他の無人車の接
近を検出した場合、自らの識別番号と現在位置と走行方
向に関する情報を前記通信手段を介して全ての無人車へ
送信する一方、前記各無人車は、送信されてきた情報に
基づいて、自らが衝突する危険性が有るか否かを判断し
、衝突する危険性が有ると判断した無人車は自らの識別
番号と現在位置と走行方向に関する情報を前記通信手段
を介して返答し、以降、衝突する危険性のある無人車同
士で情報を交換しつつ衝突を回避するための動作を決定
し、互いに実行することを特徴としている。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides each unmanned vehicle with:
A communication means for mutually exchanging information and a detection means for detecting the approach of another unmanned vehicle are provided, and when each of the unmanned vehicles detects the approach of another unmanned vehicle by the detection means, While information regarding its own identification number, current location, and driving direction is transmitted to all unmanned vehicles via the communication means, each unmanned vehicle determines whether there is a risk of collision based on the transmitted information. An unmanned vehicle that has determined that there is a risk of collision will respond via the communication means with information regarding its own identification number, current location, and direction of travel, and will thereafter determine whether there is a risk of collision. The system is characterized by the fact that unmanned vehicles exchange information, decide on actions to avoid a collision, and mutually execute the actions.

[作用コ 上記構成によれば、衝突の危険性が発生した場合、その
衝突に関与する恐れのある無人車同士が互いに必要な情
報を交換し合い、これにより、無人車同士が自ら衝突を
回避する動作を実行する。
[Function] According to the above configuration, when a risk of collision occurs, unmanned vehicles that may be involved in the collision exchange necessary information with each other, thereby allowing the unmanned vehicles to avoid the collision by themselves. Execute the action.

このため、中央局に全く依存せずに、無人車同士の衝突
が未然に回避される。
Therefore, collisions between unmanned vehicles can be avoided without depending on the central station at all.

[実施例コ 以下、図面を参照して、本発明の一実施例を説明する。[Example code] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例の構成を示すブロック図で
ある。なお、この実施例においては、説明を簡略化する
ために、2台の無人車IAおよびlB(以下、A車およ
びB車と略称する)と、中央局2とからなる自立型無人
車システムを例にして説明する。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In this embodiment, in order to simplify the explanation, an autonomous unmanned vehicle system consisting of two unmanned vehicles IA and IB (hereinafter abbreviated as A vehicle and B vehicle) and a central station 2 will be described. Let me explain using an example.

第1図において、中央局2は、CPU(中央処理装置)
、メモリ、および通信装置などから構成されており、A
車およびB車の現在位置や作業中か否かなどの状態を常
時把握している。また、各作業点と結ばれ、作業点から
の作業要求を受は入れ、この情報をA車およびB車に対
して無線により伝送するようになっている。
In FIG. 1, the central station 2 is a CPU (central processing unit)
It consists of , memory, communication equipment, etc.
The status of the car and Car B is always known, such as the current location and whether or not work is underway. It is also connected to each work point, accepts work requests from the work points, and transmits this information to cars A and B by radio.

A車およびB車は、通信装置3と、指令部4と、走行部
5と、地図メモリ6と、他車検出器7A(7B)とから
構成されている。また、走行部5は、走行制御部8と、
左右駆動輪9L、9Rと、左右駆動輪9L、9Rを各々
回転駆動するモータIOL。
Car A and car B are composed of a communication device 3, a command section 4, a running section 5, a map memory 6, and an other vehicle detector 7A (7B). Further, the running unit 5 includes a running control unit 8,
Left and right drive wheels 9L and 9R, and a motor IOL that rotationally drives the left and right drive wheels 9L and 9R, respectively.

10Rと、左右駆動輪9L、9Rの回転数を各々検出す
るパルスエンコーダIIL、IIRと、左右に向かって
超音波を発射するとともに左右の側壁で反射してきた超
音波を受信する送受信器12L、12Rと、超音波伝播
時間に基づいて左右の側壁までの距離を測定する超音波
測距部13と、軌道修正部14とから構成されている。
10R, pulse encoders IIL and IIR that detect the rotational speed of the left and right drive wheels 9L and 9R, respectively, and transmitter/receivers 12L and 12R that emit ultrasonic waves toward the left and right and receive the ultrasonic waves reflected from the left and right side walls. , an ultrasonic distance measuring section 13 that measures the distance to the left and right side walls based on the ultrasonic propagation time, and a trajectory correction section 14.

上記地図メモリ6には、各ノードの座標や、各ノードを
結ぶ走行経路上から左右の側壁までの距離等に関する地
図データが予め記憶されている。
The map memory 6 stores in advance map data regarding the coordinates of each node, the distance from the travel route connecting each node to the left and right side walls, and the like.

また、軌道修正部14は、超音波測距部13から得られ
た測距データと、地図メモリ6から読み出された地図デ
ータとを逐一比較し、この比較結果に基づいて修正デー
タを走行制御部8へ供給するようになっている。
In addition, the trajectory correction unit 14 compares the distance measurement data obtained from the ultrasonic distance measurement unit 13 and the map data read from the map memory 6 point by point, and uses the correction data to control the travel based on the comparison result. 8.

走行制御部8は、通常、指令部4から指示された走行コ
マンド(進行距離、速度、回転角度、走行後到達するノ
ード番−号などからなる)に基づき、自らの走行装置の
形態に適した走行パターン(直進やカーブなどの軌跡パ
ターンおよび速度パターン)を作成し、この走行パター
ンと修正データとに基づいて、左右駆動輪9L、9Rの
回転を各々制御する。また、走行制御部8は、後述する
衝突回避動作時において、指令部4から直接走行制御コ
マンドが供給された場合、このコマンドを優先的に実行
する。この場合、走行制御部8は通常とは異なり、指令
部4から指示された通りに駆動輪9L、9Rの回転を制
御し、これにより、指令部4が、直接的に走行を制御す
ることになる。
The travel control unit 8 normally uses a travel command (consisting of travel distance, speed, rotation angle, node number to be reached after travel, etc.) instructed by the command unit 4 to create a system suitable for the form of its own travel device. A travel pattern (trajectory pattern and speed pattern such as straight travel and curves) is created, and the rotations of the left and right drive wheels 9L and 9R are respectively controlled based on this travel pattern and correction data. Furthermore, when a travel control command is directly supplied from the command unit 4 during a collision avoidance operation to be described later, the travel control unit 8 executes this command with priority. In this case, unlike usual, the driving control unit 8 controls the rotation of the drive wheels 9L and 9R as instructed by the command unit 4, so that the command unit 4 directly controls the driving. Become.

A車およびB車に各々搭載された他車検出器7Aおよび
7Bは、所定周波数(例えば、100kHz程度)の無
指向性の識別電波を発射する送信器と、第2図に示す半
径raおよびrbの範囲内に存在する相手側の送信器か
ら発射された識別電波を受信する受信器と、第3図に示
すように、送信器と受信器を交互に動作させるとともに
、受信器が識別電波を検出した場合に、検出信号を出力
する検出回路とから構成されている。この場合、他車検
出器7A側の送信器が動作する送信期間TAと受信器が
動作する受信期間RAは、他車検出器7B側の送信器が
動作する送信期間TBと受信器が動作する受信期間RB
と互いに異なるように適宜設定されている。これにより
、第2図に示すように、A車とB車が、半径raまたは
rbの検出範囲内に接近した場合、他車検出器7Aと7
Bは互いに相手側が発射した識別電波を検出し、検出信
号を指令部4へ供給するようになっている。そして、上
記半径raとrbの検出範囲は、各送信器の出力や各受
信器の感度の調整具合等によって若干具なるが、約3m
程度に設定されている。
Other vehicle detectors 7A and 7B mounted on cars A and B respectively include a transmitter that emits omnidirectional identification radio waves of a predetermined frequency (for example, about 100 kHz), and a transmitter that emits omnidirectional identification radio waves of a predetermined frequency (for example, about 100 kHz), and a transmitter that emits omnidirectional identification radio waves of a predetermined frequency (for example, about 100 kHz), and a transmitter that emits omnidirectional identification radio waves of a predetermined frequency (for example, about 100 kHz), and a transmitter that emits omnidirectional identification radio waves of a predetermined frequency (for example, about 100 kHz). As shown in Figure 3, the transmitter and receiver are operated alternately, and the receiver receives the identification radio waves. and a detection circuit that outputs a detection signal when detected. In this case, the transmission period TA during which the transmitter on the other vehicle detector 7A side operates and the reception period RA during which the receiver operates are the same as the transmission period TB during which the transmitter on the other vehicle detector 7B side operates and the receiver operates. Reception period RB
and are appropriately set to be different from each other. As a result, as shown in FIG. 2, when vehicles A and B approach within the detection range of radius ra or rb, other vehicle detectors 7A and
B detects identification radio waves emitted by the other party, and supplies a detection signal to the command unit 4. The detection range of the radii ra and rb above varies slightly depending on the output of each transmitter and the sensitivity adjustment of each receiver, but is approximately 3 m.
It is set to about.

一方、指令部4は通信装置3を介して、無線により中央
局2および他車の指令部4と相互に接続され、ポーリン
グ/セレクティング方式により、各種情報の交換を行う
。そして、指令部4は、中央局2から作業要求が発生し
た作業点のノードが指示されると、地図メモリ6に記憶
された地図データを参照して最適な走行経路を探索し、
目的のノードに向かう際に通過するノードを決定する。
On the other hand, the command unit 4 is wirelessly connected to the central station 2 and the command unit 4 of another vehicle via the communication device 3, and exchanges various information using a polling/selecting method. When the command unit 4 is instructed from the central station 2 to the node of the work point where the work request has occurred, the command unit 4 refers to the map data stored in the map memory 6 and searches for an optimal travel route.
Determine which nodes to pass through on the way to the destination node.

さらに、決定した各ノードを結ぶ走行経路に沿って移動
するように、走行コマンドを順次作成して走行部5へ与
える。また、指令部4は、他車検出器7A(7B)から
検出信号が供給された場合、後述する衝突回避動作を開
始し、直接走行制御コマンドを走行部5へ与えて、駆動
輪9L、9Rの回転を直接制御する。
Further, travel commands are sequentially created and given to the travel unit 5 so that the robot moves along the travel route connecting each determined node. Further, when a detection signal is supplied from the other vehicle detector 7A (7B), the command unit 4 starts a collision avoidance operation to be described later, directly gives a travel control command to the travel unit 5, and sends a driving wheel 9L, 9R. Directly control the rotation of

次に、上述した一実施例において、第5図に示すように
、A車とB車がノードN2とN5の間で、互いに向かい
あった状態で接近した場合の動作について説明する。
Next, an explanation will be given of the operation in the above-described embodiment when cars A and B approach each other between nodes N2 and N5 while facing each other, as shown in FIG.

ここでまず、第3図に示す時刻T1において、A車の他
車検出器7Aの方か先に、他車(この場合、2台のシス
テムなので他車は必然的にB車となるか、3台以上の場
合は、不特定の車となる)の識別電波を検出し、検出信
号を指令部4へ出力したとする。すると、A車の指令部
4は、衝突回避動作を開始する。
First, at time T1 shown in FIG. 3, the other vehicle detector 7A of vehicle A first detects the other vehicle (in this case, since there are two systems, the other vehicle will inevitably be vehicle B, or In the case of three or more vehicles, it is assumed that an identification radio wave of an unspecified vehicle is detected and a detection signal is output to the command unit 4. Then, the command unit 4 of car A starts collision avoidance operation.

以下、第4図に示すフローチャートを参照して、A車の
衝突回避動作を、B車の衝突回避動作と関連づけて説明
する。
Hereinafter, with reference to the flowchart shown in FIG. 4, the collision avoidance operation of car A will be explained in relation to the collision avoidance operation of car B.

まず、A車が他車の接近を検出すると、ステップSAI
からステップSA2へ進み、A車の指令部4は走行部5
に対して停止する旨の直接走行制御コマンドを与え、こ
れによりA車が一旦停止する。次いで、他車を検出した
旨を、自軍の識別コード(車両番号)と現在位置と次に
到着するノード番号とからなる情報とともに通信装置3
を介して他車へ送信する(ステップ5A3)。
First, when car A detects the approach of another car, step SAI
Then, the process proceeds to step SA2, and the command unit 4 of car A communicates with the traveling unit 5
A direct travel control command is given to the vehicle A to stop, and as a result, vehicle A temporarily stops. Next, the communication device 3 notifies that the other vehicle has been detected, along with information consisting of the own military's identification code (vehicle number), the current position, and the next node number.
(Step 5A3).

一方、他車であるB車は、A車が一送信した情報を受け
た時点で一旦停止しくステップ5DI)、A車が送信し
た情報と、自軍の現在位置および次に到着するノード番
号に基づいて、自軍がA車と衝突する危険性が有るか否
かを判断しくステップ582)、衝突する危険性有りと
判断した場合は、ステップSB3へ進み、衝突する危険
性無しと判断した場合は、ステップSB6へ進む。ステ
ップSB3においては、B車が自軍の識別コードと現在
位置と次に到着するノード番号からなる情報を、A車へ
送信する。次いで、−B車は、先程A車から受は取った
情報に基づいて、(A車の識別コード)く(自軍の識別
コード)であることから、自軍がマスター側であること
を認識する。そして、自軍とA車の双方の衝突回避動作
を決定し、A車の衝突回避動作をA車に指示する(ステ
ップ5B4)。この場合、B車は、第5図に示すように
、A車とB車が向かい合っている場合においては、互い
に右側に避けてすれ違う動作を衝突回避動作として決定
し、また、例えば、A車とB車が同じ方向に向かってい
る場合においては、追い越し動作を衝突回避動作として
決定する。
On the other hand, the other vehicle, vehicle B, stops once it receives the information transmitted by vehicle A (step 5DI), and based on the information transmitted by vehicle A, the current position of its own army, and the next node number to arrive at. Step 582). If it is determined that there is a risk of collision, proceed to step SB3. If it is determined that there is no risk of collision, proceed to step SB3. Proceed to step SB6. In step SB3, vehicle B transmits information consisting of its own army's identification code, current position, and next arriving node number to vehicle A. Next, based on the information received from vehicle A earlier, vehicle -B recognizes that its own army is the master side, since (identification code of vehicle A) is (identification code of own army). Then, the collision avoidance operation for both the own army and vehicle A is determined, and the collision avoidance operation for vehicle A is instructed to vehicle A (step 5B4). In this case, as shown in FIG. 5, when car A and car B are facing each other, car B determines the action of avoiding each other to the right and passing each other as a collision avoidance action. If vehicle B is heading in the same direction, the overtaking operation is determined as a collision avoidance operation.

その後、ステップSB5において、自ら決定した衝突回
避動作を実行した後、再発進する(ステップ5B6)。
Thereafter, in step SB5, the self-determined collision avoidance operation is executed, and then the vehicle restarts (step 5B6).

さて、A車は、ステップSA4において、他車から返答
があった場合、ステップSA5へ進み、返答がなかった
場合、他車との間において衝突の危険性無しと判断して
ステップSA6へ進む。ステップSA5においては、B
車から送信されてきた情報に基づき、(B車の識別コー
ド)〉(自軍の識別コード)であることから、相手のB
車がマスター側、自軍がスレーブ側であることを認識す
る。
Now, in step SA4, if car A receives a response from the other vehicle, it proceeds to step SA5, and if there is no response, it determines that there is no risk of collision with the other vehicle and proceeds to step SA6. In step SA5, B
Based on the information sent from the car, (identification code of car B)> (identification code of own army), the other party's B
Recognize that the car is the master side and your army is the slave side.

そして、次のステップSA5においてB車から指示され
た衝突回避動作を実行した後、再発進する(ステップ5
A6)。
Then, in the next step SA5, after executing the collision avoidance operation instructed by car B, the car starts again (step SA5).
A6).

以上により、第5図に示すように、A車とB車が互いに
右側に避けてすれ違い、その後、再発進して、再び元の
走行経路上に復帰し、衝突回避動作が完了する。
As a result of the above, as shown in FIG. 5, cars A and B pass each other by avoiding each other to the right, and then restart and return to the original travel route, completing the collision avoidance operation.

ここで、例えば、第5図の2点鎖線の枠内に示すように
、A車がノードN5に向って走行し、B車がノードN5
から遠ざかるようにしてノードN6に向って走行してい
る場合において、A車かB車の接近を検出した場合、B
車はステップSB2において衝突の危険性無しと判断し
てステップSC6に進み、再発進する。また、A車はス
テップSA4において返答がないことから衝突の危険性
無しと判断してステップSA6へ進み、再発進する。
Here, for example, as shown within the frame of the two-dot chain line in FIG.
When the vehicle is traveling towards node N6 while moving away from the node N6, if the approach of either A or B is detected,
The vehicle determines in step SB2 that there is no risk of collision, proceeds to step SC6, and restarts the vehicle. Further, since there is no response in step SA4, vehicle A determines that there is no risk of collision, proceeds to step SA6, and starts driving again.

このように、上述した一実施例においては、A車とB車
が互いに接近し、衝突の危険性が発生した場合、常に識
別コードの大きい方がマスター側となり、マスター側と
スレーブ側双方の衝突回避動作を決定するようになって
いる。したがって、中央局2はこの衝突回避動作に同等
関与せず、その他の処理を実行することができる。
In this way, in the embodiment described above, when cars A and B approach each other and there is a risk of a collision, the one with the larger identification code always becomes the master side, and a collision between the master side and the slave side is avoided. It is designed to determine evasive action. Therefore, the central station 2 is not equally involved in this collision avoidance operation and can execute other processes.

なお、上述した実施例においては、他車検出器7A、7
Bとして互いに識別電波を発して検出する構成のものを
用いたが、例えば、測距用の超音波と周波数の異なる超
音波を用いて他車を検出するように構成しても構わない
。また、中央局2とA車およびB車との間の通信方式と
してはポーリング/セレクティング方式を用いたが、例
えば、トークン・パッシング方式′等を用いても勿論構
わない。
In addition, in the embodiment described above, the other vehicle detectors 7A, 7
Although a configuration in which vehicles B are configured to emit identification radio waves to detect each other is used, it may be configured to detect other vehicles using ultrasonic waves having a different frequency from ultrasonic waves for distance measurement, for example. Further, although the polling/selecting method was used as the communication method between the central office 2 and cars A and B, it is of course possible to use a token passing method, for example.

[発明の効果] 以上説明したように、この発明によれば、各無人車に、
相互に情報を交換する通信手段と、その他の無人車が接
近してきたことを検出する検出手段とを各々設け、前記
各無人車は、前記検出手段によってその他の無人車の接
近を検出した場合、自らの識別番号と現在位置と走行方
向に関する情報を前記通信手段を介して他の無人車へ送
信する一方、ml記各無人車は、送信されてきた情報に
基づいて、自らが衝突する危険性が育るか否かを判断し
、衝突する危険性が有ると判断した無人車は自ろの識別
番号と現在位置と走行方向に関する情報を前記通信手段
を介して返答し、以降、衝突する危険性のある無人車同
士で情報を交換しつつ衝突を回避するための動作を決定
し、互いに実行するようにしたので、中央局の処理に全
く依存せずに、無人車同士の衝突を未然に回避すること
ができるという効果か樽られる。
[Effects of the Invention] As explained above, according to the present invention, each unmanned vehicle has
A communication means for mutually exchanging information and a detection means for detecting the approach of another unmanned vehicle are provided, and when each of the unmanned vehicles detects the approach of another unmanned vehicle by the detection means, While information regarding its own identification number, current location, and driving direction is transmitted to other unmanned vehicles via the communication means, each unmanned vehicle determines the risk of collision based on the transmitted information. The unmanned vehicle that determines whether or not the vehicle is at risk of collision will respond via the communication means with information regarding its own identification number, current location, and direction of travel, and from then on, the unmanned vehicle will determine whether there is a risk of collision. By exchanging information with other unmanned vehicles, they decide on actions to avoid collisions and execute them with each other, so collisions between unmanned vehicles can be prevented without relying on central processing at all. The effect is that it can be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による自立型無人車システ
ムの電気的構成を示すブロック図、第2図は同実施例に
おける無人車の概略の外観構成を示す平面図、第3図は
同実施例における無人車に設けられた他車検出器の動作
を説明するためのタイミングチャート、第4図は同実施
例の動作を説明するためのフローチャート、第5図は同
実施例による衝突回避動作を説明するための平面図、第
6図は従来の自立型無人車システムの動作を説明するた
めの平面図である。 IA、IB・・・・・・無人車(A車、B車)、2・・
・・・・中央局、3・・・・・・通信装置、4・・・・
・・指令部、5・・・走行部、6・・・・・・地図メモ
リ、7A、7B・・・・・・他車検出器。
FIG. 1 is a block diagram showing the electrical configuration of a self-supporting unmanned vehicle system according to an embodiment of the present invention, FIG. A timing chart for explaining the operation of the other vehicle detector provided in the unmanned vehicle in this embodiment, FIG. 4 is a flowchart for explaining the operation of the same embodiment, and FIG. 5 is a collision avoidance operation according to the same embodiment. FIG. 6 is a plan view for explaining the operation of a conventional self-supporting unmanned vehicle system. IA, IB...Unmanned vehicle (Car A, Car B), 2...
...Central station, 3...Communication equipment, 4...
...Command unit, 5...Travel unit, 6...Map memory, 7A, 7B...Other vehicle detector.

Claims (1)

【特許請求の範囲】 自ら現在位置を認識しつつ、内蔵した地図情報を頼りに
、作業要求の生じた作業点に移動して所要の作業を行う
複数の無人車からなる自立型無人車システムにおいて、 前記各無人車に、相互に情報を交換する通信手段と、そ
の他の無人車が接近してきたことを検出する検出手段と
を各々設け、前記各無人車は、前記検出手段によってそ
の他の無人車の接近を検出した場合、自らの識別番号と
現在位置と走行方向に関する情報を前記通信手段を介し
て他の無人車へ送信する一方、前記各無人車は、送信さ
れてきた情報に基づいて、自らが衝突する危険性が有る
か否かを判断し、衝突する危険性が有ると判断した無人
車は自らの識別番号と現在位置と走行方向に関する情報
を前記通信手段を介して返答し、以降、衝突する危険性
のある無人車同士で情報を交換しつつ衝突を回避するた
めの動作を決定し、互いに実行することを特徴とする自
立型無人車システムにおける衝突回避方法。
[Claims] In an autonomous unmanned vehicle system consisting of a plurality of unmanned vehicles that recognize their current position and move to a work point where a work request occurs and perform the required work, relying on built-in map information. , Each of the unmanned vehicles is provided with a communication means for mutually exchanging information and a detection means for detecting that another unmanned vehicle is approaching, and each of the unmanned vehicles is configured to detect the other unmanned vehicle by the detection means. When detecting the approach of the unmanned vehicle, the unmanned vehicle transmits information regarding its own identification number, current position, and traveling direction to other unmanned vehicles via the communication means, while each unmanned vehicle, based on the transmitted information, The unmanned vehicle determines whether or not there is a risk of collision, and the unmanned vehicle that has determined that there is a risk of collision responds with its own identification number, current position, and information regarding the direction of travel via the communication means, and thereafter. A collision avoidance method in an autonomous unmanned vehicle system, characterized in that unmanned vehicles that are at risk of colliding with each other exchange information, determine actions to avoid a collision, and mutually execute the actions.
JP61299605A 1986-12-16 1986-12-16 Collision Avoidance Method for Autonomous Unmanned Vehicle System Expired - Lifetime JP2661023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299605A JP2661023B2 (en) 1986-12-16 1986-12-16 Collision Avoidance Method for Autonomous Unmanned Vehicle System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299605A JP2661023B2 (en) 1986-12-16 1986-12-16 Collision Avoidance Method for Autonomous Unmanned Vehicle System

Publications (2)

Publication Number Publication Date
JPS63150710A true JPS63150710A (en) 1988-06-23
JP2661023B2 JP2661023B2 (en) 1997-10-08

Family

ID=17874797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299605A Expired - Lifetime JP2661023B2 (en) 1986-12-16 1986-12-16 Collision Avoidance Method for Autonomous Unmanned Vehicle System

Country Status (1)

Country Link
JP (1) JP2661023B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127746A (en) * 1991-10-09 1993-05-25 Shin Caterpillar Mitsubishi Ltd Method and device for controlling travel of unmanned self-running body
WO1997031352A1 (en) * 1996-02-21 1997-08-28 Komatsu Ltd. Apparatus and method for fleet control when unmanned vehicles and manned vehicles travel in mixture
WO1998036337A1 (en) * 1997-02-12 1998-08-20 Komatsu Ltd. Vehicle monitor
WO1998037468A1 (en) * 1997-02-20 1998-08-27 Komatsu Ltd. Vehicle monitor
WO1998045765A1 (en) * 1997-04-04 1998-10-15 Komatsu Ltd. Interference preventing device for vehicle
JPH11296229A (en) * 1998-02-13 1999-10-29 Komatsu Ltd Vehicle guide device
JP2002178283A (en) * 2000-12-12 2002-06-25 Honda Motor Co Ltd Autonomous robot
JP2003140747A (en) * 2001-11-01 2003-05-16 Matsushita Electric Works Ltd Autonomous moving device and system for operating the same
JP2005202978A (en) * 2005-03-14 2005-07-28 Matsushita Electric Works Ltd Autonomous moving apparatus
JP2005209225A (en) * 2005-03-14 2005-08-04 Matsushita Electric Works Ltd Autonomous movable device
JP2005222560A (en) * 2005-03-14 2005-08-18 Matsushita Electric Works Ltd Autonomous moving unit and autonomous moving unit operation system
JP2006035381A (en) * 2004-07-28 2006-02-09 Honda Motor Co Ltd Control equipment for mobile robot
JP2008134744A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Autonomous moving device group control system
JP2009223634A (en) * 2008-03-17 2009-10-01 Hitachi Ltd Autonomous mobile robot device and avoidance method for autonomous mobile robot device
JP2010079852A (en) * 2008-09-29 2010-04-08 Honda Motor Co Ltd Mobile device
JP2014188645A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Robot group system
US9075416B2 (en) 2010-09-21 2015-07-07 Toyota Jidosha Kabushiki Kaisha Mobile body
CN113661111A (en) * 2019-04-16 2021-11-16 宝马汽车股份有限公司 Control unit and method for the identification, classification and prediction of the interaction demand of an autonomous vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930113A (en) * 1982-08-10 1984-02-17 Daifuku Co Ltd Control device for traveling operation of truck
JPS60198610A (en) * 1984-03-23 1985-10-08 Hitachi Ltd Mobile robot control system
JPS6134614A (en) * 1984-07-27 1986-02-18 Ishikawajima Harima Heavy Ind Co Ltd Communicating method of unattended truck
JPS61127011A (en) * 1984-11-27 1986-06-14 Mitsubishi Heavy Ind Ltd Signal transmission method for unmanned guide truck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930113A (en) * 1982-08-10 1984-02-17 Daifuku Co Ltd Control device for traveling operation of truck
JPS60198610A (en) * 1984-03-23 1985-10-08 Hitachi Ltd Mobile robot control system
JPS6134614A (en) * 1984-07-27 1986-02-18 Ishikawajima Harima Heavy Ind Co Ltd Communicating method of unattended truck
JPS61127011A (en) * 1984-11-27 1986-06-14 Mitsubishi Heavy Ind Ltd Signal transmission method for unmanned guide truck

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127746A (en) * 1991-10-09 1993-05-25 Shin Caterpillar Mitsubishi Ltd Method and device for controlling travel of unmanned self-running body
AU703030B2 (en) * 1996-02-21 1999-03-11 Komatsu Limited Apparatus and method for fleet control when unmanned and manned vehicles traveling together
WO1997031352A1 (en) * 1996-02-21 1997-08-28 Komatsu Ltd. Apparatus and method for fleet control when unmanned vehicles and manned vehicles travel in mixture
JPH09231500A (en) * 1996-02-21 1997-09-05 Komatsu Ltd Device and method for fleet control at the time of mixed traveling of unmanned and manned cars
US6038502A (en) * 1996-02-21 2000-03-14 Komatsu Ltd. Apparatus and method for fleet control when unmanned and manned vehicles travel together
WO1998036337A1 (en) * 1997-02-12 1998-08-20 Komatsu Ltd. Vehicle monitor
US6226572B1 (en) 1997-02-12 2001-05-01 Komatsu Ltd. Vehicle monitor
WO1998037468A1 (en) * 1997-02-20 1998-08-27 Komatsu Ltd. Vehicle monitor
US6246932B1 (en) 1997-02-20 2001-06-12 Komatsu Ltd. Vehicle monitor for controlling movements of a plurality of vehicles
WO1998045765A1 (en) * 1997-04-04 1998-10-15 Komatsu Ltd. Interference preventing device for vehicle
US6292725B1 (en) 1997-04-04 2001-09-18 Komatsu Ltd. Interference preventing device for vehicle
JPH11296229A (en) * 1998-02-13 1999-10-29 Komatsu Ltd Vehicle guide device
JP2002178283A (en) * 2000-12-12 2002-06-25 Honda Motor Co Ltd Autonomous robot
JP2003140747A (en) * 2001-11-01 2003-05-16 Matsushita Electric Works Ltd Autonomous moving device and system for operating the same
JP2006035381A (en) * 2004-07-28 2006-02-09 Honda Motor Co Ltd Control equipment for mobile robot
JP2005202978A (en) * 2005-03-14 2005-07-28 Matsushita Electric Works Ltd Autonomous moving apparatus
JP2005222560A (en) * 2005-03-14 2005-08-18 Matsushita Electric Works Ltd Autonomous moving unit and autonomous moving unit operation system
JP2005209225A (en) * 2005-03-14 2005-08-04 Matsushita Electric Works Ltd Autonomous movable device
JP2008134744A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Autonomous moving device group control system
JP2009223634A (en) * 2008-03-17 2009-10-01 Hitachi Ltd Autonomous mobile robot device and avoidance method for autonomous mobile robot device
JP4658155B2 (en) * 2008-03-17 2011-03-23 株式会社日立製作所 Autonomous mobile robot apparatus and avoidance method of autonomous mobile robot apparatus
KR101105057B1 (en) * 2008-03-17 2012-01-16 가부시키가이샤 히타치세이사쿠쇼 Autonomously moving robot device and avoiding method of autonomously moving robot device
US8494675B2 (en) 2008-03-17 2013-07-23 Hitachi, Ltd. Autonomous mobile robot device and an avoidance method for that autonomous mobile robot device
JP2010079852A (en) * 2008-09-29 2010-04-08 Honda Motor Co Ltd Mobile device
US8296005B2 (en) 2008-09-29 2012-10-23 Honda Motor Co., Ltd. Mobile apparatus
US9075416B2 (en) 2010-09-21 2015-07-07 Toyota Jidosha Kabushiki Kaisha Mobile body
JP2014188645A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Robot group system
CN113661111A (en) * 2019-04-16 2021-11-16 宝马汽车股份有限公司 Control unit and method for the identification, classification and prediction of the interaction demand of an autonomous vehicle

Also Published As

Publication number Publication date
JP2661023B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
JPS63150710A (en) Method for evading collision in autonomous unmanned vehicle system
US5488277A (en) Travel control method, travel control device, and mobile robot for mobile robot systems
JP6880552B2 (en) Autonomous mobile system
CN105799700A (en) Collision avoidance control system and control method
JP6973393B2 (en) Mobile guidance systems, mobiles, guidance devices and computer programs
EP0346538A1 (en) Control method for an unmanned vehicle
JPWO2018003814A1 (en) Mobile body guidance system, mobile body, guidance device and computer program
JP2589901B2 (en) Mobile machines with active sensors
JP2013025423A (en) Vehicle-use radio communication apparatus and communication system
JPH11175149A (en) Autonomous traveling vehicle
JP7274970B2 (en) Tracking target identification system and tracking target identification method
JP2005069892A (en) System for computing self-position of moving object
JP2712157B2 (en) Collision Avoidance Method for Autonomous Unmanned Vehicle System
WO2019054206A1 (en) Moving body guidance system
JP4093245B2 (en) Autonomous mobile device
JP3416679B2 (en) Communication system between vehicles
JPH05143158A (en) Method and device for radio monitoring communication of unmanned traveling body
WO2020235392A1 (en) Transport vehicle system, transport vehicle, and control method
JP7298699B2 (en) Vehicle remote control method and vehicle remote control device
WO2019225820A1 (en) Parking guidance apparatus and method
JPS6373303A (en) Control system for autopilot vehicle at intersection
JP7188451B2 (en) MOBILE BODY CONTROL DEVICE, MOBILE BODY, MOBILE BODY CONTROL METHOD AND PROGRAM
JPH07228481A (en) Autonomous interactive travel operation system
JP2009126483A (en) Traveling control device for vehicle and traveling control method
JP2002132348A (en) Collision prevention system for unmanned carrier

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

EXPY Cancellation because of completion of term
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370