JPS63149360A - Two-phase stainless steel having high corrosion resistance and superior weldability - Google Patents

Two-phase stainless steel having high corrosion resistance and superior weldability

Info

Publication number
JPS63149360A
JPS63149360A JP61295723A JP29572386A JPS63149360A JP S63149360 A JPS63149360 A JP S63149360A JP 61295723 A JP61295723 A JP 61295723A JP 29572386 A JP29572386 A JP 29572386A JP S63149360 A JPS63149360 A JP S63149360A
Authority
JP
Japan
Prior art keywords
austenite
corrosion resistance
equivalent
weld
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61295723A
Other languages
Japanese (ja)
Other versions
JPH0730427B2 (en
Inventor
Toshihiko Koseki
敏彦 小関
Hideo Sakurai
英夫 櫻井
Tadao Ogawa
忠雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61295723A priority Critical patent/JPH0730427B2/en
Publication of JPS63149360A publication Critical patent/JPS63149360A/en
Publication of JPH0730427B2 publication Critical patent/JPH0730427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To suppress reduction of the amt. of austenite in the weld heat-affected zone of a steel as a base metal and the weld zone formed with no filler metal by specifying the ratio of the Cr equiv. to the Ni equiv. of the steel having a specified compsn. and by considerably increasing the amt. of N and the total amt. of all the alloying elements except C and Si. CONSTITUTION:The compsn. of a steel is composed of, by weight, <=0.025% C, 0.01-0.2% Si, 1.0-5.0% Mn, 28-35% Cr, 6-16% Ni, 3.1-6.0% Mo, 0.2-0.4% N and the balance Fe. The ratio of the Cr equiv. represented by formula I to the Ni equiv. represented by formula II is regulated to 1.9-2.4 and the total amt. of all the alloying elements except C and Si is regulated to >=45%. 0.1-3.0% Cu may be added to the compsn. so as to regulate the ratio of the Cr equiv. represented by the formula I to the Ni equiv. represented by formula III to 1.9-2.4 and the total amt. of all the alloying elements except C and Si to >=45%. The steel has high corrosion resistance and ensures extremely superior corrosion resistance for the weld heat-affected zone or the weld zone formed with no filler metal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフェライト・オーステナイトニ相ステンレス鋼
に係わり、特に溶接熱影響部あるいは溶加材を用いない
溶接部においてフェライト・オーステナイトの相比の変
化が少なく、耐食性の良好な高耐食性二相ステンレス鋼
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to ferrite-austenite dual-phase stainless steel, and particularly to changes in the ferrite-austenite phase ratio in the weld heat-affected zone or in welds where no filler metal is used. The present invention relates to highly corrosion-resistant duplex stainless steel with low corrosion resistance and good corrosion resistance.

〔従来の技術〕[Conventional technology]

フェライト・オーステナイト系ステンレス鋼(以、下、
二相ステンレス鋼)は、フェライト相マトリックス中に
40〜65%のオーステナイトが微細混合した二相組織
を有し、オーステナイト系ステンレス鋼とフェライト系
ステンレス鋼の長所を併せ持つため、近年、耐食構造用
材料としてその適用が活発である。このような二相ステ
ンレス鋼に対しては、JIS 5US329やDIN 
1.4462等の規格があり、また、母材の耐食性や機
械的特性に優れるものとしては、特開昭55−4452
8号や特開昭56−127753号、特開昭57−47
852号等の公報Gこ開示されている。
Ferritic-austenitic stainless steel (hereinafter referred to as
Duplex stainless steel (duplex stainless steel) has a two-phase structure in which 40 to 65% of austenite is finely mixed in a ferrite phase matrix, and as it combines the advantages of austenitic stainless steel and ferritic stainless steel, it has recently been used as a corrosion-resistant structural material. Its application is active as a For such duplex stainless steel, JIS 5US329 and DIN
There are standards such as 1.4462, and JP-A-55-4452 has excellent base material corrosion resistance and mechanical properties.
No. 8, JP-A-56-127753, JP-A-57-47
Publication G such as No. 852 has been disclosed.

しかしながら、従来の二相ステンレス鋼では、溶接した
場合その熱影響部において、フェライトとオーステナイ
トの相バランスが崩れ、母材レベルよりかなりオーステ
ナイトffiが低下することが知られている。また、溶
加材を用いないで、例えばTIG溶接、プラズマ溶接あ
るいは電子ビーム(E B)溶接などによってなめ溶接
した場合の溶接金属も熱影響部と同様であり、かなりオ
ーステナイト量が低い。そのため、二相ステンレス鋼の
溶接用の溶加材は通常オーステナイト生成元素の含有量
を高め、オーステナイト量の低下を抑える成分設計がな
されている。しかし、母材の溶接熱影響部のオーステナ
イト量の低減は、従来の二相ステンレス鋼では本質的に
避けられず、より厳しい腐食環境にこれらの溶接構造物
を適用する場合、この領域の耐食性が大きな問題となる
と考えられる。
However, it is known that when conventional duplex stainless steel is welded, the phase balance between ferrite and austenite is disrupted in the heat affected zone, and the austenite ffi is considerably lower than the level of the base metal. Further, the weld metal obtained by dip welding, for example, by TIG welding, plasma welding, or electron beam (EB) welding without using a filler metal, is similar to the heat affected zone and has a considerably low austenite content. Therefore, the filler metal for welding duplex stainless steel is usually designed to increase the content of austenite-forming elements and suppress the decrease in the amount of austenite. However, a reduction in the amount of austenite in the weld heat-affected zone of the base metal is essentially unavoidable in conventional duplex stainless steels, and when applying these welded structures to more severe corrosive environments, corrosion resistance in this area is It is thought that this will become a big problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の二相ステンレス鋼は融点直下から約100〜20
0℃程度の範囲でフェライト単相であり、それ以下の温
度で次第にオーステナイトが安定になり、フェライトと
オーステナイトが二相共存する。すなわち、母材の場合
は、鋳造後、二相域の温度で圧延・熱処理をすることに
より、フェライトとオーステナイトの相バランスを確保
することができるが、溶接した場合、高温に加熱を受け
る母材熱影響部では、加熱ピーク温度の上昇に伴いオー
ステナイト相が不安定になるためオーステナイトMが次
第に減少し相バランスが崩れる。さらに、より高温に加
熱された場合は高温においていったんフェライト単相に
なり、その後の冷却過程でオーステナイトを生成するが
、溶接熱サイクルのような急速冷却の非平衡プロセスで
は、冷却過程中のオーステナイトの析出はかなり抑制さ
れ、組織は粗大なフェライト粒とその粒界にわずかに生
成するオーステナイトからなり、ために、これらの領域
ではオーステナイト量は著しく低下する。
Conventional duplex stainless steel has a melting point of about 100 to 20
Ferrite is a single phase in the range of about 0°C, and austenite gradually becomes stable at temperatures below that, and ferrite and austenite coexist in two phases. In other words, in the case of the base metal, the phase balance between ferrite and austenite can be ensured by rolling and heat treating it at a temperature in the two-phase range after casting, but when welding, the base metal is heated to a high temperature. In the heat-affected zone, the austenite phase becomes unstable as the heating peak temperature increases, so austenite M gradually decreases and the phase balance collapses. Furthermore, when heated to a higher temperature, it becomes a single phase of ferrite and austenite is produced during the subsequent cooling process, but in a non-equilibrium process of rapid cooling such as a welding thermal cycle, austenite changes during the cooling process. Precipitation is considerably suppressed, and the structure consists of coarse ferrite grains and a small amount of austenite formed at the grain boundaries, so the amount of austenite is significantly reduced in these regions.

特に冷却速度が速い場合は、はぼフェライト単相になる
こともある。溶加材なしの溶接でそのままの成分で溶融
して凝固した部分の場合も、フェライト単相で凝固する
ため、高温まで加熱されてフェライト単相になる母材熱
影響部と同様の組織となり、やはり著しくオーステナイ
ト量の少ない組織になる。ところで、二相ステンレス鋼
及び、特にその溶接部においては、耐孔食性や耐粒界腐
食性などの耐食性はそのオーステナイト量に強く依存し
、相バランスが崩れると耐食性は低下し、オーステナイ
ト量が約40〜65%において最も耐食性が優れている
ことが多く報告されている。従って、上述の母材の溶接
熱影響部や溶加材無しの溶接部においてはオーステナイ
ト量の低下のため、耐食性劣化が起こる。このような局
所的な耐食性劣化は、特に腐食環境が厳しい場合大きな
問題となる。さらに、フェライト単相域の経由によって
起こる結晶粒の粗大化と組織中のオーステナイト量の減
少は、これらの領域の靭性・延性も阻害するという問題
もある。これらの問題は従来の二相ステンレス鋼に本質
的に付随する問題点であり、今後厳しい腐食環境に二相
ステンレス鋼を溶接構造物として適用する場合の欠点と
して残されている。
In particular, if the cooling rate is fast, it may become a single-phase ferrite. Even in the case of a part that is melted and solidified with the same components during welding without filler metal, it solidifies as a single phase of ferrite, so it has a structure similar to the heat affected zone of the base metal that is heated to a high temperature and becomes a single phase of ferrite. After all, the structure has a significantly reduced amount of austenite. By the way, in duplex stainless steel and especially in its welded parts, corrosion resistance such as pitting corrosion resistance and intergranular corrosion resistance strongly depends on the amount of austenite, and if the phase balance is disrupted, the corrosion resistance will decrease, and if the amount of austenite is approximately It is often reported that the corrosion resistance is the best when the content is 40 to 65%. Therefore, in the weld heat-affected zone of the base metal and the weld zone without filler metal, corrosion resistance deteriorates due to a decrease in the amount of austenite. Such local deterioration of corrosion resistance becomes a big problem especially when the corrosive environment is severe. Furthermore, the coarsening of crystal grains and the decrease in the amount of austenite in the structure caused by passing through the ferrite single phase region also impairs the toughness and ductility of these regions. These problems are essentially problems associated with conventional duplex stainless steels, and remain as drawbacks when duplex stainless steels are applied to welded structures in severe corrosive environments in the future.

本発明は、上記の点に鑑みてなされたもので、特に母材
溶接熱影響部及び溶加材無しの溶接部のオーステナイト
!低下を抑えることによりそれらの領域での耐食性等の
緒特性の劣化を抑えた高耐食性二相ステンレス鋼を提供
するものである。
The present invention has been made in view of the above-mentioned points, and particularly improves austenite in base metal weld heat-affected zones and welded areas without filler metal. The objective is to provide a highly corrosion-resistant duplex stainless steel that suppresses deterioration of properties such as corrosion resistance in those areas by suppressing the deterioration.

〔問題点を解決するための手段、作用〕即ち、本発明者
らは、種々の成分系の二相ステンレス鋼において、母材
、溶接熱影響部及び溶加材無しで溶接した溶接部の組織
、耐食性に及ぼす成分元素の影響を系統的に検討した結
果、以下の知見を得た。
[Means and actions for solving the problem] That is, the present inventors have developed the structures of welded parts welded without base metal, weld heat-affected zone, and filler metal in duplex stainless steels of various composition systems. As a result of a systematic study of the effects of component elements on corrosion resistance, the following findings were obtained.

まず第1図に示すごとく、熱間圧延後1050℃にて固
溶化処理した母材組織中のオーステナイト量は、Cr当
量=Cr (wt%)  + 1.5 ×Si (wt
%)+Mo(wt%)、N1当量=Ni (wt%)+
30×C(wt%)+ 0.5 ×Mn(wt%)+3
0×N(wt%)+Cu (wt%)とした場合、Cr
当量/Ni当量比にほぼ比例し、この値が大きいほどオ
ーステナイト量は低く、小さいほどオーステナイト量が
高いこと、更にこの比が1.9以上、2.4以下で母材
組織中のオーステナイト量は約40〜65%の範囲にな
るという関係が得られた。
First, as shown in Fig. 1, the amount of austenite in the base metal structure subjected to solution treatment at 1050°C after hot rolling is Cr equivalent = Cr (wt%) + 1.5 × Si (wt
%) + Mo (wt%), N1 equivalent = Ni (wt%) +
30×C(wt%)+0.5×Mn(wt%)+3
When 0×N (wt%) + Cu (wt%), Cr
It is approximately proportional to the equivalent/Ni equivalent ratio, the larger the value, the lower the austenite content, and the smaller the value, the higher the austenite content. Furthermore, when this ratio is 1.9 or more and 2.4 or less, the austenite content in the base metal structure is A relationship in the range of approximately 40-65% was obtained.

一方、溶接熱サイクルによって加熱される母材溶接熱影
響部では、5OS329タイプやDIN 1.4462
タイプの場合、ピーク温度が約1200℃以上でオース
テナイト量が減少し、特にピーク温度約1300℃以上
ではフェライト単相域を経由したと見られる粗大フェラ
イト粒と粒界オーステナイトからなる組織に変わり、オ
ーステナイト量の低下も著しい。
On the other hand, in the base metal weld heat affected zone heated by the welding thermal cycle, 5OS329 type or DIN 1.4462
In the case of the type, the amount of austenite decreases when the peak temperature is about 1,200°C or higher, and in particular, at the peak temperature of about 1,300°C or higher, the structure changes to a structure consisting of coarse ferrite grains and grain boundary austenite, which seems to have passed through the ferrite single phase region, and the austenite The decrease in quantity is also significant.

また、溶加材無しの溶接金属の組織もピーク温度130
0℃以上に加熱される母材溶接熱影響部と同様である。
In addition, the structure of the weld metal without filler metal also has a peak temperature of 130
This is similar to the base metal weld heat affected zone that is heated to 0°C or higher.

このような従来の二相ステンレス鋼の母材熱影響部及び
溶加材無しで溶接された溶接金属の著しいオーステナイ
ト量低下に対して、第2図に示すように窒素量を従来よ
り大きく増加し、さらに合金元素の総量を大きく増加し
た二相ステンレス鋼においては、このオーステナイト量
の低下の程度が著しく改善されることを見出した。特に
、後者に関しては、C,Siを除く合金元素の総量が4
5−t%以上で、第3図に示すようにフェライト量の増
加の抑制と同時に、第4図に示すように、フェライト単
相域を経由して形成される粗粒な母材溶接熱影響部の幅
も大幅に減少するという知見も得た。
In response to such a significant decrease in the amount of austenite in the base metal heat affected zone of conventional duplex stainless steel and the weld metal welded without filler metal, the amount of nitrogen was increased significantly compared to the conventional method as shown in Figure 2. Furthermore, it has been found that in duplex stainless steel in which the total amount of alloying elements is greatly increased, the degree of decrease in the amount of austenite is significantly improved. In particular, regarding the latter, the total amount of alloying elements excluding C and Si is 4
At 5-t% or more, as shown in Figure 3, the increase in the amount of ferrite is suppressed, and at the same time, as shown in Figure 4, the thermal effect of coarse-grained base metal welding, which is formed via the ferrite single phase region, is reduced. It was also found that the width of the area was also significantly reduced.

他方、その耐食性に関しては、一般にCr、 Moの増
加は耐食性を向上させるとされているが、母材の場合は
それらの増加に伴い耐食性は向上するものの、1300
℃以上に加熱される母材溶接熱影響部あるいは溶加材無
しの溶接金属においてはそれらの単独の増加は耐食性を
向上させず、それらの組織中のオーステナイト量を40
〜65%にするように化学成分を調整することで初めて
母材と同等の効果を示すこともわかった。
On the other hand, regarding its corrosion resistance, it is generally said that an increase in Cr and Mo improves the corrosion resistance.
In the heat-affected zone of base metal welds heated above ℃ or in weld metal without filler metal, increasing them alone does not improve corrosion resistance and increases the amount of austenite in the structure by 40°C.
It was also found that the same effect as the base material can be achieved only by adjusting the chemical composition to ~65%.

即ち、本発明の要旨は、C: 0.025 wt%以下
、Si : 0.01〜0.2wt%、Mn: 1.0
〜5.0wt%、Cr:28〜35wt%、Ni : 
6〜16wt%、Mo : 3.1〜6.0wt%、N
 : 0.2〜0.4wt%を含有し、残部Fe及び不
可避的不純物よりなり、また、必要に応じてCu : 
0.1〜3.0wt%を含有する二相ステンレス鋼であ
り、かつ、Cr当量=Cr Cwt%)+1.5xSi
(wt%)  +Na(wt%)、N1当i1=Nt(
wt%)+30×C(wt%) + 0.5 X Mn
(wt%)+30xN(wt%)+Cu (wt%)と
した場合にCr当i1 / N i当量比が1.9以上
、2.4以下、さらに、上記当量式中のC1Siを除く
合金元素の総量が45−t%以上であることを満たすフ
ェライト・オーステナイト二相ステンレス鋼にある。
That is, the gist of the present invention is that C: 0.025 wt% or less, Si: 0.01 to 0.2 wt%, Mn: 1.0
~5.0wt%, Cr:28~35wt%, Ni:
6-16wt%, Mo: 3.1-6.0wt%, N
: Contains 0.2 to 0.4 wt%, the balance consists of Fe and unavoidable impurities, and Cu as necessary:
Duplex stainless steel containing 0.1 to 3.0 wt%, and Cr equivalent = Cr Cwt%) + 1.5xSi
(wt%) +Na (wt%), i1 per N1 = Nt(
wt%) + 30×C(wt%) + 0.5 X Mn
(wt%) + 30xN (wt%) + Cu (wt%), the i1/Ni equivalent ratio per Cr is 1.9 or more and 2.4 or less, and the alloying elements other than C1Si in the above equivalent formula are It is a ferrite-austenite duplex stainless steel that satisfies the requirement that the total amount is 45-t% or more.

次に本発明の成分限定の利用を述べる。Next, the use of limited ingredients according to the present invention will be described.

★C: 0.025曽t%以下 Cは溶接熱サイクル中にCr、 Moなどと結合して、
特に、母材熱影響部、溶接金属に炭化物として析出し、
これらの領域の耐食性を著しく劣化させる。
★C: 0.025 sot% or less C combines with Cr, Mo, etc. during the welding heat cycle,
In particular, carbides precipitate in the base metal heat affected zone and weld metal.
This significantly deteriorates the corrosion resistance of these areas.

したがって、耐食性向上の観点からできるだけ低減する
必要があり、0.025 wt%以下に限定した。
Therefore, from the viewpoint of improving corrosion resistance, it is necessary to reduce it as much as possible, and it is limited to 0.025 wt% or less.

★Si:0.01〜0.2wt% Siは製鋼反応上脱酸元素として不可欠であるが、多量
に含有させると、母材熱影響部や溶接金属が多重溶接熱
サイクルを受けた場合、耐食性、機械的特性を著しく劣
化させるσ相の析出を著しく早める。したがって、脱酸
材として有効であり、かつ、σ相析出に影響を及ぼさな
い0.01〜0.2wt%に限定した。
★Si: 0.01 to 0.2wt% Si is essential as a deoxidizing element in steelmaking reactions, but if it is contained in large amounts, corrosion resistance may deteriorate when the base metal heat affected zone or weld metal undergoes multiple welding heat cycles. , significantly accelerates the precipitation of σ phase, which significantly deteriorates mechanical properties. Therefore, it was limited to 0.01 to 0.2 wt%, which is effective as a deoxidizer and does not affect the precipitation of the σ phase.

★Mn :  1. 0〜5. 0wt%Si同様脱酸
材として添加するが、同時に母材熱影響部及び溶接金属
において特にオーステナイト生成に有効な窒素の固溶量
の増加にも有効な元素であり、1.0wt%t%以下有
が好ましい。しかし、5.01wt%以上含有すると、
耐孔食性に有害であるMnSの生成を促進するとともに
、靭性も害するので5.0wt%を上限とした。
★Mn: 1. 0-5. Like 0wt%Si, it is added as a deoxidizing agent, but at the same time, it is also an effective element for increasing the solid solution amount of nitrogen, which is particularly effective for austenite formation in the base metal heat affected zone and weld metal, and is 1.0wt% or less. Preferably. However, if it contains 5.01wt% or more,
Since it promotes the formation of MnS, which is harmful to pitting corrosion resistance, and also impairs toughness, the upper limit was set at 5.0 wt%.

★Cr: 28〜35wt% 耐食性、耐酸化性を付与する主要元素であり、また、M
n同様窒素の固溶量を増加させる。これらの観点から、
高い含有が望ましく、後述の合金元素の総量が45−t
%以上の条件を満たすためには少なくとも2日−t%以
上の含有が必要である。しかし、35wt%以上含有す
ると、延性、靭性の低下が著しく、また、溶接熱サイク
ル中のσ相析出も促進するので35wt%を上限とした
★Cr: 28-35wt% Main element that provides corrosion resistance and oxidation resistance, and M
Similarly to n, the solid solution amount of nitrogen is increased. From these points of view,
A high content is desirable, and the total amount of alloying elements described below is 45-t.
% or more, the content must be at least 2-t% or more. However, if the content exceeds 35 wt%, the ductility and toughness will be significantly lowered, and σ phase precipitation will also be promoted during the welding heat cycle, so 35 wt% is set as the upper limit.

★Ni:6〜16−t% オーステナイトを生成する主要元素である。靭性、延性
の改善に最も有効な元素であり、この観点から少なくと
も6wt%の含有が必要である。一方、後述のCr当l
it / N i当量比の条件を満たすためには、少な
(とも16−t%以下であることが必要条件となる。
★Ni: 6-16-t% It is the main element that forms austenite. It is the most effective element for improving toughness and ductility, and from this point of view it is necessary to contain at least 6 wt%. On the other hand, below-mentioned Cr
In order to satisfy the condition of the it/Ni equivalent ratio, it is necessary that the content be small (both 16-t% or less).

★Mo : 3.1〜6. 0wt% 耐食性を向上させる主要元素であり、特にフェライト相
に分配されてフェライト相の耐食性、例えば塩化物を含
む環境での耐孔食性などを改善する。少なくとも3.1
wt%以上の含有が望ましい。
★Mo: 3.1~6. 0wt% A main element that improves corrosion resistance, and is particularly distributed in the ferrite phase to improve the corrosion resistance of the ferrite phase, such as pitting corrosion resistance in environments containing chlorides. at least 3.1
The content is preferably at least wt%.

一方、6.0wt%を越えて含有すると溶接熱サイクル
中のび相やχ相といった有害な金属間化合物の析出が起
こり、また、延性も低下するため6.0wt%を上限と
した。
On the other hand, if the content exceeds 6.0 wt%, harmful intermetallic compounds such as elongated phase and χ phase will precipitate during the welding heat cycle, and ductility will also decrease, so 6.0 wt% is set as the upper limit.

★N : 0.2〜0.4wt% オーステナイト生成元素であり、特に、母材溶接熱影響
部及び溶加材無しで溶接した溶接金属におけるオーステ
ナイト量の減少を抑えるうえで極めて有効な元素である
。しかも、強度の改善、オーステナイト相の耐孔食性の
向上などの点でも有効であり、できるだけ多量の含有が
望ましい。これらの観点から少なくとも0.2wt%以
上とした。
★N: 0.2 to 0.4 wt% It is an austenite-forming element, and is an extremely effective element, especially in suppressing the decrease in the amount of austenite in the base metal weld heat affected zone and in the weld metal welded without filler metal. . In addition, it is effective in improving strength and pitting corrosion resistance of the austenite phase, so it is desirable to contain as much as possible. From these viewpoints, the content was set to at least 0.2 wt%.

しかし、多量の含有は窒化物の析出の増加、熱間加工性
や延性の低下を起こすため、ここでは上限を固溶限以内
である0、4wt%とした。
However, since a large amount of content causes an increase in nitride precipitation and a decrease in hot workability and ductility, the upper limit was set here as 0.4 wt%, which is within the solid solubility limit.

★Cr当1i / N i当量比=1.9以上、2.4
以下(ただし、Cr当量−Cr (wt%)  + 1
.5 ×Si (evt%)  +Mo(wt%)、N
1当量−Ni(wt%)+30×C(wt%)+ 0.
5 ×Mn(ivt%)+ 30 ×N(wt%)十C
u (wt%))耐食性の観点から、マトリックス中の
オーステナイト量は40〜65%の範囲が最適であるが
、Cr当量/Ni当量比が1.9未満ではそれよりオー
ステナイト生成チになり、他方2.4を越えるとそれよ
りフェライトリッチとなる。従って表記の条件をつけた
★1i per Cr/Ni equivalent ratio = 1.9 or more, 2.4
Below (however, Cr equivalent - Cr (wt%) + 1
.. 5 ×Si (evt%) +Mo (wt%), N
1 equivalent - Ni (wt%) + 30 x C (wt%) + 0.
5 × Mn (ivt%) + 30 × N (wt%) 10C
u (wt%)) From the viewpoint of corrosion resistance, the optimal amount of austenite in the matrix is in the range of 40 to 65%, but if the Cr equivalent/Ni equivalent ratio is less than 1.9, austenite formation will occur, and on the other hand, If it exceeds 2.4, it becomes ferrite rich. Therefore, we have added conditions for the notation.

★C、Siを除く合金元素の総量が45wt%以上母材
溶接熱影響部及び溶加材無しで溶接した溶接金属のオー
ステナイト量低下を抑えるうえで、C,Siを除く合金
元素の総量を高めることは極めて重要であり、特に総量
が45wt%以上では、その効果が顕著となる。また、
合金元素の総量が45−t%以上で、大きな組織変化を
伴う熱影響部幅の減少も顕著である。
★The total amount of alloying elements other than C and Si is 45wt% or more In order to suppress the decrease in the amount of austenite in the weld metal welded without base metal heat affected zone or filler metal, increase the total amount of alloying elements other than C and Si. This is extremely important, and the effect becomes particularly pronounced when the total amount is 45 wt% or more. Also,
When the total amount of alloying elements is 45-t% or more, the heat-affected zone width is significantly reduced with a large structural change.

さらに本発明はCuを0.1〜3.0wt%添加するこ
ともできる。すなわちCuは耐食性、特に還元性雰囲気
の耐食性向上に有効な元素であるが、一方3.0wt%
を越えると加工性の劣化を起こすからである。
Furthermore, in the present invention, 0.1 to 3.0 wt% of Cu can also be added. In other words, Cu is an effective element for improving corrosion resistance, especially corrosion resistance in a reducing atmosphere, but on the other hand, 3.0 wt%
This is because if it exceeds this, the workability will deteriorate.

以上の条件を満足する成分範囲で、耐食性に極めて優れ
、かつ、溶接による母材熱影響部、溶加材を用いないで
溶接された溶接金属においてオーステナイトIの低下が
少なく母材間等の相バランスを保ち、耐食性等の劣化も
極めて少ない二相ステンレス鋼を得ることができる。
Within the composition range that satisfies the above conditions, the corrosion resistance is extremely excellent, and the loss of austenite I in the base metal heat-affected zone due to welding and the weld metal welded without filler metal is small, and the phase difference between the base metals, etc. It is possible to obtain a duplex stainless steel that maintains balance and exhibits extremely little deterioration in corrosion resistance, etc.

〔実施例〕〔Example〕

以下、実施例によって本発明の効果を詳細に説明する。 EXAMPLES Hereinafter, the effects of the present invention will be explained in detail with reference to Examples.

第1表に示す16種の成分組成の二相ステンレス鋼を真
空溶解にて溶製し、それらの鋼塊を通常の方法で熱間圧
延、固溶化熱処理し、厚さ51真の板とした。第1表の
N111〜8までが本発明鋼であリ、9〜16が比較鋼
である。比較鋼の中には、商用の5US329タイプ及
びDIN 1.4462タイプの成分組成も含め参考に
供した。また第1表には、同時にCr当量=Cr (w
t%)  + 1.5 ×Si (wt%)+Mo(&
4t%)、Ni当量=Ni(int%)+30×C(w
t%)+〇、 5 ×Mn(wt%)+30×N(wt
%)+Cu (wt%)とした場合のそれぞれの成分組
成のCr当fJ / N i当量比、及び当量式中のC
,Siを除く合金元素の総量も示した。
Duplex stainless steels having the 16 component compositions shown in Table 1 were produced by vacuum melting, and the steel ingots were hot-rolled and solution heat-treated in the usual manner to form a true plate with a thickness of 51 mm. . Steels N111 to 8 in Table 1 are the steels of the present invention, and steels 9 to 16 are comparative steels. Among the comparison steels, the compositions of commercial 5US329 type and DIN 1.4462 type were also included for reference. Table 1 also shows that Cr equivalent = Cr (w
t%) + 1.5 ×Si (wt%) + Mo(&
4t%), Ni equivalent=Ni(int%)+30×C(w
t%) + 〇, 5 × Mn (wt%) + 30 × N (wt
%) + Cu (wt%), Cr equivalent fJ / Ni equivalent ratio of each component composition, and C in the equivalent formula
, the total amount of alloying elements excluding Si is also shown.

これらの鋼板について、それぞれオーステナイト量の測
定をした後、それぞれの鋼板上に溶加材を用いずにTI
Gビードオンプレートを行い(入熱15kJ/cm) 
、母材熱影響部及び溶接金属のオーステナイト量の測定
、母材熱影響部幅の測定を行うとともに、溶接部を含む
腐食試験片を採取し耐食性の評価を行った。オーステナ
イl−ff1の評価は光学顕微鏡観察により、組織がフ
ェライトとオーステナイトのみからなることを61!m
!した後、磁気的な方法によりフェライト量を多点測定
し、平均算出した。さらにこの結果は、ポイントカウン
ト法により確認した。また、耐食試験としては実使用上
特に問題となる局部腐食を考慮し、65%硝酸試験(J
IS G0573−1980)及び塩化第二鉄腐食試験
(JIS G0578−1981)を行った。腐食試験
用の溶接部試験片を第5図に示す。同図において1は母
材、2はTIG溶接ビードであり、なおaは5mmSb
、cはそれぞれ30璽臘である。
After measuring the austenite content of each of these steel plates, TI was applied to each steel plate without using filler metal.
Perform G bead on plate (heat input 15kJ/cm)
In addition to measuring the amount of austenite in the heat-affected zone of the base metal and the weld metal, and the width of the heat-affected zone of the base metal, corrosion test pieces including the welded zone were taken to evaluate the corrosion resistance. Austenite l-ff1 was evaluated by optical microscopic observation and was found to have a structure consisting only of ferrite and austenite61! m
! After that, the amount of ferrite was measured at multiple points using a magnetic method, and the average was calculated. Furthermore, this result was confirmed by the point counting method. In addition, as a corrosion resistance test, we conducted a 65% nitric acid test (J
IS G0573-1980) and ferric chloride corrosion test (JIS G0578-1981). Figure 5 shows a welded part test piece for corrosion testing. In the same figure, 1 is the base metal, 2 is the TIG welding bead, and a is 5mmSb.
, c are each 30 pieces.

第2表に名調の母材及び溶接熱影響部、溶接金属のオー
ステナイト量、及び溶接熱影響部幅の測定結果、更に溶
接部の各種耐食試験結果を示す。
Table 2 shows the measurement results of the base metal, the weld heat affected zone, the amount of austenite in the weld metal, and the weld heat affected zone width, as well as the results of various corrosion resistance tests of the weld.

第1表と第2表の比較から明らかなように、母材のオー
ステナイト量は本発明鋼のみならず比較鋼においても、
Cr当量/Ni当量比の値が1.9〜2.4の範囲で4
0〜65%の範囲となり、Cr当量/Ni当量比の値が
1.9未満では65%よりオーステナイトリッチになり
、Cr当量/Ni当量比の値が264を越える場合はフ
ェライトリンチになりオーステナイト量は40%未満に
なる。したがって、母材成分は、少なくともCr当量/
Ni当量比が1.9〜2.4の範囲にある必要がある。
As is clear from the comparison between Tables 1 and 2, the amount of austenite in the base metal is
4 when the value of Cr equivalent/Ni equivalent ratio is in the range of 1.9 to 2.4.
It is in the range of 0 to 65%, and when the value of Cr equivalent / Ni equivalent ratio is less than 1.9, it becomes austenite rich than 65%, and when the value of Cr equivalent / Ni equivalent ratio exceeds 264, it becomes ferrite lynch and the amount of austenite is will be less than 40%. Therefore, the base material component has at least Cr equivalent/
The Ni equivalent ratio needs to be in the range of 1.9 to 2.4.

一方、母材が適正オーステナイト量を含有しても、比較
鋼においては第2表よりわかるように溶接熱影響部及び
溶加材無しの溶接部におけるオーステナイト量の低下が
著しく、他方、本発明鋼ではオーステナイト量の低下が
極めて少ない。これに対応するように溶接部の65%硝
酸試験及び塩化第二鉄腐食試験の結果は、本発明鋼にお
いてかなりの耐食性改善がなされていることを示してい
る。比較鋼においては、65%硝酸試験、塩化第二鉄腐
食試験後に見られる粒界腐食、あるいは孔食といった局
部腐食が溶接熱影響部から溶接金属にかけて集中してお
り、腐食減量も極めて大きいのに対して、本発明鋼では
、それらの領域においても局部腐食の発生はほとんど認
められず、腐食減量は母材単独で試験した場合とほぼ同
等であり並みと極めて小さい。本発明鋼における溶接部
のこのような耐食性の改善は、溶接部のオーステナイ1
−ffiが比較鋼のそれと比べて適正な範囲にあり、ま
たそれとあわせて合金元素のCr、 Mo、 Niが比
較鋼より高いことによる効果を示すものである。
On the other hand, even if the base metal contains an appropriate amount of austenite, as can be seen from Table 2, the amount of austenite in the weld heat-affected zone and the weld zone without filler metal decreases significantly in the comparative steel. The decrease in the amount of austenite is extremely small. Correspondingly, the results of the 65% nitric acid test and the ferric chloride corrosion test of the weld zone show that the corrosion resistance of the steel according to the invention is considerably improved. In the comparison steel, localized corrosion such as intergranular corrosion or pitting observed after the 65% nitric acid test and ferric chloride corrosion test was concentrated from the weld heat affected zone to the weld metal, and the corrosion loss was extremely large. On the other hand, in the steel of the present invention, almost no local corrosion was observed even in those areas, and the corrosion loss was almost the same as when the base metal was tested alone, and was extremely small. This improvement in the corrosion resistance of the weld zone in the steel of the present invention is due to the austenite 1 of the weld zone.
-ffi is in an appropriate range compared to that of the comparative steel, and together with this, the alloying elements Cr, Mo, and Ni are higher than the comparative steel.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明鋼は、それ自身の耐食性の高さは
いうまでもな(、従来二相ステンレス鋼で問題とされて
きた溶接熱影響部あるいは溶加材無しで溶接された溶接
金属の耐食性も極めて優れており、今後ますまず厳しく
なるであろう高耐食構造用材料の要求に対して十分応え
ることができる。
As described above, the steel of the present invention not only has high corrosion resistance itself (but also has high corrosion resistance in the weld metal without weld heat affected zone or filler metal, which has been a problem with conventional duplex stainless steel). It also has extremely excellent corrosion resistance, and can fully meet the demands for highly corrosion-resistant structural materials, which are expected to become increasingly strict in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固溶化処理後の母材オーステナイト量とCr当
fJ / N i当量比の関係を示す線図、ただし、C
r当量=Cr (wt%)  + l、 5 ×Si 
(wt%)  +Mo (wt%)、Nu当量=Ni 
(it%)+30×C(wt%)+〇、 5 ×Mn(
wt%)+30xN(wt%)+Cu (wj%)、第
2図は入熱15kJ/cm相当の再現溶接熱サイクルに
おいて、最高加熱温度を変化させた場合のオーステナイ
ト量および母材及び溶加材を用いないTIGなめ溶接の
場合のオーステナイ1−ffiの変化を示す線図、 第3図はHAZにおけるオーステナイトの低下量(母材
と溶接熱影響部のオーステナイト量の差)に及ぼすC,
Siを除く合金元素の総量の影響を示す線図、 第4図は粗粒化したHAZO幅に及ぼすC、Siを除く
合金元素の影響を示す線図、 第5図は耐食試験片の斜視図である。 1・・・母材、2・・・TIGなめビード。 Cr由量/wi当量 景勘0熟裁(’c)   ”“1 第3図
Figure 1 is a diagram showing the relationship between the amount of base metal austenite after solution treatment and the Cr equivalent fJ/Ni equivalent ratio, where C
r equivalent = Cr (wt%) + l, 5 × Si
(wt%) +Mo (wt%), Nu equivalent = Ni
(it%) + 30 × C (wt%) + 〇, 5 × Mn (
wt%) + 30xN (wt%) + Cu (wj%), Figure 2 shows the amount of austenite, base metal, and filler metal when the maximum heating temperature is varied in a simulated welding thermal cycle equivalent to a heat input of 15 kJ/cm. A diagram showing the change in austenite 1-ffi in the case of TIG lick welding, which is not used.
Figure 4 is a diagram showing the influence of the total amount of alloying elements other than Si. Figure 4 is a diagram showing the influence of alloying elements other than C and Si on the coarse grained HAZO width. Figure 5 is a perspective view of a corrosion-resistant test piece. It is. 1... Base material, 2... TIG lick bead. Cr Yuyaku/wi Equivalent Keikan 0 Jujutsu ('c) ”“1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.025wt%以下 Si:0.01〜0.2wt% Mn:1.0〜5.0wt% Cr:28〜35wt% Ni:6〜16wt% Mo:3.1〜6.0wt% N:0.2〜0.4wt% を含有し、残部Fe及び不可避的不純物よりなり、かつ
Cr当量=Cr(wt%)+1.5×Si(wt%)+
Mo(wt%)、Ni当量=Ni(wt%)+30×C
(wt%)+0.5×Mn(wt%)+30×N(wt
%)とした場合にCr当量/Ni当量比が1.9以上、
2.4以下、かつ、上記当量式中のC、Siを除く合金
元素(Cr、Ni、Mo、Mn、N)の総量が45wt
%以上であることを特徴とする溶接性に優れた高耐食性
二相ステンレス鋼。
(1) C: 0.025 wt% or less Si: 0.01-0.2 wt% Mn: 1.0-5.0 wt% Cr: 28-35 wt% Ni: 6-16 wt% Mo: 3.1-6. Contains 0 wt% N: 0.2 to 0.4 wt%, the remainder consists of Fe and unavoidable impurities, and Cr equivalent = Cr (wt%) + 1.5 x Si (wt%) +
Mo (wt%), Ni equivalent = Ni (wt%) + 30 × C
(wt%)+0.5×Mn(wt%)+30×N(wt
%), the Cr equivalent/Ni equivalent ratio is 1.9 or more,
2.4 or less, and the total amount of alloying elements (Cr, Ni, Mo, Mn, N) excluding C and Si in the above equivalent formula is 45wt
% or more. Highly corrosion resistant duplex stainless steel with excellent weldability.
(2)C:0.025wt%以下 Si:0.01〜0.2wt% Mn:1.0〜5.0wt% Cr:28〜35wt% Ni:6〜16wt% Mo:3.1〜6.0wt% Cu:0.1〜3.0wt% N:0.2〜0.4wt% を含有し、残部Fe及び不可避的不純物よりなり、かつ
Cr当量=Cr(wt%)+1.5×Si(wt%)+
Mo(wt%)、Ni当量=Ni(wt%)+30×C
(wt%)+0.5×Mn(wt%)+30×N(wt
%)+Cu(wt%)とした場合にCr当量/Ni当量
比が1.9以上、2.4以下、かつ、上記当量式中のC
、Siを除く合金元素(Cr、Ni、Mo、Mn、Cu
、N)の総量が45wt%以上であることを特徴とする
溶接性に優れた高耐食性二相ステンレス鋼。
(2) C: 0.025 wt% or less Si: 0.01-0.2 wt% Mn: 1.0-5.0 wt% Cr: 28-35 wt% Ni: 6-16 wt% Mo: 3.1-6. Contains 0 wt% Cu: 0.1 to 3.0 wt% N: 0.2 to 0.4 wt%, the remainder consists of Fe and inevitable impurities, and Cr equivalent = Cr (wt%) + 1.5 × Si ( wt%) +
Mo (wt%), Ni equivalent = Ni (wt%) + 30 × C
(wt%)+0.5×Mn(wt%)+30×N(wt
%) + Cu (wt%), the Cr equivalent/Ni equivalent ratio is 1.9 or more and 2.4 or less, and C in the above equivalent formula
, alloying elements other than Si (Cr, Ni, Mo, Mn, Cu
, N) in a total amount of 45 wt% or more, a highly corrosion-resistant duplex stainless steel with excellent weldability.
JP61295723A 1986-12-13 1986-12-13 Highly corrosion resistant duplex stainless steel with excellent weldability Expired - Fee Related JPH0730427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61295723A JPH0730427B2 (en) 1986-12-13 1986-12-13 Highly corrosion resistant duplex stainless steel with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61295723A JPH0730427B2 (en) 1986-12-13 1986-12-13 Highly corrosion resistant duplex stainless steel with excellent weldability

Publications (2)

Publication Number Publication Date
JPS63149360A true JPS63149360A (en) 1988-06-22
JPH0730427B2 JPH0730427B2 (en) 1995-04-05

Family

ID=17824331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61295723A Expired - Fee Related JPH0730427B2 (en) 1986-12-13 1986-12-13 Highly corrosion resistant duplex stainless steel with excellent weldability

Country Status (1)

Country Link
JP (1) JPH0730427B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881493A1 (en) * 1996-09-27 1998-12-02 Srl, Inc. Carrier for immunoassay and method of immunoassay therewith
JP2017179427A (en) * 2016-03-29 2017-10-05 新日鐵住金ステンレス株式会社 Welded joint of duplex stainless steel, welding method of duplex stainless steel and manufacturing method of welded joint of duplex stainless steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893593A (en) * 1981-11-27 1983-06-03 Sumitomo Metal Ind Ltd Welding material for high chromium low nickel two phase stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893593A (en) * 1981-11-27 1983-06-03 Sumitomo Metal Ind Ltd Welding material for high chromium low nickel two phase stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881493A1 (en) * 1996-09-27 1998-12-02 Srl, Inc. Carrier for immunoassay and method of immunoassay therewith
EP0881493A4 (en) * 1996-09-27 2000-05-17 Srl Inc Carrier for immunoassay and method of immunoassay therewith
JP2017179427A (en) * 2016-03-29 2017-10-05 新日鐵住金ステンレス株式会社 Welded joint of duplex stainless steel, welding method of duplex stainless steel and manufacturing method of welded joint of duplex stainless steel

Also Published As

Publication number Publication date
JPH0730427B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
WO2012018074A1 (en) Ferritic stainless steel
CA3019556C (en) Welding structure member
CN111041358A (en) Duplex ferritic austenitic stainless steel
JP2011190521A (en) Martensitic stainless steel with excellent weld characteristics, and mertensitic stainless steel material
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP7285050B2 (en) Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JPS60231591A (en) Wire for submerged arc welding of cr-mo group low alloy steel
EP0816523B1 (en) Low-Cr ferritic steels and low-Cr ferritic cast steels having excellent high-temperature strength and weldability
JPS63149360A (en) Two-phase stainless steel having high corrosion resistance and superior weldability
US20210292876A1 (en) Austenitic Heat Resistant Alloy and Welded Joint Including the Same
JPH03204196A (en) Wire for welding two-phase stainless steel having excellent concentrated sulfuric acid corrosion resistance
JPS59226151A (en) Austenitic high-alloy stainless steel with superior weldability and hot workability
EP0835946B1 (en) Use of a weldable low-chromium ferritic cast steel, having excellent high-temperature strength
JP4297631B2 (en) Chromium-containing steel with excellent intergranular corrosion resistance and low temperature toughness of welds
JPH01215491A (en) Covered arc welding electrode for cr-mo low alloy steel
KR100433250B1 (en) Structural ferritic stainless steel with good weldability
JPS60261690A (en) Coated electrode for cr-mo low alloy steel
JPS62278252A (en) Free-cutting austenitic stainless steel
JPS61207552A (en) Nonmagnetic austenitic stainless steel having superior working stability
JP3396372B2 (en) Low Cr ferritic steel with excellent high temperature strength and weldability
JP3598600B2 (en) Weld metal having high strength and toughness and method of forming the same
US20230398644A1 (en) Ferritic stainless steel welding wire and welded part
JP2001107200A (en) Martensitic stainless steel welded joint excellent in toughness and strength

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees