JPS6314833A - Ti-base alloy excellent in neutron-absorption capacity - Google Patents
Ti-base alloy excellent in neutron-absorption capacityInfo
- Publication number
- JPS6314833A JPS6314833A JP15693786A JP15693786A JPS6314833A JP S6314833 A JPS6314833 A JP S6314833A JP 15693786 A JP15693786 A JP 15693786A JP 15693786 A JP15693786 A JP 15693786A JP S6314833 A JPS6314833 A JP S6314833A
- Authority
- JP
- Japan
- Prior art keywords
- base alloy
- neutron
- absorption capacity
- corrosion resistance
- alloy excellent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 15
- 239000000956 alloy Substances 0.000 title claims abstract description 15
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 13
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 25
- 230000007797 corrosion Effects 0.000 abstract description 19
- 238000005260 corrosion Methods 0.000 abstract description 19
- 239000003758 nuclear fuel Substances 0.000 abstract description 10
- 238000000137 annealing Methods 0.000 abstract description 2
- 238000005275 alloying Methods 0.000 abstract 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 6
- 239000002574 poison Substances 0.000 description 5
- 231100000614 poison Toxicity 0.000 description 5
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002901 radioactive waste Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000002915 spent fuel radioactive waste Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、核燃料の製造、取扱い、輸送、保管、貯蔵等
の為の設備や原子炉付帯設備さらには放射性廃棄物処理
設備等の所謂核燃料サイクルを構成する設備等に使用さ
れる中性子吸収能の優れたTi基合金に関するものであ
る。[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to so-called nuclear fuel, such as equipment for producing, handling, transporting, storing, storing nuclear fuel, reactor auxiliary equipment, and radioactive waste processing equipment. The present invention relates to a Ti-based alloy that has excellent neutron absorption ability and is used in equipment that constitutes a cycle.
[従来の技術]
上記核燃料サイクル設備等においては、核分裂物質の未
臨界性の確保が基本的な要請として存在する。即ち核燃
料、使用済核燃料、放射性廃棄物等に含まれるU235
やp u 23 fl等の核分裂物質は熱中性子(数e
V以下)との結合エネルギーが高い為高励起状態を作り
易く、簡単に臨界点を超えてしまうという危険がある。[Prior Art] In the above-mentioned nuclear fuel cycle equipment, etc., there is a fundamental requirement to ensure subcriticality of fissile material. In other words, U235 contained in nuclear fuel, spent nuclear fuel, radioactive waste, etc.
Nuclear fissile materials such as p u 23 fl emit thermal neutrons (number e
Since the bonding energy with V (lower than V) is high, it is easy to create a highly excited state, and there is a danger that the critical point can be easily exceeded.
そこでこうした事態の発生を回避する為上記設備内の熱
中性子束密度を下げて未臨界性を高めておく必要がある
。Therefore, in order to avoid such a situation, it is necessary to lower the thermal neutron flux density in the above equipment to increase subcriticality.
一方放射性廃棄物処理設備等では使用済み核燃料の溶解
、精製1回収、廃棄に当たり、酸あるいはアルカリで処
理することから機器の腐食並びに健全性の劣化が危惧さ
れ、これに伴ない核燃料物質や放射性物質が漏洩する恐
れがある。その為上記設備の建設に当たっては耐食性の
高い材料を使用する必要がある。On the other hand, in radioactive waste processing facilities, spent nuclear fuel is melted, purified, recovered, and disposed of using acids or alkalis, which raises concerns about equipment corrosion and deterioration of soundness. may be leaked. Therefore, it is necessary to use materials with high corrosion resistance when constructing the above facilities.
上記の様に核燃料サイクル設備等においては、未臨界性
の確保並びに高耐食性が要求されており、こうした相異
なる2つの要求を満たす為従来は耐食性の優れたステン
レスlil、Ti、Zr等の材料を使用して設備を構成
し、被処理溶液中にGd2 o3等の中性子毒を投入す
るという対応がとられていた。As mentioned above, in nuclear fuel cycle equipment, etc., it is required to ensure subcriticality and high corrosion resistance.In order to meet these two different requirements, conventional materials such as stainless steel, Ti, and Zr, which have excellent corrosion resistance, have been used. A response was taken to configure equipment using the above method and inject a neutron poison such as Gd2O3 into the solution to be treated.
[発明が解決しようとする問題点コ
しかるに上記対応にあっては、未臨界性の確保の為に各
工程における中性子毒濃度を夫々適正に制御しなければ
ならず、特に核燃料サイクルにおいては溶解、抽出、濾
通、濃縮等の種々の処理操作が加えられ゛る為中性子毒
濃度の管理が煩雑になるという欠点がある。[Problems to be solved by the invention] However, in order to solve the above problems, the concentration of neutron poison in each process must be appropriately controlled to ensure subcriticality, and especially in the nuclear fuel cycle, the concentration of neutron poison must be appropriately controlled. Since various processing operations such as extraction, filtration, and concentration are added, there is a drawback that the control of the neutron poison concentration becomes complicated.
本発明者等はこうした事情に着目し、未臨界性の確保及
び機器腐食の防止という2つの目的を達成し、しかもそ
の為の管理が容易である様な手段を提供しようと考え、
種々検討を重ねた。その結果機器構成材料自体が優れた
耐食性を有し且つ中性子吸収能の大きなものであれば問
題を一挙に解決することができるのではないかとの方針
を立てるに至った。The inventors of the present invention have focused on these circumstances, and have attempted to provide a means to achieve the two objectives of ensuring subcriticality and preventing equipment corrosion, while also being easy to manage.
Various considerations were made. As a result, they came up with the idea that the problem could be solved all at once if the equipment component materials themselves had excellent corrosion resistance and a large neutron absorption capacity.
[問題点を解決するための手段]
本発明合金は上記方針の下に更に研究を重ねた結果完吸
されたものであって、G d : 0.1〜2%を含み
、残部がTi及び不可避不純物からなる点に第1の要旨
が存在し、又G d : 0.1〜3%。[Means for Solving the Problems] The alloy of the present invention has been completely absorbed as a result of further research based on the above policy, and contains G d : 0.1 to 2%, with the balance being Ti and The first gist is that it consists of unavoidable impurities, and G d : 0.1 to 3%.
Ta:4〜6%を含み残部がTi及び不可避不純物から
なる点に第2の要旨が存在する。The second point lies in the fact that it contains 4 to 6% Ta, with the remainder consisting of Ti and unavoidable impurities.
[作用]
中性子吸収能が大きく且つ耐食性の優れた材料としては
HfやCd等が挙げられるが、これらの材料は極めて高
価であり、且つ構造材料としてはm成約性質が劣るとい
う欠点があり、実用に耐え得るものではない。即ち前記
核燃料サイクル設儲等の構成材料としては、前記要請を
満足するものであることは勿論であるが、そうした要請
を満足する以前に構造材料としての基本的性質を備える
必要があり、さらに所望の形状に加工するに当たっての
加工性や溶接性等も良好である必要がある。しかるにこ
うした要請の全てを満足する材料がこれまで提供されて
いなかった為に前述の様な耐食性材料の使用と中性子毒
の添加という併用手段をやむをえず採用していたという
のが実状であった。[Function] Examples of materials that have a large neutron absorption capacity and excellent corrosion resistance include Hf and Cd, but these materials are extremely expensive and have poor m-contract properties as structural materials, so they are not practical. It is not something that can withstand. In other words, it goes without saying that the constituent materials for the nuclear fuel cycle construction, etc. must satisfy the above requirements, but before satisfying such requirements, they must also have the basic properties as a structural material, and must also have the desired properties. It is also necessary to have good workability, weldability, etc. when processing into the shape. However, since no material has been available that satisfies all of these requirements, it has been necessary to use a method that combines the use of corrosion-resistant materials and the addition of neutron poison as described above.
これに対し、本発明者等は耐食性材料に添加しても構造
材料用として母材特性を損なうことがなしに熱中性子吸
収能を付与できる添加元素殊に熱中性子吸収断面積が大
きい元素について研究を進めた。その結果第1表に示す
様にGdは熱中性子吸収断面積が格段に大きくしかも@
成約性質等にも悪影響を与えず、本発明の目的を達成す
る上で最適であるとの知見を得、前記構成で示すところ
の本発明を完成するに至った。In response, the present inventors have conducted research on additive elements that can be added to corrosion-resistant materials to provide thermal neutron absorption ability without impairing the properties of the base material for structural materials, especially elements with large thermal neutron absorption cross sections. advanced. As a result, as shown in Table 1, Gd has a significantly large thermal neutron absorption cross section and
The present invention was found to be optimal for achieving the purpose of the present invention without adversely affecting the property of contracting, etc., and the present invention as shown in the above structure was completed.
第1表
* 天然ボロンを1.0としたときの相対値即ち本発明
に係るTi合金及びTi−Ta合金は酸あるいはアルカ
リに対して優れた耐食性を示す材料であり且つ構造材料
としての諸特性も備えており前述の核燃料サイクル設備
をはじめとする分野での使用に耐え得るものである。Table 1 * Relative values when natural boron is 1.0, that is, the Ti alloy and Ti-Ta alloy according to the present invention are materials that exhibit excellent corrosion resistance against acids or alkalis, and have various properties as structural materials. This makes it suitable for use in fields such as the aforementioned nuclear fuel cycle equipment.
尚本発明におけるTi−Ta合金はTaを4〜6%含有
するものであり、これによって耐食性の一層の向上をは
かっている。但しTa量が4%未満の場合には耐食性改
善効果を得ることができず、一方6%を超えると加工性
がやや劣化し、耐食性改善効果はそれ以上期待できない
。The Ti--Ta alloy in the present invention contains 4 to 6% Ta, thereby further improving corrosion resistance. However, if the Ta amount is less than 4%, no improvement in corrosion resistance can be obtained, while if it exceeds 6%, workability deteriorates slightly and no further improvement in corrosion resistance can be expected.
本発明においては上記耐食性構造材料中にGdを添加し
ているが、母材がTiの場合には添加量を0.1〜2%
とする必要があり、母材がTi−Ta合金の場合には0
.1〜3%とする必要がある。いずれの場合もGd添加
量が0.1%未満の場合には添加効果がなく熱中性子吸
収能を改善することができない。一方Gd添加量がTi
の場合には2%、Ti−Ta合金の場合には3%を超え
ると鍛造、圧延等の加工性が悪くなり、耐食性や溶接部
の材料特性の劣化も著しくなる。In the present invention, Gd is added to the above-mentioned corrosion-resistant structural material, but when the base material is Ti, the amount added is 0.1 to 2%.
0 if the base material is a Ti-Ta alloy.
.. It is necessary to set it to 1-3%. In any case, if the amount of Gd added is less than 0.1%, the addition has no effect and the thermal neutron absorption ability cannot be improved. On the other hand, the amount of Gd added is Ti
If it exceeds 2% in the case of Ti-Ta alloys, and 3% in the case of Ti-Ta alloys, the workability of forging, rolling, etc. will deteriorate, and the corrosion resistance and material properties of the welded part will deteriorate significantly.
ちなみにTi、Ti−5%Ta合金中へのGdの固溶量
は少なく、1%以上のGdを含有するTi基合金ではG
dリッチな第2相(直径5〜10μm)が存在する。こ
のGdリッチな第2相は母相よりも高い酸素含有量を示
すことが多く、Gd含有量の増加と共に該Gdリッチ相
の体積率が増加する。こうした理由からGd添加量が過
剰になるとGdリッチ相が増加して加工性や材料特性が
劣化する。Incidentally, the amount of solid solution of Gd in Ti and Ti-5%Ta alloys is small, and in Ti-based alloys containing 1% or more of Gd,
A d-rich second phase (5-10 μm in diameter) is present. This Gd-rich second phase often exhibits a higher oxygen content than the parent phase, and the volume fraction of the Gd-rich phase increases as the Gd content increases. For these reasons, when the amount of Gd added is excessive, the Gd-rich phase increases and the workability and material properties deteriorate.
[実施例コ
第2表に示す各種合金をアーク溶解した後、熱間圧延及
び冷間圧延を順次行ない加工性を評価しつつ厚さIII
IIllの板材を作成した。次いで550℃×1時間の
真空焼鈍を行なった後金相1機成約性質、酸及びアルカ
リ中における耐食性、溶接部特性を調査したところ第3
表に示す結果が得られた。[Example 1] After arc melting the various alloys shown in Table 2, hot rolling and cold rolling were performed sequentially to evaluate workability, and the thickness was
IIll plate material was created. After vacuum annealing at 550°C for 1 hour, the properties of the metal phase, corrosion resistance in acids and alkalis, and welded part properties were investigated.
The results shown in the table were obtained.
第3表から明らかな様に、本発明Ti基合金は加工性9
機械的性質、溶接性並びに耐食性に優れ且つ熱中性子吸
収能を有する合金であることが確認された。As is clear from Table 3, the Ti-based alloy of the present invention has a workability of 9
It was confirmed that the alloy has excellent mechanical properties, weldability, and corrosion resistance, and has thermal neutron absorption ability.
第2表
[発明の効果]
本発明は以上の様に構成されており、本発明合金を使用
して製作した前述の核燃料サイクル設備等においては長
期に亘り優れた耐食性を得ることができると共に、確実
に未臨界性を保障することができる。又本発明合金は加
工性並びに溶接性が良好であるので所望形状の設備を支
障なく製作できると共に、機械的性質も満足し得るもの
であるので構造材料として安心して使用することができ
る。Table 2 [Effects of the Invention] The present invention is constructed as described above, and the above-mentioned nuclear fuel cycle equipment manufactured using the alloy of the present invention can obtain excellent corrosion resistance over a long period of time, and Subcriticality can be guaranteed with certainty. Furthermore, since the alloy of the present invention has good workability and weldability, equipment of a desired shape can be manufactured without any problems, and since the alloy has satisfactory mechanical properties, it can be used with confidence as a structural material.
Claims (2)
を含み、残部がTi及び不可避不純物からなることを特
徴とする中性子吸収能の優れたTi基合金。(1) Gd: 0.1 to 2% (meaning of weight %, same below)
A Ti-based alloy with excellent neutron absorption ability, characterized in that the remainder consists of Ti and unavoidable impurities.
部がTi及び不可避不純物からなることを特徴とする中
性子吸収能の優れたTi基合金。(2) A Ti-based alloy with excellent neutron absorption ability, characterized by containing Gd: 0.1-3%, Ta: 4-6%, and the remainder consisting of Ti and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15693786A JPH066767B2 (en) | 1986-07-03 | 1986-07-03 | Ti-based alloy with excellent neutron absorption |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15693786A JPH066767B2 (en) | 1986-07-03 | 1986-07-03 | Ti-based alloy with excellent neutron absorption |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6314833A true JPS6314833A (en) | 1988-01-22 |
JPH066767B2 JPH066767B2 (en) | 1994-01-26 |
Family
ID=15638606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15693786A Expired - Lifetime JPH066767B2 (en) | 1986-07-03 | 1986-07-03 | Ti-based alloy with excellent neutron absorption |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH066767B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59175593A (en) * | 1983-03-25 | 1984-10-04 | 松下電器産業株式会社 | Electroluminescent display unit |
US8092273B2 (en) | 2005-02-28 | 2012-01-10 | Indy & Associate | Underwear for lower parts |
JP2019131883A (en) * | 2017-10-19 | 2019-08-08 | ザ・ボーイング・カンパニーThe Boeing Company | Titanium-based alloy and method for manufacturing titanium-based alloy component by additive manufacturing process |
CN114507795A (en) * | 2022-01-30 | 2022-05-17 | 西安稀有金属材料研究院有限公司 | Nitric acid corrosion resistant titanium-based neutron absorbing material and preparation method thereof |
CN115011839A (en) * | 2022-06-16 | 2022-09-06 | 上海大学 | Titanium-gadolinium alloy material for nuclear shielding, and preparation method and application thereof |
CN115572859A (en) * | 2022-10-18 | 2023-01-06 | 西安稀有金属材料研究院有限公司 | Titanium-based neutron absorption material and preparation method thereof |
-
1986
- 1986-07-03 JP JP15693786A patent/JPH066767B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59175593A (en) * | 1983-03-25 | 1984-10-04 | 松下電器産業株式会社 | Electroluminescent display unit |
JPH0516158B2 (en) * | 1983-03-25 | 1993-03-03 | Matsushita Electric Ind Co Ltd | |
US8092273B2 (en) | 2005-02-28 | 2012-01-10 | Indy & Associate | Underwear for lower parts |
JP2019131883A (en) * | 2017-10-19 | 2019-08-08 | ザ・ボーイング・カンパニーThe Boeing Company | Titanium-based alloy and method for manufacturing titanium-based alloy component by additive manufacturing process |
CN114507795A (en) * | 2022-01-30 | 2022-05-17 | 西安稀有金属材料研究院有限公司 | Nitric acid corrosion resistant titanium-based neutron absorbing material and preparation method thereof |
CN115011839A (en) * | 2022-06-16 | 2022-09-06 | 上海大学 | Titanium-gadolinium alloy material for nuclear shielding, and preparation method and application thereof |
CN115011839B (en) * | 2022-06-16 | 2024-06-18 | 上海大学 | Titanium gadolinium alloy material for nuclear shielding, preparation method and application thereof |
CN115572859A (en) * | 2022-10-18 | 2023-01-06 | 西安稀有金属材料研究院有限公司 | Titanium-based neutron absorption material and preparation method thereof |
CN115572859B (en) * | 2022-10-18 | 2023-11-03 | 西安稀有金属材料研究院有限公司 | Titanium-based neutron absorption material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH066767B2 (en) | 1994-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8070892B2 (en) | High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof | |
US4775508A (en) | Zirconium alloy fuel cladding resistant to PCI crack propagation | |
US20060243358A1 (en) | Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion | |
EP0225226B1 (en) | Aluminum alloy with superior thermal neutron absorptivity | |
CN114507795B (en) | Nitric acid corrosion resistant titanium-based neutron absorbing material and preparation method thereof | |
US3677723A (en) | Composite material of vanadium alloys and iron or nickel alloys | |
JPS6314833A (en) | Ti-base alloy excellent in neutron-absorption capacity | |
US4865645A (en) | Nuclear radiation metallic absorber | |
Savchenko | The issue of novel trends in fuel alloying to reduce interaction | |
JP3057074B2 (en) | Zirconium alloy composition for nuclear fuel cladding | |
EP0195155A1 (en) | Water reactor fuel cladding tubes | |
KR102670439B1 (en) | Corrosion resistant alumina-oxide forming austenitic stainless steels and their manufacturing method for use in lead or lead-bismuth eutectic liquid | |
JP2726299B2 (en) | High corrosion resistant zirconium alloy for nuclear reactors | |
US9305667B1 (en) | Nuclear fuel alloys or mixtures and method of making thereof | |
NO133808B (en) | ||
JPS61207989A (en) | Water cooling type reactor fuel coated material | |
JPS5835252B2 (en) | Corrosion-resistant aluminum alloy for structural use with excellent neutron shielding effect | |
EP0745258B1 (en) | A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same | |
JP2526744B2 (en) | Hafnium-containing alloy | |
CN115572859B (en) | Titanium-based neutron absorption material and preparation method thereof | |
JPS6338553A (en) | Aluminum alloy having superior thermal neutron absorbing power | |
US2886431A (en) | Vanadium alloys | |
KR20240011625A (en) | Chemical compositions of Ti-Gd based alloys with improved neutron absorbing capability and tensile properties, and neutron absorbing structural materials manufactured through the same | |
US3112196A (en) | Metal alloy suitable for controlling thermal neutron reactors | |
JPS61136651A (en) | Al-mg-li alloy |